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Abstract. We introduce a new property of tile self-assembly systems
that we call size-separability. A system is size-separable if every terminal
assembly is a constant factor larger than any intermediate assembly. Size-
separability is motivated by the practical problem of filtering completed
assemblies from a variety of incomplete “garbage” assemblies using gel
electrophoresis or other mass-based filtering techniques.
Here we prove that any system without cooperative bonding assembling
a unique mismatch-free terminal assembly can be used to construct a
size-separable system uniquely assembling the same shape. The proof
achieves optimal scale factor and temperature for the size-separable sys-
tem. As part of the proof, we obtain two results of independent interest
on mismatch-free temperature-1 two-handed systems.

Keywords: 2HAM, hierarchical, aTAM, glues, gel electrophoresis

1 Introduction

The study of theoretical tile self-assembly was initiated by the Ph.D. thesis of
Erik Winfree [19]. He proved that systems of passive square particles (called tiles)
that attach according to matching bonds (called glues) are capable of universal
computation and efficient assembly of shapes such as squares. Soloveichik and
Winfree [17] later proved that these systems are capable of efficient assembly
of any shape, allowing for an arbitrary scaling of the shape, used to embed a
roving Turing machine. In this original abstract Tile Assembly Model (aTAM),
tiles attach singly to a growing seed assembly.

An alternative model, called the two-handed assembly model (2HAM) [1,2,4,6],
hierarchical tile assembly model [3,14], or polyomino tile assembly model [9,10],
allows “seedless” assembly, where tiles can attach spontaneously to form large
assemblies that may attach to each other. This seedless assembly was proved by
Cannon et al. [2] to be capable of simulating any seeded assembly process, while
also achieving more efficient assembly of some classes of shapes.

A generalization of the 2HAM called the staged tile assembly model intro-
duced by Demaine et al. [4] utilizes sequences of mixings, where each mixing
combines a set of input assemblies using a 2HAM assembly process. The prod-
ucts of the mixing are the terminal assemblies that cannot combine with any
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other assembly produced during the assembly process (called a producible as-
sembly). This set of terminal assemblies can then be used as input assemblies
in another mixing, combined with the sets of terminal assemblies from other
mixings.

After a presentation by the author of work [20] on the staged self-assembly
model at DNA 19, Erik Winfree commented that the staged tile assembly model
has a unrealistic assumption: at the end of each mixing process, all producible
but non-terminal assemblies are removed from the mixing. A similar assumption
is made in the 2HAM model, where only the terminal assemblies are considered
to be “produced” by the system.

Ignoring large producible assemblies is done to simplify the model definition,
but allows unrealistic scenarios where “nearly terminal” systems differing from
some terminal assembly by a small number of tiles are presumed to be elimi-
nated or otherwise removed at the end of the assembly process. While filtering
techniques, including well-known gel electrophoresis, may be employed to obtain
filtering of particles at the nanoscale, such techniques generally lack the resolu-
tion to distinguish between macromolecules that differ in size by only a small
amount.

Our results. In this work, we consider efficient assembly of shapes in the
2HAM model under the restriction that terminal assemblies are significantly
larger than all non-terminal producible assemblies. We call a system factor-c
size-separable if the ratio between the smallest terminal assembly and largest
non-terminal producible assembly is at least c. Thus, high-factor size-separable
systems lack large but non-terminal assemblies, allowing robust filtering of ter-
minal from non-terminal assemblies in these systems.

Our main result is an algorithm for converting 2HAM systems of a special
class into size-separable 2HAM systems. A 2HAM system S = (T, f, τ) consists
of a set of tiles T that attach by forming bonds according to their glues and
a glue-strength function f , and two assemblies can attach if the total strength
of the bonds formed meets or exceeds the temperature τ of the system. If a
system is temperature-1 (τ = 1), then any two assemblies can attach if they
have a single matching glue. An assembly is said to be mismatch-free if no two
coincident tile sides in the assembly or any assembly in the system have different
glues. We prove the following:

Theorem 1. Let S = (T, f, 1) be a 2HAM system with a mismatch-free
unique terminal assembly A. Then there exists a factor-2 size-separable 2HAM
system S ′ = (T ′, f ′, 2) with a unique mismatch-free finite terminal assembly A′

such that |S ′| ≤ 8|S| and A′ has the shape of A scaled by a factor of 2.

Along the way, we prove two results of independent interest on temperature-
1 mismatch-free systems. The bond graph of an assembly A, denoted G(A), is
the dual graph of A formed by a node for each tile, and an edge between two
tiles if they form a bond. We show that any system with a unique mismatch-free
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finite terminal assembly whose bond graph is not a tree can be made so without
increasing the number of tile types in the system:

Lemma 7 (Tree-ification Lemma). Let S = (T, f, 1) be a 2HAM system
with unique mismatch-free finite terminal assembly A. Then there exists a 2HAM
system S ′ = (T ′, f ′, 1) with unique mismatch-free finite terminal assembly A′ and
|S ′| ≤ |S|, where A′ has the shape of A and G(A′) is a tree.

The proof of the Tree-ification Lemma yields a simple algorithm for obtaining
S ′: while a cycle in G(A) remains, remove a glue on this cycle from the tile type
containing it. The challenge is in proving such a process does not disconnect
G(A), regardless of the glue and cycle chosen.

We also prove that the tile types used only once in a unique terminal assem-
bly, called 1-occurrence tiles, form a connected subgraph of G(A). That is, these
tiles taken alone form a valid assembly.

Lemma 9. Let S = (T, f, 1) be a 2HAM system with unique mismatch-free
finite terminal assembly A. Then the 1-occurrence tiles in A form a 1-stable
subassembly of A.

For some questions about temperature-1 systems, results have been far eas-
ier to obtain for mismatch-free systems than for general systems allowing mis-
matches. For instance, a lower bound of 2n − 1 for the assembly of a n × n
square by any temperature 1 aTAM system was conjectured by Rothemund and
Winfree [16], and proved for mismatch-free systems by Maňuch, Stacho, and
Stoll [11]. Meunier [12] was able to show the same lower bound for systems per-
mitted to have mismatches under the assumption that the seed tile starts in the
lower left of the assembly, and removing this restriction remains open. In a simi-
lar vein, Reif and Song [15] have shown that temperature-1 mismatch-free aTAM
systems are not computationally universal, while the same problem for systems
with mismatches permitted is a notoriously difficult problem that remains open,
despite significant efforts [8,7,18,13].

