
ar
X

iv
:1

50
9.

06
96

2v
2

 [
m

at
h.

D
S]

 2
7

Ja
n

20
16

Minimization and Equivalence in Multi-valued

Logical Models of Regulatory Networks

Adam Streck, Therese Lorenz and Heike Siebert

Freie Universität Berlin, adam.streck@fu-berlin.de

Abstract. Multi-valued logical models can be used to describe biologi-
cal networks on a high level of abstraction based on the network structure
and logical parameters capturing regulatory effects. Interestingly, the dy-
namics of two distinct models need not necessarily be different, which
might hint at either only non-functional characteristics distinguishing the
models or at different possible implementations for the same behaviour.
Here, we study the conditions allowing for such effects by analysing
classes of dynamically equivalent models and both structurally maxi-
mal and minimal representatives of such classes. Finally, we present an
efficient algorithm that constructs a minimal representative of the re-
spective class of a given multi-valued model.

Keywords: regulatory networks, multi-valued models, minimization, equiva-
lence, transition system

1 Introduction

Logical modelling has been used for describing and analysing biological systems
such as gene regulatory networks for many years now, starting most notably with
S. Kauffman’s work on Boolean networks [5]. The resulting models can be viewed
as non-uniform cellular automaton [2] with varying diameter. The underlying
idea of capturing a system in terms of network structure and logical rules that
govern the change of components has later been extended by R. Thomas [10]. In
his multi-valued logical framework components are allowed to adopt more than
two activity levels and so-called logical parameters determine the effect of sets
of regulators on a target component. The update scheme yielding transitions in
the state space of the model can be chosen to allow for either all indicated value
changes to be changed in one step, i.e. synchronously, or for only one possible
component update per step, i.e. asynchronously. In the asynchronous update, as
introduced by R. Thomas, this results in a non-deterministic transition system
that generally is harder to analyse than in the synchronous, deterministic, case,
but usually includes more realistic trajectories [11].

In application, constructing a model, i.e., specifying the network structure
and assigning the logical parameters, is a difficult task. Usually not enough
information is available to make unambiguous choices. Consequently, comparison
of transition systems of many models becomes necessary. In this context, it is

http://arxiv.org/abs/1509.06962v2

an interesting observation that different models may give rise to the same state
transition system. For Boolean networks this phenomenon has been investigated
and is directly related to superfluous edges— edges without detectable dynamical
effect—in the graph capturing the network structure (see e.g. [8]). In the multi-
valued setting however, not only existence but also strength of a regulatory effect
can be captured in the model. This allows for models differing both in structure
and parameters to generate the same transition system, even if only functional
edges are considered. This represent the full dynamical equivalence, as opposed
to what is usually understood as dynamical equivalence in reduction studies,
e.g. [7], where the focus is only on the stabilizing behaviour only.

For a full understanding of this problem in the multi-valued case, the notion
of functionality or observability needs to be extended from the straight-forward
intuition as it is usually used (see e.g. [6] [3]). In this paper, we firstly present the
proofs of results given originally in [9] that allow to describe the equivalence class
of models generating the same transition system using a structurally maximal
representative. This already allows to pinpoint the key properties to be focused
on, namely self-loops and strength of effects as modelled by the value of a given
logical parameter. However, the approach is not suited to application due to
the high complexity. Extending the results in [9], we then show in the second
part of this paper that we can also systematically derive a structurally minimal
representative of the equivalence class of a given model exploiting a resolved
notion of observability and present an algorithm implementing our ideas.

2 Background

We start by introducing the relevant notions, with a simple illustrative example
given in Fig. 1a.

A multi-valued regulatory graph (RG) is a triple G = (V,E, ρ) where:

– V is a set of named components,
– E ⊆ V × N

+ × V is a set of regulations,
– ρ : V → N

+ assigns the maximal activity level to a component.

It is required that for all (u, n, v) ∈ E the non-zero integer n, called threshold, is
in the range of the source component i.e. 0 < n ≤ ρ(u). We also use an additional

function θ : V × V → 2N
+

which provides the thresholds of all edges between
two vertices and is defined as θ(u, v) = {n | (u, n, v) ∈ E} where u, v ∈ V . Note
that θ(u, v) = ∅ if there are no edges from u to v.

We use the symbol G to denote the set of multi-valued RGs. Also, in the
following we use the notation xi←n for a substitution such that in a tuple x the
value indexed by i is substituted for n.

2.1 Discrete kinetic parameters

We denote the state space of a system with S =
∏

v∈V [0, ρ(v)]. Note that the
state space is shared among the graphs that have the same function ρ and thus

v u

2

1

1

V = {v, u}
E = {(u, 1, v),

(v, 2, v), (v, 1, u)}
ρ(v) = 2, ρ(u) = 1

(ωv, ωu) ∈ Ωv Kv(ω)

([0, 2), [0, 1)) 2

([2, 3), [0, 1)) 1

([0, 2), [1, 2)) 2

([2, 3), [1, 2)) 1

(ωv, ωu) ∈ Ωu Ku(ω)

([0, 1), [0, 2)) 0

([1, 3), [0, 2)) 1

(a)

→ (0,0)

(1,0)

(2,0)

(0,1)

(1,1)

(2,1)

(b)

←

v u

2

1

V ′ = {v, u}
E′ = {(v, 2, v), (v, 1, u)}

ρ(v) = 2, ρ(u) = 1

(ωv, ωu) ∈ Ω′v K′v(ω)

([0, 2), [0, 2)) 2

([2, 3), [0, 2)) 1

(ωv, ωu) ∈ Ω′u K′u(ω)

([0, 1), [0, 2)) 0

([1, 3), [0, 2)) 1

(c)

Fig. 1: Toy example. a) A network G with the parametrization K. c) A reduced
toy network G′ with the parametrization K ′. Note that for any x ∈ [0, ρ(v)]
and y ∈ [0, ρ(u)] it holds that FK

v (x, y) = FK′

v (x, y) and FK
u (x, y) = FK′

u (x, y).
Therefore we have b) the transition system TG(K) = T ′G(K

′).

also the same V . We will use Gρ = {(V,E, ρ′) | ρ = ρ′} to refer to the class of
graphs that share the state space, e.g., the graphs in Figures 1a, 1c belong to
the same class.

The set S represents all the qualitatively different configurations of a system.
However, each component is dependent only on the values of its regulators. An
equivalence class on S w.r.t. regulation of a component v ∈ V is called the
regulatory context. To define the relevant notions we first describe the activity
interval of a regulator. For formal reasons we consider an extended threshold
function Θ with Θ(u, v) = θ(u, v) ∪ {0, ρ(u) + 1} for all u, v ∈ V . Then

Iuv = {[j, k) | j, k ∈ Θ(u, v), j < k,¬(∃l ∈ Θ(u, v)(j < l < k))} (1)

is the set of activity intervals of u in regulation of v. Here, the intuition is that
the regulator effect of u on v is constant in each of the intervals of Iuv . Note that
⋃

Iuv = [0, ρ(u)], even in the case that there are no edges from u to v.

