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Scaled pier fractals do not strictly self-assemble

David Furcy Scott M. Summers

Abstract

A pier fractalis a discrete self-similar fractal whose generator costairleast ongier, that is, a member of the
generator with exactly one adjacent point. Tree fractats@nch-point fractals are special cases of pier fractas. |
this paper, we studgcaled pier fractalswhere ascaled fractalis the shape obtained by replacing each point in the
original fractal by ac x ¢ block of points, for some € Z ™. We prove that no scaled discrete self-similar pier fractal
strictly self-assembles, at any temperature, in Winfrab&ract Tile Assembly Model.

1 Introduction

The stunning, often mysterious complexities of the natwald, from nanoscale crystalline structures to unthinkab
massive galaxies, all arise from the same elemental prianesm asself-assemblyin the absence of a mathematically
rigorous definition, self-assembly is colloquially thotigii as the process through which simple, unorganized com-
ponents spontaneously combine, according to local inieracules, to form some kind of organized final structure.
A major objective of nanotechnology is to harness the powsell-assembly, perhaps for the purpose of engineering
atomically precise medical, digital and mechanical congms at the nanoscale. One strategy for doing so, developed
by Nadrian Seeman, BNA tile self-assembljg,[9].

In DNA tile self-assembly, the fundamental components #tes”, which are comprised of interconnected DNA
strands. Remarkably, these DNA tiles can be “programmad’the careful configuration of their constituent DNA
strands, to automatically coalesce into a desired tangadtste, the characteristics of which are completely cheiteed
by the “programming” of the DNA tiles. In order to fully reaé the power of DNA tile self-assembly, we must study
the algorithmic and mathematical underpinnings of tilé-askembly.

Perhaps the simplest mathematical model of algorithmécsgllf-assembly is Erik Winfree’s abstract Tile Assem-
bly Model (aTAM) [11]. The aTAM is a deliberately over-sinifigd, combinatorial model of nanoscale (DNA) tile
self-assembly that “effectivizes” classical Wang tilifit0] in the sense that the former augments the latter with a
mechanism for sequential “growth” of a tile assembly. Verigetly, in the aTAM, the fundamental components are
un-rotatable, translatable square “tile types” whosessate labeled with (alpha-numeric) glue “colors” and (itgg
“strengths”. Two tiles that are placed next to each offied if the glues on their abutting sides match in both color
and strength, and the common strength is at least a cenéagér) “temperature”. Self-assembly starts from a “seed”
tile type, typically assumed to be placed at the origin ofdberdinate system, and proceeds nondeterministically and
asynchronously as tiles bind to the seed-containing adgeomb at a time.

Despite its deliberate over-simplification, the aTAM is anmputationally expressive model. For example, Winfree
[11] proved that the model is Turing universal, which medre,tin principle, the process of self-assembly can be
directed by any algorithm. In this paper, we study the extenthich tile sets in the aTAM can be algorithmically
directed to “strictly” self-assemble (i.e., place tilesaat only at locations that belong to) shapes that are selfesi
“pier fractals”.

Intuitively, a “pier fractal” is a just-barely connectedlsimilar fractal that contains the origin, as well as in-
finitely many, arbitrarily-large subsets of specially-piosied points that either lie at or “on the far side” from the
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origin of a pinch-point location (we make this notion precia Sectiorf 212). Note that “tree” and “pinch-point”
fractals constitute notable, previously-studied sulss#s of pier fractals (e.g., s€él[3,4, 6] for definitions).

There are examples of prior results related to the striftasslembly of fractals in the aTAM. For example, Theo-
rem 3.2 of [3] bounds from below the size of the smallest #leils which an arbitrary shapé strictly self-assembles,
by the depth oiX’s largest finite sub-tree. Although not stated explicily,immediate corollary of this result is that
no tree-fractal strictly self-assembles in the aTAM.[Ih, [4litz and Shutters prove that a notable example of a tree
fractal, the Sierpinski triangle, does not even “approxehd strictly self-assemble, in the sense that the discfietc-
tal dimension (see [2]) of the symmetric difference of antytbat strictly self-assembles and the Sierpinski triangle
is at least that of the latter, which is approximately,l8g Theorem 3.12 of |[6], the only prior result related to (the
impossibility of) the strict self-assembly of pinch-pofractals, is essentially a qualitative generalization bédrem
3.2 of [3].

