Skip to main content
Log in

Membrane automata for modeling biomolecular processes

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Bioinspired computation models and mechanisms are widely used in various applications, both in theoretical and practical level. Membrane Computing, a branch of Natural Computing, is constantly producing interesting results the last 15 years. In this work we attempt to describe a mitochondrial fusion process based on membrane automata in a novel way. We combine these computation machines with notions from brane calculus and we depict the procedure of the production of specific proteins that are essential for a successful fusion. We also discuss possible extensions of our methodology stating direction for future works and thoughts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alberts B, Bray D, Hopkin K, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2013) Essential cell biology. Garland Science, New York

    Google Scholar 

  • Alexiou AT, Psiha MM, Rekkas JA, Vlamos PM (2011) A stochastic approach of mitochondrial dynamics. World Acad Sci Eng Technol 55:77–80

    Google Scholar 

  • Alexiou A, Vlamos P (2012) A cultural algorithm for the representation of mitochondrial population. Adv Artif Intell 2012:1

    Article  Google Scholar 

  • Aman B, Ciobanu G (2011) Mobility in process calculi and natural computing. Springer, Berlin

    Book  MATH  Google Scholar 

  • Amos M (2004) Cellular computing (genomics and bioinformatics). Oxford University Press, Oxford

    Google Scholar 

  • Barbuti R, Maggiolo-Schettini A, Milazzo P, Pardini G, Tesei L (2011) Spatial P systems. Nat Comput 10(1):3–16

    Article  MathSciNet  MATH  Google Scholar 

  • Bianco L, Fontana F, Franco G, Manca V (2006) P systems for biological dynamics. Applications of membrane computing. Springer, New York, pp 83–128

    Google Scholar 

  • Bodei C, Gori R, Levi F (2013) An analysis for causal properties of membrane interactions. Electron Notes Theor Comput Sci 299:15–31

    Article  MATH  Google Scholar 

  • Broderick G, Ru’aini M, Chan E, Ellison MJ (2005) A life-like virtual cell membrane using discrete automata. In silico Biol 5(2):163–178

    Google Scholar 

  • Cardelli L (2005) Brane calculi. Computational methods in systems biology. Springer, New York, pp 257–278

    Chapter  Google Scholar 

  • Cardelli L, Păun G (2006) An universality result for a (mem) brane calculus based on mate/drip operations. Int J Found Comput Sci 17(01):49–68

    Article  MathSciNet  MATH  Google Scholar 

  • Cavaliere M, Leupold P (2004) Evolution and observation: a new way to look at membrane systems. Membrane computing. Springer, New York, pp 70–87

    Chapter  Google Scholar 

  • Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99

    Article  Google Scholar 

  • Chen H, Ionescu M, Ishdorj TO, Păun A, Păun G, Pérez-Jiménez MJ (2008) Spiking neural P systems with extended rules: universality and languages. Nat Comput 7(2):147–166

    Article  MathSciNet  MATH  Google Scholar 

  • Chen H, Chan DC (2009) Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176

    Article  Google Scholar 

  • Cienciala L, Ciencialová L (2004) Membrane automata with priorities. J Comput Sci Technol 19(1):89–97

    Article  MathSciNet  Google Scholar 

  • Ciobanu G, Aman B (2008) On the relationship between membranes and ambients. Biosystems 91(3):515–530

    Article  Google Scholar 

  • Ciocchetta F, Hillston J (2009) Bio-pepa: a framework for the modelling and analysis of biological systems. Theor Comput Sci 410(33):3065–3084

    Article  MathSciNet  MATH  Google Scholar 

  • Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241(3):779–786

    Article  Google Scholar 

  • Colombini M (2004) VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem 256(1–2):107–115

    Article  Google Scholar 

  • Csuhaj-Varjú E, Martin-Vide C, Mitrana V (2001) Multiset automata. Multiset processing. Springer, New York, pp 69–83