The set of regulatory contexts of v is then denoted and definedΩv =
∏

u∈V Iuv .
For each v ∈ V , a regulatory context ω ∈ Ωv is a product-of-sets where ωu is the
u-th set of the product for each u ∈ V . For convenience we use comparisons of
activity levels and intervals. We say that n < ωv, n ∈ [0, ρ(v)] iff for eachm ∈ ωv

we have n < m. Also note that the intervals are not overlapping, therefore if we
extend < to pair of intervals then < naturally forms a total ordering.

The dynamics of the RG are given via integer values, called logical parameters,
assigned to each context. We use a parametrization function Kv : Ωv → [0, ρ(v)]
for each v ∈ V . The parametrization of a regulatory network (V,E, ρ) ∈ G is then
a tuple K = (K1, . . . ,K|V |). Lastly, we denote KG the set of all parametrizations
of the RG G, called the parametrization space.

To denote whether an edge is superfluous in the system, we use the observabil-
ity constraint. Intuitively we say that an edge is not observable if the parameter
value is the same for all pairs of regulatory contexts that differ only in presence
of the said edge. In Figure 1a it is apparent that the change in the ωu does not
cause a change in the parameter Kv(ω), i.e., the edge (u, 1, v) is not observable.

We now formalize this notion. In the rest of the article we will use for
an edge (u, n, v) the symbol n− ∈ Θ(u, v) for a value such that there is no
m ∈ Θ(u, v) where n− < m < n, and n+ ∈ Θ(u, v) for a value such that
there is no m ∈ Θ(u, v) where n+ > m > n. Note that n−, n+ always exist as
0, (ρ(u) + 1) ∈ Θ(u, v) − θ(u, v). Now, we say that (u, n, v) is not observable in
parametrization K ∈ KG iff for each ω ∈ Ωv such that ωu = [n, n+) we have
Kv(ω) = Kv(ωu←[n−,n)).

2.2 Asynchronous transition system

Having a RG G = (V,E, ρ) and a parametrization K ∈ KG we can fully describe
its dynamical behaviour as a transition system (TS) over its state space S.
This is a directed graph (S,→) where → ⊆ S × S is the transition relation. As
mentioned, we are interested in asynchronous dynamics which means that the
transition relation is non-deterministic.

First K is converted into a so-called update function FK = (FK
v)v∈V where

FK
v : S → [0, ρ(v)] for all v ∈ V . Here we exploit the fact that for each s ∈ S

and for each v ∈ V there exists a context ω ∈ Ωv such that s ∈
∏

u∈V ωu. To
simplify the notation we will further write s ∈ ω instead of s ∈

∏

u∈V ωu. For
every v ∈ V we obtain the function FK : S → S from a parametrization Kv as

FK
v (s) =











sv + 1, if sv < Kv(ω), s ∈ ω,

sv, if sv = Kv(ω), s ∈ ω,

sv − 1, if sv > Kv(ω), s ∈ ω.

(2)

Note that we have only three options how the value of a component can change,
namely either increase by one, remain constant, or decrease by one. This provides
us with a certain notion of direction of a derivative (positive, zero, or negative).
In the following we will be using the term δ(Fv)(s) = Fv(s)− sv to describe the
partial derivative in the dimension v in s ∈ S.

Having FK , we now assign each parametrized RG a TS via the function
TG : KG → {(S,→)} where TG(K) = (S,→) such that:

∀s, s′ ∈ S : s → s′ ⇐⇒ (s 6= s′) ∧ (FK
v (s) = n) ∧ (∃v ∈ V : s′ = sv←n). (3)

v u

1

1

V = {v, u}
E′ = {(u, 1, v), (v, 1, v)}

ρ(v) = 2, ρ(u) = 1

(ωv, ωu) ∈ Ω′v K′v(ω)

([0, 1), [0, 1)) 0

([1, 3), [0, 1)) 0

([0, 1), [1, 2)) 1

([1, 3), [1, 2)) 2

(ωv, ωu) ∈ Ω′u K′u(ω)

([0, 3), [0, 2)) 0

(a)

?
←−

v u

1

1

V = {v, u}
E = {(u, 1, v), (v, 1, v)}

ρ(v) = 2, ρ(u) = 1

(ωv, ωu) ∈ Ωv Kv(ω)

([0, 1), [0, 1)) 0

([1, 3), [0, 1)) 0

([0, 1), [1, 2)) 2

([1, 3), [1, 2)) 2

(ωv, ωu) ∈ Ωu Ku(ω)

([0, 3), [0, 2)) 0

(b)

?
−→

v u
1

V = {v, u}
E′ = {(u, 1, v)}

ρ(v) = 2, ρ(u) = 1

(ωv, ωu) ∈ Ω′v K′v(ω)

([0, 3), [0, 1)) 0

([0, 3), [1, 2)) 2

(ωv, ωu) ∈ Ω′u K′u(ω)

([0, 3), [0, 2)) 0

(c)

Fig. 2: Example of uncertain reduction. The network b) is in a non-canonical
form. The canonization a) however makes the edge (v, 1, v) observable, even
though it is superfluous as illustrated by c).

In the following, we will compare the resulting TSs generated by RGs with
the same state space, i.e., those in Gρ for some ρ. We denote this set of TSs
Tρ = {(S,→) | TG(K) = (S,→), G ∈ Gρ,K ∈ KG}. An example of a shared TS
is given in Figure 1.

3 Conservative graph manipulations

We now investigate the cases where different parametrizations of a single graph
generate the same TS. From (3) it is clear that two functions FK 6= FK′

will lead
to distinct TSs, while coinciding functions FK , FK′

lead to the same dynamics.
We therefore focus on describing the situations where for K 6= K ′ we still have
FK = FK′

.

Consider the simple example in Fig. 2. We see that puttingK ′({0, 1}, {1, 2}) =
1 instead K({0, 1}, {1, 2}) = 2 still yields FK′

v (0, 1) = FK
v (0, 1) = 1 and there-

fore the TS remains the same. This illustrates that, other than in the Boolean
case, information on parameter values may get lost when deriving the update
function. In Fig. 2b we have a case where the parameter value lies outside its
context and by incremental change we leave the context even before the value
can be attained.