While the strict self-assembly of certain classes of fladtathe aTAM has been studied previousipthingis
known about the strict self-assembly in the aTAM of scalpdrersions of fractals, where “scaled-up” means that each
point in the original shape is replaced by a ¢ block of points, for some € Z*. After all, certain classes of fractals
defined by intricate geometric properties, such as theangst of “pinch-points” or “tree-ness”, are not closed under
the scaling operation. To see this, consider the full cotivigcgraph of any shape in which each point in the shape is
represented by one vertex and edges exist between vettatagpresent adjacent points in the shape. If this graph is
a tree and/or contains one or more pinch-points, then tHedsegp version of the original shape (with> 1) is not a
tree and does not contain any pinch points. This means tloagoof techniques that exploit similar subtle geometric
sub-structures of fractals (e.d.|[[8,4, 6]) simply canr@applied to scaled-up versions of fractals. Thus, in thiepa
we ask if it is possible for a scaled-up version of a pier fahtu strictly self-assemble in the aTAM.

The main contribution of this paper provides an answer tqtlegious question, perhaps not too surprisingly to
readers familiar with the aTAM, in the negative: we provettiiere is no pier fractal that strictly self-assembles in
the aTAM at any positive scale factor. Furthermore, our dtim of pier fractal includes, as a strict subset, the set
of all pinch-point fractals from [6]. Our proof makes cruaigse of a (modified version of a) recent technical lemma
developed by Meunier, Patitz, Summers, Theyssier, Winglow\Woods|[[5], known as the “Window Movie Lemma”
(WML). This (standard) WML is a kind of pumping lemma for saésembly since it gives a sufficient condition for
taking any pair of tile assemblies, at any temperature, aplicing” them together to create a new valid tile assembly.
Our modified version of the WML, which we call the “Closed Wavd Movie Lemma” (see Sectidn 2.3 for a formal
statement and proof), allows one to replace a portion ofeaailsembly with another portion of the same assembly,
assuming a certain extra “containment” condition is metrédwer, unlike in the standard WML that lacks the extra
containment assumptions, the replacement of one part dferessembly with another in our Closed WML only goes
“one way”, i.e., the part of the tile assembly being used pdaee another part cannot itself be replaced by the part of
the tile assembly it is replacing.

2 Definitions

In this section, we give a formal definition of Erik Winfreedbstract Tile Assembly Model (aTAM), define “pier
fractals” and develop a “Closed” Window Movie Lemma.

2.1 Formal description of the abstract Tile Assembly Model

This section gives a formal definition of the abstract Tilsé&sbly Model (aTAM)[[11]. For readers unfamiliar with
the aTAM, [7] gives an excellent introduction to the model.

Fix an alphabeX. Z* is the set of finite strings ovér. LetZ, Z*, andN denote the set of integers, positive integers,
and nonnegative integers, respectively. Givea Z?, thefull grid graph of V is the undirected grap@(, = (V,E),
such that, for alk,y €V, {X,y} € E < ||X—¥| =1, i.e., if and only ifX andy are adjacent in the 2-dimensional
integer Cartesian space.

A tile typeis a tuplet € (Z* x N)4, e.g., a unit square, with four sides, listed in some statiged order, and each
side having ajlue ge ~* x N consisting of a finite strintabeland a nonnegative integsirength



We assume a finite set of tile types, but an infinite number pfeof each tile type, each copy referred to as a
tile. Atile setis a set of tile types and is usually denoted as

A configurationis a (possibly empty) arrangement of tiles on the integdickaZ?, i.e., a partial functior :
77 --» T. Two adjacent tiles in a configuratianteract or areattached if the glues on their abutting sides are equal
(in both label and strength) and have positive strengthhEanfiguratiorn induces #inding graph &, a grid graph
whose vertices are positions occupied by tiles, accordirg twith an edge between two vertices if the tiles at those
vertices bind. Anassemblyis a connected, non-empty configuration, i.e., a partiatfion o : Z2 --» T such that
Glomq IS cOnnected and dom # .