    Chapter  Google Scholar 

  • Csuhaj-Varjú E (2005) P automata. Membrane computing. Springer, New York, pp 19–35

    Chapter  Google Scholar 

  • Csuhaj-Varjú E, Ibarra OH, Vaszil G (2005) On the computational complexity of P automata. DNA computing. Springer, New York, pp 76–89

    Chapter  Google Scholar 

  • Csuhaj-Varjú E, Ibarra OH, Vaszil G (2006) On the computational complexity of P automata. Nat Comput 5(2):109–126

    Article  MathSciNet  MATH  Google Scholar 

  • Csuhaj-Varjú E (2010) P automata: concepts, results, and new aspects. Membrane computing. Springer, New York, pp 1–15

    Chapter  Google Scholar 

  • Csuhaj-Varjú E (2012) P and dp automata: unconventional versus classical automata. Developments in language theory. Springer, New York, pp 7–22

    Chapter  Google Scholar 

  • Csuhaj-Varjú E, Vaszil G (2003) P automata or purely communicating accepting P systems. Membrane computing. Springer, New York, pp 219–233

    Chapter  Google Scholar 

  • Csuhaj-Varjú E, Vaszil G (2008) (Mem)brane automata. Theor Comput Sci 404(1):52–60

    Article  MathSciNet  MATH  Google Scholar 

  • Csuhaj-Varjú E, Vaszil G (2013) On the power of P automata. Unconventional computation and natural computation. Springer, New York, pp 55–66

    Chapter  Google Scholar 

  • Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8(11):870–879

    Article  Google Scholar 

  • Freund R, Kari L, Oswald M, Sosík P (2005) Computationally universal P systems without priorities: two catalysts are sufficient. Theor Comput Sci 330(2):251–266

    Article  MathSciNet  MATH  Google Scholar 

  • Freund R, Oswald M (2002) A short note on analysing P systems with antiport rules. Bull EATCS 78:231–236

    MathSciNet  MATH  Google Scholar 

  • Freund R, Oswald M (2008) Regular \(\omega \)-languages defined by finite extended spiking neural P systems. Fundam Inform 83(1):65–73

    MathSciNet  MATH  Google Scholar 

  • Frisco P (2005) About P systems with symport/antiport. Soft Comput 9(9):664–672

    Article  MATH  Google Scholar 

  • Gheorghe M, Manca V, Romero-Campero FJ (2010) Deterministic and stochastic P systems for modelling cellular processes. Nat Comput 9(2):457–473

    Article  MathSciNet  MATH  Google Scholar 

  • Giannakis K, Andronikos T (2015) Mitochondrial fusion through membrane automata. GeNeDis 2014. Springer, New York, pp 163–172

    Google Scholar 

  • Gramatovici R, Enguix GB (2006) Parsing with P automata. Applications of membrane computing. Springer, New York, pp 389–410

    Google Scholar 

  • Ibarra OH, Dang Z, Egecioglu O (2004) Catalytic P systems, semilinear sets, and vector addition systems. Theor Comput Sci 312(2):379–399

    Article  MathSciNet  MATH  Google Scholar 

  • Ibarra OH, Pérez-Jiménez MJ, Yokomori T (2010) On spiking neural P systems. Nat Comput 9(2):475–491

    Article  MathSciNet  MATH  Google Scholar 

  • Koski T (2001) Hidden Markov models for bioinformatics, vol 2. Springer, New York

    MATH  Google Scholar 

  • Krishna SN (2006) On pure catalytic p systems. Unconventional computation. Springer, New York, pp 152–165

    Chapter  Google Scholar 

  • Krishna SN, Păun G (2005) P systems with mobile membranes. Nat Comput 4(3):255–274

    Article  MathSciNet  MATH  Google Scholar 

  • Kubli DA, Gustafsson ÅB (2012) Mitochondria and mitophagy the yin and yang of cell death control. Circ Res 111(9):1208–1221

    Article  Google Scholar 

  • Long H, Fu Y (2007) A general approach for building combinational P automata. Int J Comput Math 84(12):1715–1730