In spite of such results, constructing high-factor size-separable versions of
temperature-1 mismatch-free systems remains challenging. One difficulty lies in
the partitioning the assembly into two equal-sized halves that will come together
for the final assembly step. Note that for many assemblies, such a cutting is
impossible (e.g. the right assembly in Figure 1). Even if such a cutting is possible,
removing the bonds connecting the two halves by modifying the tiles along the
boundary may require a large increase in the number of tile types of the system.

Another challenge lies in coping with cycles in the bond graph. Factor-2
size-separability requires that the last assembly step consists of two completely
assembled halves of the unique terminal assembly attaching. Cycles in the bond
graph (e.g. the left assembly in Figure 1) prevent communication between the
tiles inside and outside of the cycles, risking the possibility that the portion of
the assembly inside a cycle still has missing tiles as the exterior takes part in
the supposed final assembly step.
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Fig. 1. Unique mismatch-free terminal assemblies of two different temperature-1 2HAM
systems. Constructing high-factor size-separable versions of these systems is challenging
due to the existence of cycles (left) and lack of equal-sized halves (right).

Loosely speaking, our approach is to first construct a version of A where the
bond graph is a tree and a vertex cut of G(A) consisting of a path of 1-occurrence
tiles exists. This modified version of A is then scaled in size and temperature by a
factor of 2, using special 2×2 macrotiles that only assemble along the boundary
of the scaled assembly via mixed-strength bonds. Finally, the 1-occurrence tiles
forming a vertex cut are given weakened glues such that only completely formed
subassemblies on both sides of the cut can attach across the weak-glue cut.

2 Definitions

Here we give a complete set of formal definitions of tile self-assembly used
throughout the paper. All of the definitions used are equivalent to those found
in prior work on the two-handed tile assembly model, e.g. [1,2,3,14].

Assembly systems. In this work we study the two-handed tile assembly
model (2HAM), and instances of the model called systems. A 2HAM system
S = (T, f, τ) is specified by three parts: a tile set T , a glue-strength function f ,
and a temperature τ ∈ N.

The tile set T is a set of unit square tiles. Each tile t ∈ T is defined by
4-tuple t = (gn, ge, gs, gw) consisting of four glues from a set Σ of glue types, i.e.
gn, ge, gs, gw ∈ Σ. The four glues gn, ge, gs, gw specify the glue types in Σ found
on the north (N), east (E), south (S), and west (W) sides of t, respectively. Each
glue also defines a glue-side, e.g. (gn, N). Define gD(t) to be the glue on the side
D of t, e.g. gN(t) = gn.

The glue function f : Σ2 → N determines the strength of the bond formed
by two coincident glue-sides. For any two glues g, g′ ∈ Σ, f(g, g′) = f(g′, g). A
unique null glue ∅ ∈ Σ has the property that f(∅, g) = 0 for all g ∈ Σ. In this
work we only consider glue functions such that for all g, g′ ∈ Σ, f(g, g′) = 0 and
if g 6= ∅, f(g, g) > 0. For convenience, we sometimes refer to a glue-side with
the null glue as a side without a glue.

Configurations and assemblies. A configuration is a partial function
C : Z2 → T mapping locations on the integer lattice to tiles. Define LD(x, y) to
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be the location in Z2 one unit in directionD from (x, y), e.g. LN(0, 0) = (0, 1). For
any pair of locations (x, y), LD(x, y) ∈ C, the bond strength between the these
tiles is f(gD(C(x, y)), gD−1(C(LD(x, y)))). If gD(C(x, y)) 6= gD−1(C(LD(x, y))),
then the pair of tiles is said to form a mismatch, and a configuration with no mis-
matches is mismatch-free. If gD(C(x, y)) = gD−1(C(LD(x, y))), then the common
glue and pair of directions define a glue-side pair (gD(C(x, y), {D,D−1}).

The bond graph of C, denoted G(C), is defined as the graph with vertices
dom(C) and edges {((x, y), LD(x, y)) : f(gD(C(x, y)), gD−1(C(LD(x, y)))) > 0}.
That is, the graph induced by the neighboring tiles of C forming positive-strength
bonds.

A configuration C is a τ -stable assembly or an assembly at temperature τ if
dom(C) is connected on the lattice and, for any partition of dom(C) into two
subconfigurations C1 and C2, the sum of the bond strengths between tiles at
pairs of locations p1 ∈ dom(C1), p2 ∈ dom(C2) is at least τ , the temperature of
the system. Any pair of assemblies A1, A2 are equivalent if they are identical up
to a translation by 〈x, y〉 with x, y ∈ Z. The size of an assembly A is |dom(A)|,
and t ∈ T is a k-occurrence tile in A if |{(x, y) ∈ dom(A) : A(x, y) = t}| = k.
The shape of an assembly is the polyomino induced by dom(A), and a shape is
scaled by a factor k by replacing each cell of the polyomino with a k × k block
of cells.

Two τ -stable assemblies A1, A2 are said to assemble into a superassembly A3

if A2 is equivalent to an assembly A′2 such that dom(A1)∩ dom(A′2) = ∅ and A3

defined by the union of the partial functions A1 and A′2 is a τ -stable assembly.
Similarly, an assembly A1 is a subassembly of A2, denoted A1 ⊆ A2, if A2 is
equivalent to an assembly A′2 such that dom(A1) ⊆ dom(A′2).

Producible and terminal assemblies. An assembly A is a producible as-
sembly of a 2HAM system S if A can be assembled from two other producible
assemblies or A is a single tile in T . A producible assembly A is a terminal as-
sembly of S if A is producible and A does not assemble with any other producible
assembly of S.

We also consider seeded versions of some 2HAM systems, where an assembly
is producible if it can be assembled from another producible assembly and a
single tile of T . Note that for any temperature-1 2HAM system S, the seeded
version of S has the same set of terminal assemblies as S.