Givent € Z*, a is T-stableif every cut-set ofz5 has weight at leagt, where the weight of an edge is the strength
of the glue it represen&.When T is clear from context, we say is stable Given two assemblieg, 3, we saya
is asubassemblpf 8, and we writea C 8, if doma C dompf and, for all pointsp € doma, a(p) = B(p). For
two non-overlapping assembliesand 3, a U 3 is defined as the unique assemplgatisfying, for allX € doma,
y(X) = a(X), for all X € domp, y(X) = B(X), andy(X) is undefined at any poimte Z2\ (doma Udom}).

A tile assembly systeTAS) is a triple.7 = (T, 0, 1), whereT is a tile set,o : Z? --» T is the finite, -stable,
seed assemhlandt € Z* is thetemperature

Given twot-stable assemblias, 3, we writea —>1*7 Bif a C B and|[domB\ doma| = 1. In this case we say .7 -
producesB in one steplf a —{ B, domB\ doma = {p}, andt = B(p), we write3 = a + (F+t). The 7 -frontier
of a is the se¥ 7 a = U(Hiyﬁ(domﬁ\doma), i.e., the set of empty locations at which a tile could statitach to

a. Thet-frontier of a, denoted,” a, is the subset of 7 o defined ag{ pe 07 a | a —{ B andB(p) =t }.

Let &7 denote the set of all assemblies of tiles frdmand Ietgz%!m denote the set of finite assemblies of tiles
from T. A sequence ok € Z* U {w} assembliesty, as,... over.e/T is a.7-assembly sequendefor all 1 <i <k,
ai_1 —>f a;. Theresultof an assembly sequende denoted as ré& ), is the unique limiting assembly (for a finite
sequence, this is the final assembly in the sequence).

We writea —7 3, and we sayr .7-produces3 (in 0 or more steps), if there is&-assembly sequencg, ax, ...
of lengthk = [domB \ doma|+ 1 such that (1 = do, (2) domf = Jg<ixdoma;, and (3) for all 0<i < k, oj C (3.

If kis finite then it is routine to verify thad = ay_1. -

We saya is .7-producibleif o —7 a, and we writee7[.7] to denote the set of”-producible assemblies. The
relation—7 is a partial order o7 [.7] [3l[7].

An assemblya is .7-terminalif a is 1-stable and?” a = @. We write @1[.7] C «/[.7] to denote the set of
-producible 7 -terminal assemblies. |kz1[.7]| = 1 then is said to belirected

We say that a TAS7 strictly (or uniquely) self-assemblesXZ? if, for all a € @[.7], doma = X, i.e., if every
terminal assembly produced by places a tile on every point X and does not place any tiles on pointsZfi X.

In this paper, we consider scaled-up versions of subset$.dformally, if X is a subset o%Z? andc € Z, then a
c-scalingof X is defined as the s&® = {(x,y) € Z? | (|%],|¥]|) € X }. Intuitively, X° is the subset of? obtained
by replacing each point iX with a c x ¢ block of points. We refer to the natural numhmeas thescaling factoror
resolution loss

2.2 Pier fractals

In this section, we first introduce some terminology and tthefine a class of fractals called “pier fractals” that is the
focus of this paper.

Notation. We useNy to denote the subs¢o0,...,g— 1} of N.
Notation. If A andB are subsets dfZ andk € N, thenA+kB= {m+kii | m€ Aandfi € B}.

The following definition is a modification of Definition 21 in [6].

1A cut-setis a subset of edges in a graph which, when removed from tigpaoduces two or more disconnected subgraphsweightof a
cut-set is the sum of the weights of all of the edges in thesetit-



Definition 2.1. Let 1< g€ N andX c N2. We say thak is ag-discrete self-similar fractaor g-dssffor short), if

there isasef(0,0)} cGC NS with at least one pointin every row and column, such ¥at U X, whereX;, theit"
. i=1
stageof X, is defined byX; = GandX;1 =X + ¢'G. We say thaG is thegeneratorof X.

Intuitively, a g-dssf is built as follows. Start by selecting pointsNé satisfying the constraints listed in Defini-
tion[23. This first stage of the fractal is the generator.rfleach subsequent stage of the fractal is obtained by adding
a full copy of the previous stage for every point in the getwrand translating these copies so that their relative
positions are identical to the relative positions of thevitial points in the gnerator.