We now define the notion of a canonical parametrization that prohibits such
effects. Observe that a value change in v can cause the change of context only if

v regulates itself. Therefore we say that K ∈ KG is canonical if and only if

∀v ∈ V, ∀ω ∈ Ωv, ωv = [j, k) : (Kv(ω) ≥ j − 1) ∧ (Kv(ω) ≤ k). (4)

We also denote CG ⊆ KG the subset of canonical parametrizations in KG.
We can obtain a clear correspondence between K and FK if all the contexts

contain just a single state, so that no ambiguities are introduced in (2). This
partition is achieved when only considering complete graphs. For clarity we add
that (V,E, ρ) ∈ G is complete if and only if for all u, v ∈ V and every n ∈ [1, ρ(u)]
the edge (u, n, v) is in E. This gives us the following theorem:

Theorem 1. For each G = (V,E, ρ) ∈ G it holds that if G is complete then TG

defines a bijection between CG and Tρ.

Proof. Let TG(K) = (S,→) for some complete G = (V,E, ρ) ∈ G such that K ∈
CG. The one-to-one correspondence between FK and (S,→) immediately follows
from (3). We therefore need to show that there is also such a correspondence
between K and FK .

First, it is important to note that if the graph is complete, each regulatory
context depicts only a single configuration. This is because if G is complete then
by (1) we have:

∀v ∈ V : Ωv =
∏

u∈V

{[0, 1), [1, 2), . . . , [ρ(u), ρ(u) + 1)}.

Since each context is a singleton, each component has its value fixed. In that
case, canonicity requires that the parameter in the context differs from the value
only by 1. Therefore we have only three options for the parameter value. More
precisely, by substituting (4) we have

∀v ∈ V, ∀s ∈ S : sv − 1 ≤ Kv({s}) ≤ sv + 1.

Then in such a case, (2) can be written as

FK
v (s) =











sv + 1, if sv + 1 = Kv({s}),

sv, if sv = Kv({s}),

sv − 1, if sv − 1 = Kv({s}),

from which we immediately get FK
v (s) = Kv({s}). Thus (3) corresponds to:

∀v ∈ V, ∀s ∈ S : (Kv({s}) = n) ∧ (Kv({s}) 6= sv) ⇐⇒ s → sv←n.

⊓⊔

Based on this theorem, we can consider a complete graph with canonical para-
metrization as a representative of a class of models with the same behaviour.
Now we show that it is possible to convert any graph with some parametriza-
tion into a complete graph with canonical parametrization, while keeping the
dynamics unchanged.

First, we focus on the canonization function Can : {(G,K) | G ∈ G,K ∈
KG} → {(G,C) | G ∈ G, C ∈ CG}. For each component v ∈ V and for each
regulatory context ω ∈ Ωv with ωv = [j, k) we construct C as follows:

Cv(ω) =











j − 1, if Kv(ω) < j − 1

k, if Kv(ω) > k .

Kv(ω), otherwise

The goal is to avoid that the parameter value cannot be reached in one
transition from any state in the context. The procedure is illustrated in the
conversion from the parametrization K in Figure 2b to the parametrization
K ′ in Figure 2a. We now prove that this procedure indeed yields a canonical
parametrization for any RG that shares the TS with the original one.

Lemma 1. Canonization is correct. For all G ∈ G and all K ∈ KG it holds that
if Can(G,K) = (G,C) then C is canonical.

Proof. There are two options for K not to be canonical. The first option is that

∃v ∈ V, ∃ω ∈ Ωv, ωv = [j, k) : Kv(ω) < j − 1

but then Cv(ω) = j − 1, so C is canonical. The second case

∃v ∈ V, ∃ω ∈ Ωv, ωv = [j, k) : Kv(ω) > k

can be treated analogously. ⊓⊔

Lemma 2. Canonization is conservative. For all G ∈ G and all K ∈ KG it
holds that if Can(G,K) = (G,C) then TG(K) = TG(C).

Proof. Recall that the TSs TG(K) and TG(C) are fully defined by FK and FC ,
respectively. We therefore need to show that FK = FC .

For all v ∈ V and for all ω ∈ Ωv the value Cv(ω) is set based on one of the
three following cases.

First consider the case that Kv(ω) < ωv. Denote ωv = [j, k). For all s ∈ ω
it holds that sv > j − 1 and then Cv(ω) = j − 1. This means that for all s ∈ ω
both Kv(ω) and Cv(ω) are smaller than sv and therefore for each s ∈ ω we have
FK
v (s) = sv − 1 = FC

v (s).
The case that Kv(ωv) > ωv can be treated analogously.
The third case is that we have Kv(ωv) = Cv(ωv) and thus by definition

FK
v (s) = FC

v (s) for any s ∈ ωv . ⊓⊔

Corollary 1. For any K holds: If j = Kv(ω) < ωv (resp. j = Kv(ω) > ωv)
then replacing j with j′, 0 ≤ j′ < ωv (resp. ωv < j′ ≤ ρ(v)) is conservative.

Second, we extend the structure of a graph using the completion function Comp :
{(G,K) | G ∈ G,K ∈ KG} → {(Ĝ, K̂) | Ĝ ∈ G, K̂ ∈ K

Ĝ
}. If G is complete, we

map (G,K) to itself. For an incomplete G = (V,E, ρ) and some K ∈ KG we

consider the non-empty set of missing edges Ê = {(u, n, v) | u, v ∈ V, n ∈
[1, ρ(u)], (u, n, v) /∈ E}. Assume that the set of all possible edges has some or-
dering. We extend the graph G to Ĝ such that Ĝ = (V,E ∪{min(Ê)}, ρ). As an
example you can see that the RGs in Figure 1a, 1c differ from each other only
by the presence of a non-observable edge. Likewise for the GRs in Figure 2b, 2c.

To extend the parametrization K̂ to the new structure we first observe that Ĝ
gives rise to new contexts that were obtained by partitioning some context of G
into two. To preserve the dynamical behaviour we simply assign the parameter
value of the original context to both resulting new contexts. Have (u, n, v) =
min(Ê). For each v ∈ V and for each ω̂ ∈ Ω̂v we then create K̂ as:

K̂v(ω̂) =

{

Kv(ω̂) if v 6= v ∨ (ωu = [j, k) ∧ (j 6= n− ∨ k 6= n+)),

Kv(ω̂u←[n−,n+)) otherwise.

We now prove that for an incomplete RG we can use the completion procedure
to add a new edge while retaining the dynamics.

Lemma 3. Completion is sound. For all G ∈ G and all K ∈ KG it holds that if
Comp(G,K) = (Ĝ, K̂) then Ĝ ∈ G and K̂ ∈ K

Ĝ
.

Proof. We have u, v ∈ V and n ∈ ρ(u), therefore by definition of G we have that
if (V,E, ρ) ∈ G then (V,E ∪ {(u, n, v)}, ρ) ∈ G.

The variables n−, n+ exist since 0 is always a possible choice for n− and
ρ(u) + 1 for n+. For any m ∈ θ(u, v) we know that (0 < m < ρ(u) + 1).