If S has a single terminal assembly A, we call A the unique terminal assembly
(UTA) of S. In the case that |A| is finite and mismatch-free, we further call A
the unique mismatch-free finite terminal assembly (UMFTA) of S.

Size-separability. A 2HAM system S = (T, f, τ) is a factor-c size-separable
if for any pair of producible assemblies A, B of S with A terminal and B not
terminal, |A|/|B| ≥ c. Since this ratio is undefined when S has infinite producible
assemblies, such systems have undefined size-separability. Every system with
defined size-separability has factor-c size-separability for some 1 ≤ c ≤ 2.
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3 Tree-ification

First, we prove that any τ = 1 system producing a unique terminal assembly can
be converted into a system with another unique terminal assembly with the same
shape but whose bond graph is a tree. This is formalized in the Tree-ification
Lemma (Lemma 7) at the end of this section.

Lemma 1. Let S = (T, f, 1) be a 2HAM system. Every 1-stable assembly con-
sisting of tiles in T is a producible assembly of S.

Proof. Let B be a 1-stable assembly consisting of tiles in T . Perform a breadth-
first traversal of G(B), starting at an arbitrary tile, to obtain an ordering on the
tiles of A. Now consider the set of assemblies {An} consisting of the first n tiles
reached in the breadth-first traversal for 1 ≤ n ≤ |B|. The assembly A1 is the
root tile of the breadth-first traversal and so is trivially producible. Assume that
the first n assemblies are producible. Assembly An is a superassembly of An−1
and the the tile reached in step n of the breadth-first search. So by induction all
assemblies {An}, including A|B| = B, are producible by S. ut

Lemma 2. Let S = (T, f, 1) be a 2HAM system with UTA A. Let a glue-side
pair appear twice on a simple cycle of G(A) between tiles t1 and t2, and t3 and
t4. Then |{t1, t2, t3, t4}| 6= 4.

Proof. We prove the result by contradiction. Without loss of generality, assume
the glue-side pair is (1, {E,W}), so t1 and t3 are west of t2 and t4, respectively.
Consider the seeded version of S additionally restricted in two ways: any pro-
ducible assembly with t1 and no tile east of t1 must immediately attach t4 east of
t1, and any producible assembly with t2 and no tile west of t2 must immediately
attach t3 west of t2.

This seeded version of S has the same set of terminal assemblies as S, and
so has a unique terminal assembly A. However, the assembly contains no occur-
rences of t1 west of t2 and so cannot be A, a contradiction. ut

Lemma 3. Let S = (T, f, 1) be a 2HAM system with UMFTA A. Let a glue-side
pair appear twice on a simple cycle of G(A) between tiles t1 and t2, and t3 and
t4. Then |{t1, t2, t3, t4}| 6= 2.

Proof. We prove the result by contradiction. First, observe that if |{t1, t2, t3, t4}| =
2, then t1 = t3 and t2 = t4, otherwise S produces an infinite assembly from just
this set of four tiles. Also, t1 and t2 must appear in the same relative positions in
both occurrences of the glue-side pair, otherwise S produces an infinite assembly.

Growing a second cycle. We carry out seeded assembly, starting with
the assembly C1 consisting of tiles on the cycle. Recall that G(C1) is a cycle
with two occurrences of the adjacent tile pair t1 and t2. Starting at the second
occurrence of the pair, we attach a sequence the single tiles to C1 occurring along
the cycle G(C1), starting at the first occurrence of the pair (see Figure 2). The
sequence finishes with reaching the first occurrence of t1 and t2 again, having
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(i) (ii)

(iii) (iv)

(v)

t1 t2

Fig. 2. Assembling C2 (step (v)), starting with C1 (step (i)). In steps (iii) and (iv), a
blocking tile is replaced with the next tile along the cycle. The resulting bond graph
has a spanning subgraph of two cycles sharing two vertices.

made a complete tour of tile attachments they occur along the cycle G(C1). We
call the resulting assembly C2.

Because the cycle is simple and thus non-self-intersecting, no tile attachment
is prevented (blocked) by the presence of a tile appearing earlier along the cycle.
However, tile attachments may be blocked by the presence of a tile of C1. In this
situation, we replace the blocking tile (called told) of C1 with the next tile along
the cycle (tnew).

Just before removing told, the assembly is spanned by the tiles of C1 and
the path of tiles attached so far. The cycle and path share two tiles: the second
occurrence of t1 and t2 in C1. Removing told yields a 1-stable assembly, and
placing tnew yields another producible assembly. By Lemma 1, both of these
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assemblies are producible assemblies of S. Since A has no mismatches, tnew
attaches to both neighbors of told along the simple cycle of G(C1).

We repeat this replacement process every time a blocking tile is encountered,
and attach tiles until the first occurrence of t1 and t2 is reached. At this point,
the path is closed to form a second cycle and we call the assembling resulting
from growing this second cycle C2.

The sequence of tiles around C1 form a cycle in G(C2), and the newly at-
tached sequence of tiles form a second cycle in G(C2). The cycles also share a
common pair of vertices: the two tiles t1 and t2 in the second occurrence of the
glue-side pair in C1.

Cycle pumping. We now grow additional cycles indefinitely to produce
an infinite sequence of producible assemblies {Cn} of S. In the nth repetition,
the second occurrence of the glue-side pair on the cycle formed in the (n −
1)st repetition is used as the starting point for placing the tiles as they appear
around the cycle. Assume by induction that the assembly at the start of the nth
repetition, G(Cn−1), has a subgraph consisting of a sequence of n − 1 cycles,
where each cycle in the sequence shares two vertices with adjacent cycles in the
sequence, and all vertices belong to some cycle. The sequence of tile placements
to produce Cn then extends this graph with a path.

Replacing a blocking tile with the next tile along the nth cycle is always
possible, as removing the tile removes at most one vertex from each cycle and
disconnecting the graph requires removing at least two vertices from a cycle. At
the end of the sequence of placements, the bond graph G(Cn) of the resulting
assembly consists of a sequence of n cycles, each sharing a pair of vertices with
adjacent cycles in the sequence.