Definition 2.2. Let Sbe any finite subset &2. Letl, r, b, andt denote the following integers:

Is= min x rs= max X bs= miny ts= maxy
(xy)€eS (xy)es (xy)€S (xy)eS

An h-bridgeof Sis any subset 08 of the formhbs(y) = {(ls,y), (rs,y)}. Similarly, av-bridgeof Sis any subset
of Sof the formvbg(x) = {(x,bs), (x,ts)}. We say that a bridge sonnectedf there is a simple path i connecting
the two bridge points.

Notation. Let Sbe any finite subset &2. We will denote bynhbs andnvbs, respectively, the number of h-bridges
and the number of v-bridges &f

Notation. The directions? = {N,E,SW} will be used as functions fror? to Z? such thatN(x,y) = (x,y + 1),
E(xy) = (x+1,y), S(X,y) = (x,y—1) andW(x,y) = (x—1,y). Note thatN~! = Sandw—1 = E.

Notation. Let X C Z2. We say that a poinix,y) € X is D-freein X, for some directiod € 2, if D(x,y) ¢ X.

Definition 2.3. Let G be the generator of ary-discrete self-similar fractal. Avier is a point inG that isD-free in
G for exactly three of the four directions #. We say that a piefx,y) is D-pointing (or points D) if D~1(x,y) € G.
Note that a pier always points in exactly one direction.

Definition 2.4. Let G be the generator of amgrdiscrete self-similar fractal with exactly one h-bridgelane v-bridge.

G may contain up to four distinct types of piers charactertzgthe number of bridges they belong to. Each pier may
belong to no more than two bridges. réal pier is a pier that does not belong to any bridgedn A single-bridge
pier belongs to exactly one bridge. double-bridge piebelongs to exactly two bridges. Finally, we will distingluis
between two sub-types of single-bridge piers. If the pigramting in a direction that is parallel to the direction of
the bridge (i.e., if the pier points north or south and befottga v-bridge, or the pier points east or west and belongs
to an h-bridge), the pier is jgarallel single-bridge pier If the pier is pointing in a direction that is orthogonal teet
direction of the bridge (i.e., if the pier points north or #oand belongs to an h-bridge, or the pier points east or west
and belongs to a v-bridge), the pier is@thogonal single-bridge pier

For example, the generator in Figlife 1 below contains thedg®{(0,0), (4,0)} and the v-bridg€ (4,0), (4,4)}.
The point(1,4) is a real pier. The poinf0,0) is an orthogonal single-bridge pier. The po{dt4) is a parallel
single-bridge pier. The poir{4,0) is a double-bridge pier.

We are now ready to define the class of fractals that is the foairs of this paper.

Definition 2.5. Pis apier fractalif and only if P is a discrete self-similar fractal with genera@®such that:
a. The full grid graph ot is connected, and
b. nhlg = nvhs =1, and
c. G contains at least one pier.

2.3 The Closed Window Movie Lemma

In this subsection, we develop a more accommodating (mddlifiersion of the standard Window Movie Lemma
(WML) [B]. Our version of the WML, which we call the “Closed Wilow Movie Lemma”, allows us to replace one
portion of a tile assembly with another, assuming certainagicontainment” conditions are met. Moreover, unlike
in the standard WML that lacks the extra containment assomgtthe replacement of a portion of one tile assembly
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Figure 1: A 5x 5 generator containing one h-bridge, one v-bridge and farsp

with another portion of the same assembly in our Closed WM goes “one way”, i.e., the part of the tile assembly
being used to replace another part cannot itself be replagéide part of the tile assembly it is replacing. We must
first define some notation that we will use in our Closed Winddevie Lemma.

A window wis a set of edges forming a cut-set of the full grid graptZ8f For the purposes of this paper,
we say that alosed window wnduces a c%tof the full grid graph ofZ?, written asCy = (C-w,Cx), WhereCy is
infinite, C. is finite and for all pairs of point&,y € C.., no simple path connectingandy in the full grid graph
of C.« crosses the cufy,. We call the set of vertices that make Gp. the inside of the windoww, and write
insidgw) = C. andoutsidéw) = Z?\ insidgw) = C... We say that a windowv is enclosedn another window if
insidgw) C insidgw’).