From (1) we know that the only change occurs in the interval Iuv . We therefore
only need to show that K̂v is extended to the affected contexts. Since n−, n+

exist, for any ω ∈ Ωv we have that ωu ∈ {i1, . . . , [n−, n+), . . . , ik}. Therefore for
any ω̂ ∈ Ω̂v we also have ω̂u←[n−,n+) ∈ Ωv. Therefore K̂v is defined on the whole

Ω̂v for each v ∈ V . ⊓⊔

Lemma 4. Completion is conservative. For each G ∈ G and for each K ∈ KG

it holds that if Comp(G,K) = (Ĝ, K̂) then TG(K) = T
Ĝ
(K̂).

Proof. We have that K differs from K̂ only in a context ω̂ ∈ Ωv with ω̂ = [j, k)
where either j = n− or k = n+.

Assume there is some s ∈ ω̂ for which FK
v (s) 6= F K̂

v (s). But we know that
[j, k) ⊂ [n−, n+) and therefore s ∈ ω̂u←[n−,n+). This would however imply that

also K̂v(ω̂v) 6= Kv(ω̂u←[n−,n+)), which contradicts the definition of K̂. We there-

fore have that FK(s) = F K̂(s). ⊓⊔

Since the completion procedure adds only one edge at a time, we need to repeat
the procedure. This is captured in the following Lemma.

Lemma 5. For G ∈ G, K ∈ KG, consider the recursive sequence Comp(G,K),
Comp(Comp(G,K)), . . .
This sequence converges to a fixed point (Gc,Kc) and Gc is complete.

Proof. The set Ê of missing edges in G is finite as V is finite. For each v ∈ V
also [1, ρ(v)] is finite. In each iterative use of Comp the size of Ê is decremented
by one. The recursive sequence becomes constant when Ê is empty, indicating a
fixed point (Gc,Kc) of Comp. By definition, Gc is complete. ⊓⊔

Combining all the statements above, we arrive at our final theorem:

Theorem 2. Let G,G′ ∈ G, K ∈ KG, K
′ ∈ KG′ and denote Comp∗(G,K), resp.

Comp∗(G′,K ′) the fixed points derived from iterating Comp starting in (G,K)
resp. (G′,K ′).
Then TG(K) = T ′G(K

′) iff Can(Comp∗(G,K)) = Can(Comp∗(G′,K ′)).

Proof. We now know that Can(Comp∗(G,K)) and Can(Comp∗(G′,K ′)) are canon-
ical and complete. The equivalence follows from TG being a bijection, as proven
in Theorem 1. ⊓⊔

4 Network minimization

Canonization and completion provide mathematical insights into the problem
of dynamical equivalence. However in application it is more useful to have a
minimal, rather than maximal structure. Also, while the canonization provides
a good intuition about what the actual behaviour for each context is, it can have
side-effects like converting a non-observable edge to observable, as is illustrated
in Figure 2. We therefore introduce another form of parametrization, named
normalized parametrization, which prevents such effects but is more involved.
Using a normalization procedure we then obtain a parametrization which is
amenable to minimization. This section is divided into five consecutive steps:

1. We introduce a notion of observability in the TS which allows us to see
whether an edge is observable based on the transitions in the TS.

2. We introduce a notion of a monotone target value (MTV) of a component.
This value keeps the observability properties of TS, but is shared for a whole
context.

3. We show how to compute the MTV from a parametrization and consequently
how to compute a normalized parametrization.

4. We show that every edge that is not observable in the TS is not observable
in the respective normalized parametrization.

5. We introduce the minimization function for RGs based on normalized para-
metrization and explain how to test equivalence via minimization.

4.1 Observability in transition systems

We have already defined the notion of observability in the parametrization. How-
ever we are mostly interested in the observability since it has implications on
the dynamics. We now show how the it can be evaluated in the TS.

Intuitively, for an edge to be not observable there must be only a single value
towards which the component evolves, no matter whether the regulator is above

the thresholds of the said edge or below it. Formally for an RG G = (V,E, ρ) is
an edge (u, n, v) ∈ E not observable in (S,→) = TG(K) iff :

∀s ∈ S, su ∈ [n−, n+), ∃k ∈ [0, ρ(v)], ∀j ∈ [n−, n+) :

δ(FK
v)(su←j) = Sgn(k − (su←j)v) , (5)

where Sgn : Z → {+1, 0,−1} is the usual sign function.
Consider the example in Figure 1. It is easy to see that the regulation (u, 1, v)

does not have any effect, since the left and right half of the TS are identical.
Take in particular the example of the state (v, u) = (0, 0). We choose k = 2.
Then for j = 1 it holds that δ(FK

v)(0, 1) = +1 = Sgn(2 − 0) and for j = 0 it
holds that δ(FK

v)(0, 0) = +1 = Sgn(2− 0).
From the definition of the function F (2) and its derivative we easily see that:

∀s ∈ S, sv ∈ ω ∈ Ωv : δ(FK
v)(s) = Sgn(Kv(ω)− sv) . (6)

This illustrates that the TS non-observability is the kind that we are interested
in, since it relies on the actual dynamics of the network as captured in FK . It
is a stronger notion than the corresponding parametrization based one, since
observability in the TS implies observability in the parametrization. We show
the contraposition of this statement in the following lemma:

Lemma 6. Have (u, n, v) ∈ E not observable in K ∈ KG. Then (u, n, v) is not
observable in TG(K).

Proof. By definition of observability (Section 2.1) we have that for each ω ∈ Ωv

such that ωv = [n, n+) it holds that Kv(ω) = Kv(ωu←[n−,n)). We therefore can
set k = Kv(ω) = Kv(ωu←[n−,n)) and from (6) we immediately see that (5) is
satisfied for the whole range [n−, n+). ⊓⊔

4.2 Monotone target value

To relate the dynamics captured in a TS with a parametrization value, we in-
troduce the notion of monotone target value. Intuitively, for a state s ∈ S an
MTV is a value towards which the component value sv evolves if we traverse
only in the dimension of v until sv either stabilizes or an opposite effect takes
place. This idea is strongly linked to the derivative of the update function.

Consider the example in Figure 1b. Under the influence of the edge (u, 1, v) we
see the trace (0, 1) → (1, 1) ↔ (2, 1). Here the MTV for component v in the state
(v, u) = (0, 0) is 2 since δ(FK

v)(0, 1) = +1 = δ(FK
v (1, 1)) 6= δ(FK

v (2, 1)) = −1,
i.e., at the level sv = 2 an opposing effect takes place.

For a TG(K) = (S,→), v ∈ V , ω ∈ Ωv and any s ∈ ω we denote the MTV
by (FK

v)mon(s) defined as:

(FK
v)mon(s) =











sv, if δ(FK
v)(s) = 0,

min{j > sv|δ(FK
v)(sv←j) 6= +1}, if δ(FK

v)(s) = +1,

max{j < sv|δ(FK
v)(sv←j) 6= −1}, if δ(FK

v)(s) = −1.