The set of locations of tiles in Cn is {i · (xo1−xo2 , yo1−yo2)+(x, y) | 0 ≤ k ≤
i, (x, y) ∈ dom(C1)}, where (xo1 , yo1) and (xo2 , yo2) are the locations of t1 in the
first and second occurrences of the glue-side pairs, respectively. So |Cn| > |Cn−1|
and the nth cycle contains at least one vertex not found in any previous cycle.
So {Cn} contains arbitrarily large assemblies producible by S, and A cannot be
the UMFTA of S, a contradiction. ut

Lemma 4. Let S = (T, f, 1) be a 2HAM system with UTA A. Let a glue-side
pair appear twice on a simple cycle of G(A) between tiles t1 and t2, and t3 and
t4. Then |{t1, t2, t3, t4}| 6= 3.

Proof. Assume without loss of generality that the glue-side pair is (1, {E,W})
Let t1 and t3 be west of t2 and t4, respectively. If t1 = t4 or t2 = t3, then S
produces an infinite assembly, so either t1 = t3 or t2 = t4; assume without loss
of generality that t2 = t4.

Consider the subassembly C of A consisting only of the tiles forming the
cycle. Since G(C) is a cycle, removing t1 from C and replacing it with t3 yields
a 1-stable (and thus producible by Lemma 1) assembly C ′ of S. But C ′ has
two occurrences of the same glue-side pair between tiles t3 and t2, contradicting
Lemma 3. ut
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Lemma 5. Let S = (T, f, 1) be a 2HAM system with UMFTA A. Then no
glue-side pair appears twice on a simple cycle of G(A).

Proof. Suppose that some glue-side pair appears twice, and let the four tiles
of the two occurrences be t1, t2, t3, and t4. Consider k = |{t1, t2, t3, t4}| ∈
{1, 2, 3, 4}. Clearly k 6= 1, as otherwise S produces an infinite assembly. By
Lemma 2, k 6= 4. By Lemma 3, k 6= 2. Finally, Lemma 4 implies k 6= 3. So no
glue-side pair can occur twice on a simple cycle of G(A). ut

Lemma 6. Let S = (T, f, 1) be a 2HAM system with UMFTA A. Let (g, p) be
the glue-side pair of an edge e in G(A). Then if e lies on a simple cycle in G(A),
all edges with glue-side pair (g, p) lie on simple cycles of G(A).

Proof. Consider a seeded version of S modified in the following way: each time
an attaching tile t leaves g exposed on a side in p, carry out the sequence of tile
attachments as they occur on the cycle in A containing e. Let B be the assembly
as it appears just after t is placed. The first of these attachments is the one of
the two tiles forming the vertices of e in G(A). Continue the attachments until
attaching the next tile on the cycle is blocked by an existing tile (see Figure 3).

e

(a) (b) (c) (d)

(i) (ii)

Fig. 3. An example demonstrating the proof of Lemma 6. Part (a): growing A using
a seeded assembly process, the glue-side (blue,E) appears. Part (b): immediately a
sequence of single-tile attachments following those found on a cycle of A (parts (i)
and (ii)) are placed. Part (c): the next tile in the cycle can no longer be placed, and a
bond between the assembly of part (a) and the growing cycle is formed. Part (d): the
resulting cycle consisting of paths through the sequence of single-tile attachments and
the assembly before the sequence of attachments.
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Each tile attached leaves an exposed glue matching a glue of the next tile in
the cycle, so the blocking tile must form a bond with the last attached tile. Since
the sequence of tile attachments follows a simple cycle in A, the blocking tile
must have been part of B. So the final attachment results in a bond between the
sequence of tile placements (part (c) of Figure 3) and B (part (a) of Figure 3).
Thus a cycle is formed by a path starting at t through the sequence of single-tile
attachments and a path through B ending at t.

Because this modified version of S only modified the order in which tiles
attach, it produces a unique terminal assembly A. So all edges of A with glue-
side pair (g, p) lie on simple cycles of G(A). ut

Lemma 7 (Tree-ification Lemma). Let S = (T, f, 1) be a 2HAM system with
UMFTA A. Then there exists a 2HAM system S ′ = (T ′, f ′, 1) with UMFTA A′

and |S ′| ≤ |S|, where A′ has the shape of A and G(A′) is a tree.

Proof. The system S ′ and assembly A′ are created by repeatedly breaking cycles
in the bond graph of A. A cycle is broken by removing an edge of the cycle, i.e.
an occurrence of a glue-side pair. The break is implemented in the tile set by
replacing all occurrences of glues of the glue-side pair with the null glue.

Such an operation could potentially disconnect G(A′), causing A′ to no longer
be 1-stable (and producible) assembly of S ′. This could happen in two ways:
either the glue-side pair occurs twice on a cycle, or the glue-side pair is a cut
edge of the bond graph of A′ elsewhere. By Lemma 5, no glue-side pair appears
twice in any cycle. So the first possibility cannot occur. By Lemma 6, if a glue-
side pair appears on a cycle, then it cannot be a single-edge cut anywhere in
A. So removing all occurrences of a glues on the sides of the glue-side pair from
S ′ does not cause A′ to become 1-unstable. Moreover, removing glues cannot
add to the set of producible assemblies of S ′, so A′ remains the unique terminal
assembly of S.

Returning to cycle breaking, each break decreases the number of edges in
G(A′), so this process must terminate. At termination, G(A′) has no cycles, and
so is a tree. Since we only removed glues from tiles of S to create S ′, the tile set
is not larger. However, the removal of glues may cause multiple tile in S to be
indistinguishable in S ′. So |S ′| ≤ |S|. ut

4 1-Occurrence Tile Types

In addition to tree-ification, we also make use of the existence of 1-occurrence tile
types: tile types that appear only once in the terminal assembly of the system.
These special tile types are utilized to modify the unique terminal assembly to
contain unique tile types at two locations equally spaced along a traversal around
the outside of the assembly.