Given a windoww and an assembly, a window thatintersectsa is a partitioning ofa into two configurations
(i.e., after being split into two parts, each part may or mai/be disconnected). In this case we say that the window
w cuts the assembly into two configurations andag, wherea = a_ U ag. If wis a closed window, for notational
convenience, we write for the configuration insidev and ag for the configuration outside. Given a windoww,
its translation by a vectdt, writtenw+C is simply the translation of each ofs elements (edges) L

For a windoww and an assembly sequericewe define a window moviil to be the order of placement, position
and glue type for each glue that appears along the windaw d. Given an assembly sequengeand a window
w, the associatedindow movieis the maximal sequenddg , = (Vo,9o), (V1,091), (V2,02),... of pairs of grid graph
verticesv; and gluesg;, given by the order of the appearance of the glues along windim the assembly sequende
Furthermore, ik glues appear along at the same instant (this happens upon placement of a tilehvwizs multiple
sides touchingv) then thesek glues appear contiguously and are listed in lexicograploeiacter of the unit vectors
describing their orientation iMj .

Let w be a window andi be an assembly sequence avid= M3 ,,. We use the notatios# (M) to denote the
bond-forming submovief M, i.e., a restricted form of1, which consists of only those steps Mfthat place glues
that eventually form positive-strength bonds in the asdgmib=reqd@). Note that every window movie has a unique
bond-forming submovie.

Lemma 2.6(Closed Window Movie Lemma)Letd = (ai | 0< i < |), with| € ZT U{}, be an assembly sequence
in some TASZ with resulta. Let w be a closed window that partitionsinto a; andao, and w be a closed window
that partitionsa into af and ag. If (Mg ) +C= % (Mg ) for somet # (0,0) and the window w-C is enclosed
in W, then the assembly; U (a; +€) is in &/ [.7].

Proof. Before we proceed with the proof, the next paragraph inttedisome notation taken directly from [5].

2A cutis a partition of the vertices of a graph into two disjoint sets that are joined by at least one edge.



For an assembly sequende= (a; | 0 <i < 1), we write|d| = | (note that ifd is infinite, thenl = «). We
write d[i] to denoteX — t, whereX andt are such thatiy1 = ai + (X—t), i.e., @[i] is the placement of tile type
t at positionx, assuming thak € da;. We write d[i] + ¢, for some vectol€, to denote(X+¢€) — t. We define
d=0d+X—t)=(a|0<i<k+1), whereax = ax_1+ (X—t) if X € dax_; and undefined otherwise, assuming
|a| > 0. Otherwise, iffd| = 0, thend = @ + (X+—t) = (ap), whereayg is the assembly such thap (X) =t and is
undefined at all other positions. This is our notation foremping steps to the assembly sequeic® do so, we must
specify a tile type to be placed at a given locatiore é ;. If o1 = aj + (X+—t), then we writePos(d[i]) = X and
Tile(d|i]) =t. For a window movieM = (vo,0o), (V1,01), - - -, we writeM[K] to be the paif v, g«) in the enumeration
of M andPos(M[K]) = vk, wherev is a vertex of a grid graph.

We now proceed with the proof, throughout which we will assutimatM = %2 (Ma,w) andM’ = @(Ma,w)-
SinceM + ¢ = M’ for somet # (0,0) andw andw’ are both closed windows, it must be the case that the seeaf tile
a is in domap Ndomayg or in doma; Ndomay;. In other words, the seed tile cannot be in dafydoma| nor in
doma;\ doma,. Therefore, assume without loss of generality that the steid in domao Ndomayg,.

The algorithm in FigurEl2 describes how to produce a new eagEmbly sequenge

Initialize i, j = 0 andy to be empty

fork=0to [M|—1do

if PogM’[K]) € domag, then

while Pos(a[ D) # Pos(M [k]) do
if Po

while Pogd[j]) # PogMIK]) do

if Pogd[j]) € doma, then
| y=y+(@ljl+9
j=j+1
=y+(alj]+9)

j+1

while |nS|de(w) Nadres(y) # @ do
if Pogd[j]) € doma; then

| y=y+(@lj]+9
j=j+1

whilei < |d| do

if Pogd|i]) € domag then

| y=y+ali]
i=i+1
return y

Figure 2: The algorithm to produce a valid assembly sequgnce

If we assume that the assembly sequepcétimately produced by the algorithm is valid, then the fesfiy is
indeedag U (a; + ). Observe thatyy must be finite, which implies tha is finite. If |d| < o, then all loops will
terminate. If|@| = o, then|aj| = « and the first two loops will terminate and the last loop wilhfiorever. In either
case, for every tile im, anda; +¢, the algorithm adds a step to the sequepicwolving the addition of this tile to the
assembly. However, we need to prove that the assembly segyénvalid. It may be the case that either: 1. there is
insufficient bond strength between the tile to be placed ba@xisting neighboring tiles, or 2. a tile is already présen
at this location.