(7)

Also note that:

∀s ∈ S, ∀v ∈ V : δ(FK
v)(s) = Sgn((FK

v)mon(s)− sv) . (8)

The MTV can now be related to the observability in the TS. In particular, we
can rewrite (5) as:

∀s ∈ S, su ∈ [n−, n+), ∀j ∈ [n−, n+) :

δ(FK
v)(su←j) = Sgn((FK

v)mon(s)− (su←j)v) (9)

Lemma 7. The non-observability conditions (5) and (9) are equivalent.

Proof. Clearly, (9) implies (5) since we can set k = (FK
v)mon(s). For the other

direction we show that if (9) does not hold, then (5) cannot hold either.
If (9) does not hold, then there is a state s ∈ S and some j ∈ [n−, n+) such

that δ(FK
v)(s′) 6= Sgn((FK

v)mon(s)− s′v) where s′ = su←j . We distinguish three
cases based on the value of δ(FK

v)(s′) and then again three cases based on the
difference between sv and s′v:

Case δ(FK
v)(s′) = 0 and Sgn((FK

v)mon(s)− s′v) 6= 0:

– If sv = s′v, then for any k certainly Sgn(k − s′v) = Sgn(k − sv). Also
since Sgn((FK

v)mon(s) − s′v) 6= 0 we get (FK
v)mon(s) 6= s′v = sv, and thus

δ(FK
v (s)) 6= 0 according to (8). Then if there is a k s.t. δ(FK

v)(s′) =
Sgn(k − s′v) then also Sgn(k − s′v) 6= δ(FK

v (s)) and therefore (5) does not
hold.

– If sv > s′v, it follows that u = v. From (7) we get (FK
v)mon(s) ≥ s′v since

δ(FK
v)(s′) = 0 indicating an effect change in the only problematic case that

δ(FK
v)(s) = −1. Since Sgn((FK

v)mon(s) − s′v) 6= 0 we have strict inequality
((FK

v)mon(s)) > s′v. Subsequently by (7) there exists l such that sv ≥ l > s′v
and δ(FK

v)(sv←l) ≥ 0. We have that s′v ∈ [n−, n+) and δ(FK
v)(s′) = 0, so

to fulfil (5) the k must be chosen as k = s′v. But δ(FK
v)(sv←l) ≥ 0 and

l ∈ (s′v, sv] ⊆ [n−, n+) and therefore k needs to satisfy k > (sv←l)v = l.
Together we get k = s′v < l ≤ k which is a contradiction.

– The case sv < s′v can be treated analogously to sv > s′v.

Case δ(FK
v)(s′) = +1 and Sgn((FK

v)mon(s)− s′v) ≤ 0:

– If sv = s′v, then, since Sgn((FK
v)mon(s) − s′v) ≤ 0 and thus (FK

v)mon(s) ≤
s′v = sv, we have δ(FK

v)(s) ≤ 0. Then k in (5) needs to satisfy k ≤ sv. Also
δ(FK

v)(s′) = +1 = Sgn(k− s′v) and thus k needs to satisfy k > s′v leading to
a contradiction.

– The case sv > s′v is impossible, since sv > s′v ≥ (FK
v)mon(s), so δ(FK

v)(s) =
−1 and therefore by (7) also δ(FK

v)(s′) = −1 which is a contradiction.
– If sv < s′v, then by (7) there is l such that sv ≤ l < s′v and δ(FK

v)(sv←l) ≤ 0.
As l ∈ [n−, n+), a k satisfying condition (5) must be such that Sgn(k −
(sv←l)v) ≤ 0 and thus k ≤ l. But δ(FK

v)(s′) = +1 and a suitable k must also
satisfy s′v < k. Together we again have the contradiction k ≤ l < s′v < k.

Case δ(FK
v)(s′) = −1 and Sgn((FK

v)mon(s)− s′v) ≥ 0:
This case can be treated like the previous one. ⊓⊔

4.3 Normalization algorithm

We can see that the MTVs (FK
v)mon(s) allow for a straightforward test of ob-

servability in the TS. Obtaining (FK
v)mon(s) is however quite tedious. The size

of S is exponential w.r.t. the set V and we have to unfold the TS to find the
monotone paths characterizing the MTVs. In this section we show that all states
of a context share their MTV and additionally that we can obtain the MTV from
a context directly.

We introduce the normalization function, described in Algorithm 1, that
computes for each component and for each regulatory context of that component
the MTV shared between the states of the context.

Algorithm 1 Calculate Norm(K, v, ω) where Θ(v, v) = {n0, ..., nk}.

1: [ni, ni+1) = ωv

2: if Kv(ω) ∈ ωv then

3: Norm(K, v, ω) = Kv(ω)
4: else if Kv(ω) < ωv then

5: ω′ = ωv←[ni−1,ni)

6: if Kv(ω
′) ≥ ni − 1 then

7: Norm(K, v, ω) = ni − 1
8: else

9: Norm(K, v, ω) = Norm(K, v, ω′)
10: end if

11: else

12: ω′ = ωv←[ni+1,ni+2)

13: if Kv(ω
′) ≤ ni+1 then

14: Norm(K, v, ω) = ni+1

15: else

16: Norm(K, v, ω) = Norm(K, v, ω′)
17: end if

18: end if

In the algorithm we traverse through the contexts, rather than through
states of a system, when looking for a monotone trace. As an example con-
sider the K ′v in Figure 2a and ω = ([0, 1), [1, 2)). Then Norm(K ′, v, ω) =
Norm(K ′, v, ωv←[ni+1,ni+2)) = K ′v(ωv←[ni+1,ni+2)) = 2. Note that this coincides
with the value in Figure 2b, which actually has a normalized parametrization.

The correctness of the approach is quite intuitive since a regulatory context
is a subspace of the state space with uniquely determined target value. This
means that either the behaviour is monotone or there is exactly one stable state
which breaks monotonicity in both directions. Considering the definitions of
(FK

v)mon(s) and the derivative. Easy calculations for the three casesKv(ω) < ωv,

Kv(ω) > ωv and Kv(ω) ∈ ωv for a context ω immediately prove the following
lemma.

Lemma 8. For any v ∈ V and any ω ∈ Ωv we have (FK
v)mon(s) = (FK

v)mon(s′)
for all s, s′ ∈ ω.

Due to this Lemma we can extend the notion of MTV to regulatory contexts
ω so that (FK

v)mon(ω) = (FK
v)mon(s) for any s ∈ ω. Having this extension, we

now prove the correctness of Algorithm 1.