Lemma 8. Let S = (T, f, 1) be a 2HAM system with UMFTA A with G(A) a
tree and |A| ≥ 2. Then A has at least two 1-occurrence tiles.
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Proof. We prove the result by induction on |T |, and assume that each tile in T
has at least once occurrence in A. We use |T | = 2 as a base case, since if |A| ≥ 2,
then |T | ≥ 2. Since |A| = |T |, both tiles in A are 1-occurrence tiles and the claim
holds.

For the inductive step, we examine the leaf tiles of A and either find two
1-occurrence tiles or create a new system S ′ = (T ′, f ′, 1) with a UMFTA A′

with G(A′) a tree, |T ′| < |T |, and the same number of 1-occurrence tiles as in
A.

Recall that any tree with at least two nodes, including G(A), has at least two
leaves. If two leaf tiles are 1-occurrence tiles, then the claim holds. Otherwise at
least one leaf tile t is a k-occurrence tile with k ≥ 2.

Since A is mismatch-free, t must have only one non-null glue g and all oc-
currences of t are leaves of G(A). Without loss of generality, assume g = gN(t),
i.e. g is on the north side of t. The glue g is not the north glue of any other tile
in T , as otherwise t could be replaced with this other tile to yield a producible
assembly with size |A| not equal to A, a contradiction. Moreover, since all non-
north glues of t are null, the tiles to the east, south, and west of each occurrence
of t must have the null glue on their west, north, and east sides, respectively.
So removing all occurrences of t from A yields a producible assembly A′ for the
system S ′ = (T − {t}, f, 1).

Since all occurrences of t in any producible assembly are leaves, removing
all occurrences of t from an assembly yields another 1-stable assembly. So an
assembly AS is a producible assembly of S if and only if AS with all occurrences
of t removed is a producible assembly of S ′. So A′ must be the UTA of S ′.
Also, A′ has the same number of 1-occurrence tiles as A. So by induction, the
mismatch-free unique terminal assembly A′ of S ′ has at least two 1-occurrence
tiles and so does A. ut

Lemma 9. Let S = (T, f, 1) be a 2HAM system with UMFTA A. Then the
1-occurrence tiles in A form a 1-stable subassembly of A.

Proof. Suppose by contradiction that the 1-occurrence tiles in A do not form
a 1-stable subassembly. Then let t1 and t2 be a pair of 1-occurrence tiles such
that t1 and t2 are not connected with a path of 1-occurrence tiles in G(A) and
the shortest path between t1 and t2 is as short as possible. In other words, t1
and t2 are the closest pair of 1-occurrence tiles that are not part of a 1-stable
subassembly of A consisting only of 1-occurrence tiles.

Let t3 and t4 be the second and second-to-last tiles encountered along the
shortest path in G(A) from t1 to t2. By definition, t3 and t4 are not 1-occurrence
tiles. Without loss of generality, assume the glue-side pair between t1 and t3
is (1, {W,E}), with t1 west of t3, and the glue-side pair between t4 and t2 is
(2, {W,E}), with t4 west of t2. Let B be the 1-stable subassembly of A consisting
of the aforementioned path between t1 and t2 (including an occurrence t4) and
the shortest path in G(A) between the two occurrences of t4. The remainder of
the proof is a case analysis of B, proving that the existence B implies another
1-stable assembly with two occurrences of t1 or t2. The three cases are seen in
Figure 4.
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t4 t2

t4

t1 t3

(ii)

t5

(iii)
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Fig. 4. The three cases for the closest pair of 1-occurrence tiles (t1 and t2) in A not
in the same connected component of 1-occurrence tiles in G(A). The shortest path
between two occurrences of t4 is used to create a 1-stable assembly containing two
occurrences of t1 or t2.

Case (i). Suppose that the path between the two occurrences of t4 does not
contain a tile in the location east of the second occurrence of t4. Attaching t2 at
this location yields a 1-stable assembly containing two occurrences of t2.

Case (ii). Now suppose that the path between the two occurrences of t4
contains a tile t5 in the location east of the second occurrence of t4. Begin
attaching tiles as they appear along the path between t2 and t1, starting at t4.
If all tiles along the path can be attached, then the result is a 1-stable assembly
containing two occurrences of t1.

Case (iii). Assume the situation is identical to case (ii), but some tile place-
ment along the path from t2 to t1 is blocked by an existing tile in the assem-
bly. Since the assembly is producible, it must be a subassembly of A and thus
mismatch-free. So the previous tile along the path and the blocking tile must
share a glue-side pair. Moreover, this glue must have positive strength since the
glue was sufficient for the next tile along the path from t2 to t1 to attach. So
a cycle containing adjacent tiles t4 (the second occurrence) and t5 is formed by
a portion of the path between the two occurrences of t4 and the partial path
from t2 to t1. So removing t5 yields a 1-stable assembly containing both t2 and
an occurrence of t4 with no tile to the east, and replacing t5 with t2 yields a
1-stable assembly containing two occurrences of t2.

So in all three cases, a 1-stable and thus producible (by Lemma 1) assembly
is created with two occurrences of a tile that appears only once in A. So A cannot
be the unique terminal assembly of S, a contradiction. ut

Lemma 10. Let S = (T, f, 1) be a 2HAM system with UTA A. For any glue-
side pair (g, p) occurring between a pair of 1-occurrence tiles in A, (g, p) occurs
only once in A.
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Proof. Without loss of generality, let (g, p) = (g, {E,W}) and t1 and t2 be the
pair of 1-occurrence tiles with the glue-side pair occurrence with t1 west of t2.
Consider the seeded version of S additionally restricted in two ways: any time
a tile attaches to a producible assembly P with exposed east glue g, t2 must
immediately attach to P via this glue; similarly, any time a tile attaches to P
with exposed west glue g, t1 must immediately attach to P . So every occurrence
of the glue-side pair (g, p) contains t1 or t2. Then since A is a producible assembly
of S and t1 and t2 are 1-occurrence tiles, (g, p) occurs only once in A. ut

Lemma 11. Let S = (T, f, 1) be a 2HAM system with UMFTA A with G(A) a
tree. For any tile t ∈ T , the simple path in G(A) between any two occurrences of
t uses the same glue-side of t on both occurrences.