Case 1:In this case, we claim the following: at each step of the algor, the current version of is a valid
assembly sequence whose result is a producible subassefniplytU (a; +C). Note that the three loops in the al-
gorithm iterate through all steps df, such that, when adding|i] (or @[j] + ) to ¥, all steps of the window movie



corresponding to the positions/glues of tiles to whefi| (or @[j] 4 €) initially bind in @ have occurred. In other
words, when adding i] (or d[j] + €) to ¥, the tiles to whichd|i] (or d[j] + €) initially bind have already been added
to y by the algorithm. Similarly, all tiles img, (or a; + ) added tox before step (or j) in the assembly sequende
have already been addedjto

So, if the tileTile(d[i]) that is added to the subassemblycoproduced aftei — 1 steps can bond at a location
in ag to form at-stable assembly, then the same tile added to the resyjtvatiiich is producible, must also bond to
the same location in the result §f as the neighboring glues consist of (i) an identical setleégfrom tiles in the
subassembly adi, and (ii) glues on the side of the window movie containing-c. Similarly, the tiles ofo 4 ¢ must
also be able to bind.

Case 2:Since we only assume that (Mg ) + €= % (Mg \v ), as opposed to the stronger conditi@{Mz . ¢) =
% (Mg w ), which is assumed in the standard WML, we must show that tlmm- ) Ndomag = @. To see this,
observe that, by assumptiow,+ € is enclosed inv, which, by definition, means thatside(w+€) C insidgw).
Then we haveX € domag = X € outsidéw) = X ¢ inside(w') = X ¢ inside(w+C) = X ¢ dom (a; +C). Thus,
locations inay + € only have tiles frono placed in them, and locations arf, only have tiles fronug placed in them.

So the assembly sequenceya$ valid, i.e., every single-tile addition padds a tile to the assembly to form a new
producible assembly. Since we have a valid assembly sequas@rgued above, the resulting producible assembly
is ap U (o +©).

O

3 Scaled pier fractals do not strictly self-assemble in the BAM

In this section, we first define some notation and establislirpinary results. Then we prove our main result, namely
that no scaled pier fractal self-assembles in the aTAM.Iinae prove corollaries of our main result, including the
fact that no scaled tree fractal self-assembles in the aTAM.

3.1 Preliminaries

Recall that each stagg (s> 1) of ag-dssf (scaled by a facta) is made up of copies of the previous stage;, each
of which is a square of sizeg® 2.

In the proof of our main result, we will need to refer to onelué squares of sizeg® 2 inside the copies of stage
Xs_1, leading to the following notation.

Notation. Letce Z*, 1< se Nand 1< g€ N. Lete, f, p,q € Ng. We useX(e, f, p,q) to denote{0,1,...,cg> 2 —
1}2+cg® (e f)+cg®2(p,q) andWS(e, f, p,q) to denote the square-shaped, closed window whose insiigeis , p, q).

In Figure 3 below, the bottom and top (circular) magnificaiishow the windovWA/zl(O, 1,3,2) andWsl(O, 1,3,2),
respectively.

Next, we will need to translate a small window to a positioside a larger window. These two windows will
correspond to squares at the same relative position irrdiffestages and j of a g-dssf.

Notation. Letce Z*, 1<ieN, 1< je N, withi < j, ande f,xspq € Ng. We usefigj(e,f,p,q) to denote
the vector joining the southwest corner\F(e, f, p,q) to the southwest corner M/J-C(e, f,p,q). In other words,

©,(ef,p,q) =(c(@-d Het+tc(g@?-g?)pc(gdt-dg ) f+c(g2-dg?aq).

For example, in Figuril 3 belo®} ,5(0,1,3,2) = (9,18).

To apply Lemmd_2]6, we will need the bond-forming submoviedirte up. Therefore, once the two square
windows share their southwest corner after using the t@éinsl defined above, we will need to further translate the
smallest one either up or to the right, or both, depending bithvside of the windows contains the bond-forming
glues, which, in the case of scaled pier fractals, alway® f@straight (vertical or horizontal) line of lengthWe will
compute the coordinates of this second translation in oum praof. For now, we establish an upper bound on these
coordinates that will ensure that the translated windowneihain enclosed in the larger window.