Theorem 3. For v ∈ V , ω ∈ Ωv it holds that (FK
v)mon(ω) = Norm(K, v, ω).

Proof. Linking back to the importance of self-regulation already seen in the
canonization, we lead the proof by induction w.r.t. the distance in number of
activity intervals of self-regulation of v between the context and its MTV. We
want to show that Norm(K, v, ω) returns the correct value after at most as many
recursive calls as is the distance between the context and its MTV. The notion
of distance needed for this is defined as a function DK

v : Ωv → N with

DK
v (ω) = Max(|{A ∈ Ivv | ωv < A ≤ Aω}|, |{A ∈ Ivv | ωv > A ≥ Aω}|),

where Aω ∈ Ivv is the activity interval where it holds that (FK
v)mon(ω) ∈ Aω.

Now we prove the theorem by the means of induction. Note that the proof
does not constitute an invariant of the algorithm, as it proceeds in the other
direction than the algorithm itself. In particular, we start by showing that for
all the contexts that have their MTV within them or on their boundaries, the
algorithm ends immediately with the correct value. Then we proceed to show
that if the normalized parameter of any context whose distance is m is correct
and known, then the normalized parameter of a context whose distance is m+1
can be correctly determined by calling Algorithm 1 once.

Base of induction (distance 0 and 1):
If DK

v (ω) = 0 then we know that (FK
v)mon(ω) ∈ ωv. This implies that there is

a state s ∈ ω such that Kv(ω) = sv and δ(FK
v)(s) = 0 according to (2) and (7).

Therefore (FK
v)mon(ω) = Kv(ω) = Norm(K, v, ω), as set on the lines 2, 3. The

recursion depth is 0.
If DK

v (ω) = 1, denote ω′ = ωv←A such that (FK
v)mon(ω) ∈ A. It follows from

DK
v (ω) = 1 that DK

v (ω′) ≤ 1. We distinguish the two options:

– DK
v (ω′) = 0: Then the above argument repeats and there is s ∈ ω such

that Kv(ω
′) = sv = (FK

v)mon(ω′). By the definition of the MTV we get
(FK

v)mon(ω′) = (FK
v)mon(ω). Based on the ordering of ω, ω′ we arrive either

on the line 9 or 16 of the algorithm and state correctly that (FK
v)mon(ω) =

Norm(K, v, ω) = Norm(K, v, ω′) = sv. The recursion depth is 1.
– DK

v (ω′) = 1: Since DK
v (ω) = 1 it follows that (FK

v)mon(ω′) ∈ ωv. In this
case the respective MTVs take the adjacent values of the boundary between
ωv and ω′v. In the case that ω > ω′ we arrive on line 7 in the algorithm
and assign Norm(K, v, ω) = n − 1. This is correct as in any state of ω we

monotonously update towards ω′ and as we enter ω′ by crossing the boundary
value n, we change the direction back towards ω, breaking the monotonicity.
Analogously the correct value is assigned for the case ω < ω′. The recursion
depth is 0.

Induction step (distance over 1):
The induction assumption is that in at most recursion depth m ≥ 1 the value of
any ω′ ∈ Ωv such that DK

v (ω′) ≤ m is correctly set and consider now DK
v (ω) =

m+ 1.
In case ωv > (FK

v)mon(ω), since DK
v (ω) > 1, we have an ω′ such that

DK
v (ω′) = m ≥ 1 and ωv > ω′v > (FK

v)mon(ω). From the definition of the MTV it
follows that all states in both ω and ω′ monotonously decrease under FK

v , there-
fore also ω′v > (FK

v)mon(ω′) which gives us (FK
v)mon(ω) = (FK

v)mon(ω′). In the
algorithm this is assured on line 9 and by induction hypothesis (FK

v)mon(ω′) is
correctly determined by the algorithm in at most m recursions, giving us the de-
sired result for (FK

v)mon(ω). The case that ωv < (FK
v)mon(ω) is again analogous,

leading to line 14 instead of 9. The recursion depth is now m+ 1.
Since the set of intervals is finite and the recursion traverses monotonously,

we terminate in the recursion depth of at most Max({ρ(v)|v ∈ V }). ⊓⊔

Using the normalization function we can, similarly to canonization, create a
conservative and sound transformer on parametrizations. We extend Norm to
a function Norm : {(G,K) | G ∈ G,K ∈ KG} → {(G,N) | G ∈ G, N ∈ NG}
where NG ⊆ KG is the set of normalized parametrizations of G = (V,E, ρ) and
Norm(G,K) = (G,N) where N is defined by

∀v ∈ V, ∀ω ∈ Ωv : Nv(ω) = Norm(K, v, ω).

We have proven correctness of normalization already in Theorem 3, so it only
remains to prove that normalization is conservative.

Lemma 9. Normalization is conservative. For all G ∈ G and every K ∈ KG it
holds that if Norm(G,K) = (G,N) then TG(K) = TG(N).

Proof. Observe that if Kv(ω) ∈ ωv then Norm(K, v, ω) = Kv(ω). In Corollary 1
we have shown that if Kv(ω) < ωv, then it is conservative to replace Kv(ω) with
any l ∈ N such that l < ωv, which is also the case in Algorithm 1. The same
holds for the case that Kv(ω) > ωv. ⊓⊔

4.4 Observability in normalized parametrization

We have seen now that observability in the sense of an actual dynamical effect
should not be evaluated based on the parametrization but rather on the TS. All
information needed to construct a TS is captured in the MTVs due to its relation
to the derivative and thus the update function. At the same time, an important
aspect of parametrizations is shared, namely that the MTV stays fixed within
a context. This allows us to link observability in parametrization and TS, as is
shown in the following theorem that complements Lemma 6.

Theorem 4. For all G ∈ G and every K ∈ KG it holds that if Norm(G,K) =
(G,N) then every edge that is not observable in TG(K) is not observable in N .

Proof. Assume that the above does not hold, i.e. there exists an edge (u, n, v) ∈
E s.t. (9) holds, but also it holds that:

∃ω ∈ Ωv, ωu = [n, n+), ω
↓ = ωu←[n−,n) : Nv(ω) 6= Nv(ω

↓). (10)

Case u 6= v:
Note that in this case we have ωv = ω↓v .

We have δ(FN
v)(s) = δ(FK

v)(s) for all states s ∈ ω as can be easily deduced
from Lemma 9. For all s ∈ ω, s′ ∈ ω↓ we have (FK

v)mon(s) = Nv(ω) 6= Nv(ω
↓) =

(FK
v)mon(s′). It follows that we can only meet the condition Sgn((FK

v)mon(s)−
sv) = Sgn((FK

v)mon(s) − s′v) = δ(FK
v)(s′) for all s ∈ ω, s′ = su←j , j ∈ ω↓ as

demanded in (9) if and only if either Nv(ω) < ωv ∧ Nv(ω
↓) < ω↓v or Nv(ω) >

ωv ∧Nv(ω
↓) > ω↓v.