Proof. Suppose, by contradiction, that there exists a simple path in G(A) be-
tween two occurrences of a tile t such that the path uses, without loss of gen-
erality, the north glue-side of the first occurrence and the east glue-side of the
second occurrence. Start with the 1-stable assembly formed by the path, includ-
ing both occurrences of t. Carry out a sequence of tile attachments from the
second occurrence of t as they appear along the path from the first to the second
occurrence of t1, including the final attachment of t. Now repeat this sequence
of attachments indefinitely, starting from the occurrence of t just attached, to
create an assembly B.

The assembly B is 1-stable and thus producible (by Lemma 1), and so B is a
subassembly of A. Since A is mismatch-free and G(A) is a tree, B is mismatch-
free and G(B) is a tree. So the repeated sequence of attachments cannot be
blocked by an existing tile in the assembly and B is an infinite assembly. So A
is not the unique terminal assembly of S, a contradiction. ut

Lemma 12. Let S = (T, f, 1) be a 2HAM system with UMFTA A with G(A) a
tree. Let edges e, e′ ∈ G(A), with e′ between a pair of 1-occurrence tiles. Then
there exists a second 2HAM system S ′ = (T ′, f ′, 1) with |T ′| ≤ 2|T | and UMFTA
A′ with G(A′) = G(A) and the unique path from e′ to e in G(A′) consisting
entirely of 1-occurrence tiles in A′.

Proof. The construction of S ′ is simple. Note that e′ has a unique glue-side pair
by Lemma 10. Find the shortest path in G(A) from e′ to e. Replace all glues
along this path, including e, with unique glues, letting T ′ and f ′ be the updated
tile set and glue function.

We claim that the resulting mismatch-free assembly A′ with G(A′) a tree is
the unique terminal assembly of S ′. Certainly A′ is a terminal assembly of S ′,
as otherwise A was not a terminal assembly of S.

For any terminal assembly of S ′, all occurrences of newly created tiles in
T ′ − T can be swapped with the tiles in T they replaced to yield A. Then since
A′ is mismatch-free with G(A′) a tree and the glues along the path from e′ to
e in G(A′) are unique, any appearance of the tiles along this path in a terminal
assembly of S ′ must lie along a complete path from e′ to e. Otherwise replacing
the newly created tiles yields a terminal assembly of S with a mismatch or a
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cycle. In summary, A′ must be the unique terminal assembly of S ′, as every
terminal assembly must have a complete path from e′ to e for every occurrence
of a tile on the path, swapping all newly created tiles with the tiles they replaced
must yield A, and the tiles incident to e′ are 1-occurrence tiles in A.

We also claim that |T ′| ≤ 2|T | by now proving that the path of tiles between
e′ and e in A are all distinct. Suppose that two tiles along the path have the
same type t. By Lemma 11, the path between two occurrences of t must enter
both occurrences using the same glue-side. So consider the seeded assembly
process starting at the tiles incident to e′, growing along the path to the first
occurrence of t, then to the second occurrence, and then growing from the second
occurrence using the sequence of tile placements encountered when traveling
from the first occurrence backwards to e′. Since A is the mismatch-free unique
terminal assembly of S and G(A) is a tree, this sequence of tile placements must
cannot be blocked or form a cycle. So the resulting assembly, a subassembly of
A, has two occurrences of the 1-occurrence tiles incident to e′, a contradiction.
Lemma 10 implies the final result that the edges of G(A′) corresponding to the
cut are unique glue-side pairs. ut

5 A Size-Separable Macrotile Construction

A simple barrier to general high-factor size-separability is the fact that any
system with a tree-shaped unique terminal assembly A cannot be factor-c size-
separable for any c > 1 + 1/|A|. A more subtle challenge is how to partition
assemblies into equal-sized 1-stable halves that will come together in the final
assembly step. For instance, every 1-stable subassembly of the right assembly of
Figure 1 has size at most one-third the size of the total assembly.

We resolve both of these issues by creating a temperature-2 2HAM system
with a unique terminal assembly whose shape is the shape of A scaled by a factor
of 2, and whose bond graph has an edge cut of two temperature-1 bonds that
partitions G(A) into two subgraphs of equal size.

Lemma 13. Let S = (T, f, τ) be a 2HAM system with P and P ′ producible
assemblies of S with P a proper subassembly of P ′. Then P is not a terminal
assembly.

Proof. Doty [5] proves that the greedy process of starting with the tiles of P ′ and
repeatedly assembling pairs of τ -stable assemblies into larger τ -stable assemblies
always suffices to yield P ′, regardless of the order in which the assemblies are
merged. Since P is producible, there must also be such a sequence for P , and
since P is a subassembly of P ′, any such sequence utilizes a subset of the tiles in
P ′. Then P ′ can be assembled by first assembling P , then continuing the process
to form P ′, so P is not terminal. ut

Lemma 14. Let S = (T, f, 1) be a 2HAM system with UMFTA A with G(A)
a tree. Then there exists a 2HAM system S ′ = (T ′, f ′, 2) with UMFTA A′ and
|S ′| ≤ 4|S| such that A′ has the shape of A scaled by a factor of 2.
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Proof. We start by describing common properties of all occurrences of each tile
type t ∈ T . Since G(A) is a tree, Lemmas 8 and 9 imply that there exists an edge
e′ in G(A) between two 1-occurrence tiles and Lemma 11 implies that any path
between two occurrences of t use the same glue-side pair. So any breadth-first
search G(A) starting at a 1-occurrence tile incident to e′ visits all occurrences of
t exactly once, and all via incoming edges from the same side of t. Then since A
is mismatch-free, if a direction is applied to each edge of G(A) according to the
direction of traversal during the breadth-first search, all occurrences of t have
the same set of incoming and outgoing edges. So all occurrences of t have their
corners visited in the same order during a traversal of the boundary of A.

We use these conditions to construct unique macrotile versions of each tile
type according to their incoming and outgoing edges induced by the breadth-
first search starting at e′. All possible macrotile constructions (up to symmetry)
are shown in Figure 5. For each glue-side pair in the original system, we use
two glue-side pairs in the scaled system, one with strength-2 and the other with
strength-1. The glue-side pair visited first in the counterclockwise traversal of
the boundary starting at e′ has strength 2, while the other pair has strength 1.