Lemma3.l. Letce Z*,1<ieN,1< je N, withi< j, e f,p,qe Ng, and xy € N. Let m=c(g/2—g'~2). If
x < mand y< m, then the window (e, f, p,q) +ﬁgj (e f,p,q) + (x,y) is enclosed in the window ¥, f, p,q).

Proof. LetW andw denoteW;(e, f, p,q) andW‘(e, f, p,q) +f}:j (e, f,p,q), respectively. Sinc&/ andw are square
windows that have the same southwest corner and whose tivspsizes areg 2 andcg 2, W enclosesv. The
eastern side ofv+ (x,0) still lies within W, because the maximum valuefs equal to the difference between the
size of W and the size ofv. The same reasoning applies to a northward translatiom lo§ (0,y). In conclusion,
w+ (x,y) must be enclosed W, as long as neithecrnory exceedsn. O

Finally, in our main result, we will use the fact that, for asgaled pier fractdP®, we can find an infinite number
of closed windows that all cut the fractal along a single lifiglues (see Lemnia 3.5 below), the proof of which uses
the following three intermediate lemmas.

Lemma 3.2. If P is any pier fractal with generator G, then G contains at lease pier that is not a double-bridge
pier.

Proof. For the sake of obtaining a contradiction, assume @&abntains exactly one pier, sép,q), and that(p,q)

is a double-bridge pier. Note that any double-bridge piesinne positioned at one of the corners@f that is,
(p,q) € {(0,0),(g—1,0),(0,g—1),(g—1,9— 1)}. Without loss of generality, assume th{g@q) = (g— 1,0), as in
Figure[1 above. Sincfp,q) is a double-bridge pie(0,0) must be the other point in the h-bridge afgt- 1,9 — 1)
must be the other point in the v-bridge. Th(8,0) € G (this is also true by definition dB) and(g— 1,g—1) € G.
Since(p, q) is the only pier inG, (0,0) cannot be north-free (nor east-free), which implies tfat) € G. Therefore,
(g—1,1) ¢ G (otherwiseG would contain a second h-bridge). Similarly, sirfgeq) is the only pier inG, (g—1,g—1)
cannot be west-free (nor south-free), which implies flgat 2,g— 1) € G. Therefore,(g— 2,0) ¢ G (otherwise,G
would contain a second v-bridge). In conclusion, the pomt)) = (g— 1,0) is in G but it is not connected to the rest
of G, which contradicts the definition &f, whose generator must be connected. O

Lemma 3.3. LetP be any pier fractal with generator G such that, q) € G is a parallel single-bridge pier. If € Z™,
then it is always possible to pick one pojetf) in G such that, forll < se N, W¢(e, f, p,q) encloses a configuration
that is connected t&° via a single connected line of glues of length c.

Proof. Without loss of generality, assume that the diprqg) is pointing north, that it belongs to a v-bridge and that
g=g— 1 (a similar reasoning holds if = 0 and the pier points south, or if the pier belongs to an hger@ahd points
either west or east). Now, we must pick a pdiatf ) such that any window of the forltS(e, f, p,q) has exactly three
free sides. We distinguish two cases.

1. If p=0, that is, the pier is in the leftmost column@f then(1,g— 1) ¢ G, since(0,g— 1) is a north-pointing
pier. Therefore, there must exist at least one poirin ({1} x Ng_1), say(1,y), with 0 <y < g—1, that
is north-free. In this case, we pidle, f) to be equal to(1,y). Now, consider any windowv of the form
WE(e, f, p,q). The north side ofv is free (sinceg=g—1, (e, f) is north-free inG and f =y < g— 1), the east
side ofwis free (sinc€1,g— 1) ¢ G), and the west side af is free (since the facts théd,0) € G, (0,g—1) € G
and(0,g— 1) is a single-bridge pier together imply th@— 1,g— 1) ¢ G). Furthermore, sincé0,g—1) is a
north-pointing pierS(0,g— 1) € G.