First consider that (Nv(ω) < ωv) ∧ (Nv(ω
↓) < ω↓v). If the condition on the

line 7 is satisfied for both ω and ω↓ we immediately see that Nv(ω) = Nv(ω
↓).

If it is satisfied for exactly one, then apparently we break the requirement (9)
as for s ∈ ω′v we have (su←n−

)v = sv but δ(FK
v)(su←n−

) 6= δ(FK
v)(s).

We therefore meet the condition on the line 8 and from the line 9 we know that
for ω′ as defined there Nv(ω

′) = Nv(ω) 6= Nv(ω
↓) = Nv((ω

↓)′). Since Nv(ω
′) 6=

Nv((ω
↓)′) we have again that Nv(ω

′) 6∈ ω′v and the same for (ω↓)′. Therefore
it again must hold that Nv(ω

′) < ω′v and Nv((ω
↓)′) < (ω↓)′v. Apparently, the

argument is recursive, requiring that for each ω′ ∈ Ωv such that ω′v < ωv it
holds that Nv(ω

′) < ω′v. But then ultimately Nv(ω) < 0 which contradicts the
definition of K.

For the case that Nv(ω) > ωv a similar argument holds using the upper
boundary Nv(ω) ≤ ρ(v).
Case u = v:
First note that in this case we have ω′ = ω↓ for ω′ as defined in the algorithm.
In case that k = (FK

v)mon(s) < n for any s ∈ ω we execute Norm(K, v, ω) in the
algorithm and the condition on the line 4 is met. Then depending on the value
K(ω′):

– K(ω′) ≥ n − 1: then k = n − 1, meaning that for any s′ ∈ ω′ we have
(FK

v)mon(s′)v = n − 1, otherwise the edge would be observable. But then
also Nv(ω) = Nv(ω

′) which contradicts (10).
– K(ω′) < n − 1: then according to the line 9 we have Norm(K, v, ω) =

Norm(K, v, ω′), again contradicting (10).

The case that k ≥ n can be treated similarly. ⊓⊔

4.5 Minimizing the model

Since we know that after normalization, all non-observable edges can be directly
detected, constructing a reduction algorithm is rather straight-forward. Our min-
imization process is closely related to the completion process in Section 3.

We use the minimization function Min : {(G,N) | G ∈ G, N ∈ NG} →
{(Ǧ, Ň) | Ǧ ∈ G, Ň ∈ NǦ} to eliminate the non-observable edges. If (G,N) is
minimal, i.e. there are no non-observable edges, we map it to itself. Otherwise
have Ě the set of non-observable edges in G = (V,E, ρ) and an arbitrary total
ordering on Ě and (u, n, v) = min(Ě), then:

1. Ǧ = (V,E \ {(u, n, v)}, ρ),
2. Ňv(ωu←[n−,n+)) = Nv(ωu←[n−,n)) = Nv(ωu←[n,n+)).

The nature of MTVs ensures that Ň is again in NǦ. As an example consider the
network in Figure 2b. The edge (v, 1, v) is apparently not observable. We there-
fore remove it from E and with that we set Ňv([0, 3), [0, 1)) = Nv([0, 1), [0, 1)) =
Nv([1, 3), [0, 1)) = 0 and Ňv([0, 3), [1, 2)) = Nv([0, 1), [1, 2)) = Nv([1, 3), [1, 2)) =
2. Note that this coincides with the network in Figure 2c, which is in fact mini-
mized and normalized.

This procedure can be seen as an inversion to the completion as defined in
Section 3, where we created two new contexts by splitting one, keeping the values,
whereas here we merge two contexts with the same value into one. Note that
the fixed points of Comp and Min are not dependent on the order on V ×N×V .
We can therefore take arbitrary, but fixed, order and execute both Comp and
Min according to this order. Then for Min(G,N) = (Ǧ, Ň) with N ∈ N and
G 6= Ǧ we have Comp(Ǧ, Ň) = (G,N). This can be easily verified by applying
the two operations successively. Since completion is sound and conservative,
minimization in such corresponding cases is also sound and conservative. The
only remaining case is that Min(G,N) = (G,N), but this is obviously sound and
conservative too.

Iteration of the Min function will then lead to a minimal structure, as demon-
strated by the following lemma:

Lemma 10. For G ∈ G, K ∈ KG and Norm(G,K) = (G,N) consider the
recursive sequence Min(G,N), Min(Min(G,N)), . . .
This sequence converges to a fixed point (Gm, Nm) and Gm is minimal, i.e. there
are no other (G′,K ′) s.t. TG(K) = TG′(K ′) and G′ has less edges than Gm.

Proof. Since we change N only if we remove an edge and the edge set is finite,
the existence of a fixed point is trivial. If Gm was not minimal, then inevitably
there would have to be an edge which is not observable in TG(K) but observable
in N which contradicts Theorem 4. ⊓⊔

Now we can conclude the section with a theorem about equivalence checking
through minimization, complementing the result of Section 3 and showing that
the set of dynamically equivalent RGs has both maximal and minimal elements
w.r.t. set inclusion on the regulators.

Theorem 5. Let G,G′ ∈ G, K ∈ KG, K
′ ∈ KG′ and denote Min∗(Norm(G,K))

and Min∗(Norm(G′,K ′)) the fixed points derived from iterating Min starting in
Norm(G,K) resp. Norm(G′,K ′).
Then TG(K) = T ′G(K

′) iff Min∗(Norm(G,K)) = Min∗(Norm(G′,K ′)).

Proof. As in the proof of Theorem 2 we now know that both Min∗(Norm(G,K))
and Min∗(Norm(G′,K ′)) are normalized and minimal. Due to Theorem 4 we
know that in the minimization exactly the non-observable edges in the TS are
removed. So if the two TSs are equivalent, the set of remaining edges is the same
in both G and G′.

Additionally we know that the parameter values are not changed during the
minimization, only in the normalization where the value is set to the MTV of
the states covered by the context. The only way how we could have a difference
between Min∗(Norm(G,K)) and Min∗(Norm(G′,K ′)) is that there is a state s ∈
TG(K) and a component v such that (FK

v)mon(s) 6= (FK′

v)mon(s). But then by
(7) we have some r ∈ TG(K) such that δ(FK

v)(r) 6= δ(FK′

v)(r) and TG(K) 6=
TG′(K ′). ⊓⊔

5 Complexity

It has been shown that testing equivalence for two expressions over n variables
is co-NP complete [1]. Since in a Boolean network a component v ∈ V can
be regulated by up to |V | nodes, the update function can be an expression
over |V | variables and deciding whether two parametrizations are equivalent is
therefore necessarily exponential w.r.t. the number of components. However in
the minimization approach we can parametrize by the in-degree. For a given RG
G = (V,E, ρ), denote v− = {(u, n, v)|∃n ∈ N, ∃u ∈ V, (u, n, v) ∈ E} and set
k = Max({|v−| | v ∈ V }), then:

Theorem 6. TIME(Min∗(Norm(G,K))) = O(|V | · 2k · k).