There are also three glues internal to each macrotile attaching each pair of
adjacent tiles forming a macroedge whose corresponding edge of the tile either
has an outgoing edge induced by the breadth-first search, or has no edge. These
glues are unique to the macrotile type. The strengths of each of these glues is
determined by whether the closest macroside has glues. If not, then the glue is
strength-2, otherwise the glue is strength-1.

If the closest macroside does not contain a glue, then the strength-2 internal
glue is necessary to allow assembly to continue along the boundary of the assem-
bly in the counterclockwise direction (e.g. from the northwest to the southwest
tile). If the closest macroside does contain a glue, then the strength-1 internal
glue prevents the placement of the next tile in the macrotile (e.g. the southwest
tile after the northwest tile) until a second tile from an adjacent macrotile (e.g.
the southeast tile of the macrotile to the west) has been placed. As a result,
no pair of tiles in a macrotile can be present in a common assembly unless all
tiles between them along a counterclockwise traversal of the boundary of the
macrotile assembly are also present.

Scaled assembly of A. We claim that this scaled version of the system
has a unique terminal assembly A′ obtained by replacing each tile in the original
unique terminal assembly with the corresponding 2×2 macrotile. First we prove
that any subassembly of A′ corresponding to a subtree of G(A) is producible.
A subtree of size 1 corresponds to a leaf node, the lower-rightmost case in Fig-
ure 5, and is clearly producible. For larger subtrees, the assembly can be formed
by combining the 4 tiles of the root macrotile to the (up to) three subtrees as-
semblies. Grow the assembly in counterclockwise order around the boundary,
attaching either a subtree assembly (if the macroside has a glue) or the next
tile of the root macrotile. In both cases, placing the second root tile along the
macroedge is possible, as either the internal glue shared with the previous root
tile is strength-2 or a second glue is provided by the subtree assembly. Then by
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Fig. 5. The individual tiles enumerate (up to symmetry) all combinations of incom-
ing and outgoing edges (large arrows) induced by a breath-first search of G(A). The
corresponding 2 × 2 macrotiles are used in the proof of Theorem 1 to construct a
temperature-2 system that carries out the assembly of A at scale 2 in the order that
the tiles appear along the boundary (small arrows). All internal macrotile glues are
unique to the tile type, while all external macrotile glues correspond to the glues found
on the surface of the inducing tile.

induction, the assembly A′ corresponding to the subtree rooted at the root of
the breadth-first search is producible.

By construction, A′ is terminal because it corresponds to a mismatch-free
terminal assembly in the original system that necessarily has no exposed glues.
So A′ is a terminal assembly of the scaled system. Next, we prove that A′ is the
unique terminal assembly of the system.

Terminal assembly uniqueness. We start by proving that every pro-
ducible assembly can positioned on a 2×2 macrotile grid, where every tile in the
southwest corner is a southwest tile of some macrotile, every tile in the northwest
corner is the northwest tile of some macrotile, etc. Start by noticing that each
glue type appears coincident to only one of 12 edges of the grid: the 4 internal
edges of each macrotile, and the 8 external edges. Suppose there is some small-
est producible assembly that does not lie on a grid. Then this assembly must
be formed by the attachment of two smaller assemblies that do lie on grids, and
whose glues utilized in the attachment are coincident to only one of 12 edges of
the grid. So if these assemblies are translated to have coincident matching glue
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sides, then their grids must also be aligned and the assembly resulting from their
attachment also lies on the grid, a contradiction.

Let A′p be a producible assembly of the macrotile system that is not A′.
Construct an assembly Ap of the original input system S in the following way:
replace each macrotile region with a single tile corresponding to one of the tiles
in the macrotile region. If such a replacement is unambiguous, meaning that all
tiles in each macrotile region belong to a common macrotile, then the resulting
assembly is a 1-stable (and thus producible) assembly of S.

We also claim that such a replacement is always unambiguous. Suppose,
for the sake of contradiction, that there is some A′p such that replacement is
ambiguous. The ambiguity must be due to two tiles in the same macrotile region
bonded via external strength-2 glues on different macrosides to tiles in adjacent
macrotiles, since no macroside has two strength-2 glues (see Figure 5). So there
is some path in G(A′p) from the external glue of one of of these tiles to the
external glue to the other consisting of length-2 and length-3 subpaths through
other macrotile regions, each consisting of tiles of a common macrotile. So this
path can be unambiguously replaced with a path from tiles in S from one side
of a tile location to the other side, with some tile of S able to attach at this
location. But this yields a producible assembly of S (and thus a subassembly
of A) with a cycle, a contradiction. Since constructing Ap from A′p is always
unambiguous, and Ap is a subassembly of A, A′p is a subassembly of A′. Then
by Lemma 13, A′p is not terminal. ut

Theorem 1. Let S = (T, f, 1) be a 2HAM system with UMFTA A. Then there
exists a factor-2 size-separable 2HAM system S ′ = (T ′, f ′, 2) with UMFTA A′

and |S ′| ≤ 8|S|. Furthermore, A′ has the shape of A scaled by a factor of 2.

Proof. We modify the construction used in the proof of Lemma 14 in two ways.
First, we apply Lemma 12 to create a path of 1-occurrence tiles from e′, the
edge between a pair of 1-occurrence tiles utilized in the proof of Lemma 14,
to the edge e reached after half of a complete counterclockwise traversal of the
boundary of A starting at e′. This is done to the original system S, before the
macrotile conversion is performed.

Next, we modify the macrotiles corresponding to 1-occurrence tiles in the
unique terminal assembly A of this modified system S. By Lemma 10, the exter-
nal glues used between every pair of 1-occurrence macrotiles, particularly those
along the path of 1-occurrence macrotiles just constructed, appear only once
in A′. Recall that Lemma 14 uses two glues to attach each pair of adjacent
macrotiles. The first glue visited during a counterclockwise traversal starting at
e′ has strength 2, while the second has strength 1. We increase the strength of
the second glue to 2, and eliminate the internal glue closest to this macroside in
the macrotile closer to e′ (the macrotile further from e′ does not have this glue).
See Figure 6 for an example.