    Article  MathSciNet  MATH  Google Scholar 

  • Longo DL, Archer SL (2013) Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N Engl J Med 369(23):2236–2251

    Article  Google Scholar 

  • Madhu M, Krithivasan K (2003) On a class of P automata. Int J Comput Math 80(9):1111–1120

    Article  MathSciNet  MATH  Google Scholar 

  • Margenstern M, Martin-Vide C, Păun G (2002) Computing with membranes: variants with an enhanced membrane handling. DNA computing. Springer, New York, pp 340–349

    Chapter  Google Scholar 

  • Martin-Vide C, Pazos J, Păun G, Rodríguez-Patón A (2002) A new class of symbolic abstract neural nets: tissue P systems. Computing and combinatorics. Springer, New York, pp 290–299

    Chapter  Google Scholar 

  • Martın-Vide C, Păun G, Pazos J, Rodrıguez-Patón A (2003) Tissue P systems. Theor Comput Sci 296(2):295–326

    Article  MathSciNet  MATH  Google Scholar 

  • Meeusen S, DeVay R, Block J, Cassidy-Stone A, Wayson S, McCaffery JM, Nunnari J (2006) Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related gtpase mgm1. Cell 127(2):383–395

    Article  Google Scholar 

  • Milner R, Parrow J, Walker D (1992) A calculus of mobile processes, i. Inf Comput 100(1):1–40

    Article  MathSciNet  MATH  Google Scholar 

  • Păun G (2000) Computing with membranes. J Comput Syst Sci 61(1):108–143

    Article  MathSciNet  MATH  Google Scholar 

  • Păun A (2001a) On P systems with active membranes. Unconventional models of computation, UMC2K. Springer, New York, pp 187–201

    Chapter  Google Scholar 

  • Păun G (2001b) Computing with membranes: attacking NP-complete problems. Unconventional models of computation, UMC2K. Springer, New York, pp 94–115

    Chapter  Google Scholar 

  • Păun G, Rozenberg G, Salomaa A (2010) The Oxford handbook of membrane computing. Oxford University Press, Inc, Oxford

    Book  MATH  Google Scholar 

  • Păun G, Pérez-Jiménez MJ et al (2012) Languages and P systems: recent developments. Comput Sci 20(2):59

    MathSciNet  MATH  Google Scholar 

  • Pescini D, Besozzi D, Mauri G, Zandron C (2006) Dynamical probabilistic P systems. Int J Found Comput Sci 17(01):183–204

    Article  MathSciNet  MATH  Google Scholar 

  • Phillips A (2009) An abstract machine for the stochastic bioambient calculus. Electron Notes Theor Comput Sci 227:143–159

    Article  MATH  Google Scholar 

  • Rabin MO, Scott D (1959) Finite automata and their decision problems. IBM J Res Dev 3(2):114–125

    Article  MathSciNet  MATH  Google Scholar 

  • Regev A, Panina EM, Silverman W, Cardelli L, Shapiro E (2004) Bioambients: an abstraction for biological compartments. Theor Comput Sci 325(1):141–167

    Article  MathSciNet  MATH  Google Scholar 

  • Sipser M (2006) Introduction to the theory of computation, 2nd edn. Thomson Course Technology, Stamford

    MATH  Google Scholar 

  • Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC (2009) Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell 20(15):3525–3532

    Article  Google Scholar 

  • van der Bliek AM, Shen Q, Kawajiri S (2013) Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 5(6):a011072

    Google Scholar 

  • Ye X, Tai W, Zhang D (2012) The early events of alzheimer’s disease pathology: from mitochondrial dysfunction to bdnf axonal transport deficits. Neurobiol Aging 33(6):1122-e1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Giannakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannakis, K., Andronikos, T. Membrane automata for modeling biomolecular processes. Nat Comput 16, 151–163 (2017). https://doi.org/10.1007/s11047-015-9518-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-015-9518-1

Keywords

Navigation