Proof. There are at most 2k different regulatory contexts for any v ∈ V . As
we call Norm(K, v, ω) for each ω ∈ Ωv no recursion is needed—either we set
the value directly or we set it equal to some other value that will eventually be
known. We therefore call Norm(K, v, ω) at most 2k times for each v ∈ V .

In the minimization part we need to obtain the set Ě. For an edge (u, n, v) ∈
E to detect whether (u, n, v) ∈ Ě we need to consider all ω ∈ Ωv with ωu =
[n, n+) and compare them to the respective ωu←[n−,n). At most we need to do

(|Ωv|/2) ∈ O(2k) pair-wise comparisons. Since we have to consider at most k
regulators of |V | components, we obtain in total O(|V | · 2k · k). To remove the
edge we remove the set of tested contexts, which again leads to O(|V | ·2k ·k). ⊓⊔

Intuitively, since we only change the values in place or remove them, no additional
space is needed. The spatial complexity is thus equal to the size of the input.

6 Changing the update scheme

Throughout the article we have been considering only the asynchronous update
function, which was advantageous for the definition of non-observability in the
TS and the monotone update. However we can extend our result to arbitrary

update schemes where Fv(s) can be applied for any v ∈ V and s ∈ S, see [4] for
examples. As an example, we consider the synchronous update. Then TG(K) =
(S,→) such that:

∀s, s′ ∈ S : s → s′ ⇐⇒ ∀v ∈ V : Fv(s) = s′v.

We can therefore immediately see that two TSs are again identical iff the respec-
tive update functions are identical. Since the conversion from parametrization
to update function remains unchanged, we have that two parametrizations are
dynamically equivalent under the asynchronous update scheme iff they are dy-
namically equivalent under any other scheme that depends on F .

7 Conclusion

In the article we have thoroughly investigated the notion of observability for
multi-valued logical models of regulatory networks with an arbitrary update
function. We have shown that, unlike in the case of Boolean networks, a mere
test on equality of parameters in contexts with and without an edge is not suffi-
cient to determine if the edge has a detectable impact on the network dynamics.
As illustrated, at the heart of such an effect lies the connection of self-regulation
and strength of regulation in general, as encoded in the parameter values. Here,
self-regulations can act as amplifiers for the effect of other regulators. Conse-
quently the same effect could be achieved without such a self-regulation simply
by strengthening the original regulatory effect, i.e. by adapting the correspond-
ing parameter value.

One way to obtain an unambiguous representation of a given model that
characterizes the whole class of dynamically equivalent models utilizes the no-
tion of canonical parametrization. Here, in essence, the effects of regulations are
standardized, but to do so, the underlying structure, i.e., the set of regulators
for each component, has to be blown up. Although fully answering the mathe-
matical problem of characterizing the equivalence classes, this approach suffers
from high computational complexity in practice.

Exploiting a refined notion of edge observability directly tied to the dynam-
ical behaviour as captured in the transition system, we were able to construct
a minimal parametrized RG w.r.t. the set inclusion on the set of regulators as
representative of a dynamical equivalence class. The key step to make the con-
struction feasible for application was finding a parametrization where the refined
and the original notion of observability coincides. We presented an efficient and
simple algorithm that allows us to obtain this normalized parametrization from
an arbitrary one.

Our thorough mathematical investigation uncovered a minimal representa-
tive that is helpful not only in model comparison when modelling under uncer-
tainties but also for understanding the regulatory effects underlying an observed
behaviour. However, it should be mentioned that other models in the class might
also carry interesting information. In essence they represent the different possi-
ble mechanisms that can be used to implement a desired effect. In particular,

in biological applications comparison between the actual and the possible im-
plementations might help to gain a deeper understanding about the constraints
governing biological systems.

From the practical perspective, since the algorithm has very low complexity,
we would suggest employing it in tools that focus on parametrization space
analysis to prevent costly computations where they are not needed. For future
work we propose to attempt to translate the solution from the multi-valued
to piece-wise linear models, which share the threshold behaviour, but usually
feature even larger parametrization space and therefore would probably benefit
even more from reduction techniques.

References

1. P. A. Bloniarz, H. B. Hunt, III, and D. J. Rosenkrantz. Algebraic structures with
hard equivalence and minimization problems. Journal of the ACM, 31(4):879–904,
Sept. 1984.

2. A. Dennunzio, E. Formenti, and J. Provillard. Non-uniform cellular automata:
Classes, dynamics, and decidability. Information and Computation, 215(0):32 –
46, 2012.

3. E. Gallet, M. Manceny, P. Le Gall, and P. Ballarini. An LTL model checking
approach for biological parameter inference. In Formal Methods and Software
Engineering, volume 8829 of Lecture Notes in Computer Science, pages 155–170.
Springer International Publishing, 2014.

4. C. Gershenson. Introduction to random boolean networks. arXiv preprint
nlin/0408006, 2004.

5. S. Kauffman. Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of Theoretical Biology, 22(3):437 – 467, 1969.

6. H. Klarner, A. Streck, D. Šafránek, J. Kolčák, and H. Siebert. Parameter identi-
fication and model ranking of Thomas networks. In Computational Methods for
Systems Biology, volume 7605 of Lecture Notes in Computer Science, pages 207–
226. Springer Berlin Heidelberg, 2012.

7. A. Naldi, E. Remy, D. Thieffry, and C. Chaouiya. Dynamically consistent reduction
of logical regulatory graphs. Theoretical Computer Science, 412(21):2207–2218,
May 2011.

8. H. Siebert. Local structure and behavior of Boolean bioregulatory networks. In
Algebraic Biology, volume 5147 of Lecture Notes in Computer Science, pages 185–
199. Springer Berlin Heidelberg, 2008.

9. A. Streck and H. Siebert. Equivalences in multi-valued asynchronous models of
regulatory networks. In Cellular Automata, volume 8751 of Lecture Notes in Com-
puter Science, pages 571–575. Springer International Publishing, 2014.

10. R. Thomas. Regulatory networks seen as asynchronous automata: A logical de-
scription. Journal of Theoretical Biology, 153(1):1 – 23, 1991.

11. R. Thomas. Remarks on the respective roles of logical parameters and time delays
in asynchronous logic: An homage to El Houssine Snoussi. Bulletin of Mathematical
Biology, 75(6):896–904, 2013.

	Minimization and Equivalence in Multi-valued Logical Models of Regulatory Networks