We perform this modification for all of the (1-occurrence) macrotiles along
the path from e′ to e. Clearly the same terminal macrotile assembly exists as
before, as we have only decreased the constraints for tiles to attach. Moreover,
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e′

e

Fig. 6. Modifying 1-occurrence macrotiles along the path from e′ to e to eliminate in-
ternal glues. The original assembly with breadth-first search directions (left) yields the
macrotile assembly (center) by Lemma 14. The modification in the proof of Theorem 1
(right) removes internal glues by strengthening unique external glues.

since we only created pairs of strength-2 glues on macroedges with (macro)glue-
pairs that appear exactly once, it is still the case that no pair of tiles can bond
to external glues on the same macroside. So the terminal assembly uniqueness
argument in the proof of Lemma 14 still holds.

This modified A′ has a path through the center of the macrotiles from e′

to e containing no glues. So A′ has a 2-edge cut of G(A′) consisting of two
(non-macro)edges of G(A) forming half of e′ and e, respectively. These two glues
both have strength 2, since they external glues between 1-occurrence tiles just
modified to no longer include strength-1 glues. We reduce the strength these two
glues to 1, yielding a 2-edge cut with total strength 2.

Size-separability. We claim that this system is factor-2 size-separable,
which is true if the only 2-stable subassemblies containing tiles adjacent to both
edges of the 2-edge cut have size |A′|/2. Consider the 2-stability of one of these
assemblies, called A′half . Clearly tiles adjacent to the cut are at opposite ends of
a counterclockwise traversal of A′half , and moreover a counterclockwise traversal
(the traversal along the boundary of A′) visits all tiles in A′half .

Suppose some tile t along the traversal is missing. We claim that the sub-
assembly Asub consisting of the remainder of the tiles in the macrotile m contain-
ing t and any subtrees visited by the traversal before reaching the counterclockwise-
most tile of m (northeast in Fig. 5) are only attached to the rest of the assembly
by a single strength-1 glue. Observe in Figure 5 that the northeast tile is at-
tached to the next tile in the traversal (the southeast tile of the north macrotile)
by a strength-1 glue. Moreover, any path in G(A′half) from Asub to a location not
in Asub goes through m. It can be verified exhaustively that removing any tile
of m leaves only this single strength-1 glue connecting Asub to the rest of A′half .

So A′half is 2-stable, and any subassembly containing the first and last tiles
visited by a counterclockwise traversal of the boundary of A′half missing any tiles
visited by the traversal (all of the tiles in A′half) is not 2-stable. So the only 2-
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stable subassemblies containing tiles adjacent to both edges of the 2-edge cut
have size are A′half and the other half of the cut, both with size |A′|/2.

The total size of this modified macrotile system is at most 8|S|, since invoking
Lemma 12 increases the size of the system at most a factor of 2 and so the
macrotile system has size at most 4 · 2|S|. ut

6 Open Problems

For temperature-1 systems with mismatch-free unique terminal assemblies, our
result is nearly as tight as possible. Scaling to at least a factor of 2 and using
temperature of at least 2 are both necessary, since any temperature-1 system or
system with a tree-shaped assembly is at most factor-(1 + 1/|A|) size-separable.
The only remaining opportunity for improvement is to reduce the number of tile
types used to less than 8|S|.

We contend that our result is a first step in understanding what is possible
in size-separable systems, and a large number of open problems remain. Perhaps
the most natural problem is to extend this result to the same set of systems,
except permitting mismatches. We conjecture that a similar result is possible
there:

Conjecture 1. Let S = (T, f, 1) be a 2HAM system with unique finite terminal
assembly A. Then there exists factor-2 size-separable system S ′ = (T ′, f ′, 2) with
a unique finite terminal assembly A′ and |S ′| = O(S). Furthermore, A′ has the
shape A scaled by a factor of O(1).

Extending the result to mismatch-free systems at higher temperatures also
is of interest because these systems are generally capable of much more effi-
cient assembly. Soloveichik and Winfree [17] prove that one can construct a
temperature-2 system that uses an optimal number of tiles (within a constant
factor) to construct any shape, provided one is allowed to scale the shape by an
arbitrary amount, and it is likely their construction can be modified to be factor-
2 size-separable. However, it remains open to achieve high-factor size-separable
systems at temperature 2 using only a small scale factor.

Conjecture 2. Let S = (T, f, 1) be a 2HAM system with UMFTA A. Then there
exists factor-2 size-separable system S ′ = (T ′, f ′, 2) with a unique terminal as-
sembly A′ and |S ′| = O(S). Furthermore, A′ has the shape A scaled by a factor
of O(1).

In the interest of applying size-separability to system in the staged model
of tile self-assembly, we pose the problem of developing size-separable systems
with multiple terminal assemblies. Of course, one can construct systems where
the smallest terminal assembly is less than half the size of the largest terminal
assembly, ensuring that the system cannot even be factor-1 size-separable. But
given a system whose ratio of smallest to largest terminal assembly is c, is a
size-separable system with optimal factor 2

c always possible?
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Conjecture 3. Let S = (T, f, 1) be a 2HAM system with finite terminal assem-
blies A1, A2, . . . , Ak with A1 and Ak the smallest and largest terminal assem-
blies. Then there exists factor-|Ak|/|A1| size-separable system S ′ = (T ′, f ′, 2)
with |S ′| = O(S) and mismatch-free terminal assemblies A′1, A

′
2, . . . , A

′
k where

A′i has the shape of Ai scaled by a factor of O(1).

We close by conjecturing that not every system can be made size-separable
by paying only a constant factor in scale and tile types. We ask for an example
of such a system:

Conjecture 4. There exists a 2HAM system S = (T, f, τ) with a unique finite
terminal assembly A such that any factor-2 size-separable system S ′ = (T ′, f ′, τ ′)
with unique finite terminal assembly A′ with the shape of A either has |S ′| ≥
100|S| or the scale of A′ is at least 100.
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