2. If p>0, then(p—1,90—1) ¢ G. Therefore, there must exist at least one poinGin ({p— 1} x Ng_1), say
(p—1,y), with 0 <y < g—1, that is north-free. In this case, we pit¥ f) to be equal tqp—1,y). Now,
consider any windowv of the formW¢ (e, f, p,q). The north side ofv is free (sinceg=g—1, (e, f) is north-
freeinGandf =y < g—1), the west side oiv is free (becausép— 1,g— 1) € G), and the east side of is
free (since, eithep<g— 1 and(p+1,g—1) ¢ G, orp=g—1, in which case the facts thegd—1,g— 1) € G,
(g—1,0) e Gand(g—1,9—1) is a single-bridge pier together imply th@ g — 1) ¢ G). Furthermore, since
(p,g—1) is a north-pointing pierfS(p,g— 1) € G.

Therefore, in both cased(S(e, f, p,q) has exactly three free sides and encloses a configuratibis t@nnected t&°
via a single connected horizontal line of glues of lenggwositioned on the south side of the window.
O



Lemma 3.4. Let P be any pier fractal with generator G such th@, q) € G is an orthogonal single-bridge pier. If
ce Z*, then it is always possible to pick one poie f) in G such that, forl < s N, W¢(e, f, p,q) encloses a
configuration that is connected &5 via a single connected line of glues of length c.

Proof. Without loss of generality, assume that the fiprq) is pointing east, that it belongs to a v-bridge and that
g=g— 1 (a similar reasoning holdséf= 0, or if the pier points west, or if the pier belongs to an ldgg and points
either north or south). Note that, in this cagenust be strictly greater than 2, singe,g— 1) € G, (p,0) € G but
(p,g—2) ¢ G. Now, we must pick a poine, f) such that any window of the foriVS (e, f, p,q) has exactly three free
sides. We distinguish two cases.

1. If p<g—1, then(p,g—2) ¢ G, since(p,g—1) is an east-pointing pier. Therefore, there must exist attlea
one pointinGN ({p} x Ng_2), say(p,y), with 0 <y < g— 2, that is north-free. In this case, we pigk f) to
be equal ta(p,y). Now, consider any window of the formW¢ (e, f, p,q). The north side ofv is free (since
g=9g—1, (e f)is north-free inG andf =y < g— 2 < g— 1), the east side of is free (sincep < g— 1 and
(p+1,9—1) € G), and the south side af is free (since(p,g—2) € G). Furthermore, sincép,g— 1) is an
east-pointing pieMW(p,g—1) € G.

2. If p=g—1, thatis, the pier is in the rightmost column®fthen the facts thgg—1,0) € G, (g—1,g—1) € G
and(g—1,9—1) is a single-bridge pier together imply th@,g— 1) ¢ G. This, together with the fact that
(0,0) € G, implies that there must exist at least one poinGin ({0} x Ng_1), say(0,y), with0<y<g—1,
that is north-free. In this case, we pi¢k f) to be equal td0,y). Now, consider any window of the form
WS (e, f, p,q). The north side ofv is free (sinceg = g— 1, (g, f) is north-free inG andf =y < g— 1), the east
side ofw is free (sincg0,g— 1) ¢ G), and the south side of is free (sincg p,g— 2) ¢ G). Furthermore, since
(g—1,9—1)is an east-pointing piew(g—1,g—1) € G.

Therefore, in both cased/S(e, f, p,q) has exactly three free sides and encloses a configuratibis t@nnected t&°
via a single connected horizontal line of glues of lengpwositioned on the west side of the window.
O

Lemma 3.5. Let P be any pier fractal with generator G. If€ Z™, then it is always possible to pick one pigy,q)
and one poinfe, f), both in G, such that, fot < se N, W¢(e, f, p,q) encloses a configuration that is connecteéto
via a single connected (horizontal or vertical) line of ghuaf length c.

Proof. Let P be any pier fractal with generat@: Letc € Z* and 1< se N. By definition of a pier fractalG contains
at least one pier. We will pick one of these piers carefully.

According to Lemm@&3]2, it is always possible to choose aipi€rthat is not a double-bridge pier. Therefore, we
can always choose either a real pier or a single-bridge YWemow consider the three possible cases.

First, if G contains one or more real piers, we can simply choose oneedf ts(p,q). In this case, we pick
(e,f) = (p,q), since any window of the ford(p,q, p,q), where(p,q) is a real pier inG, must have exactly three
free sides. Therefor®/S(p,q, p,q) must enclose a configuration that is connecteB%wia a single line of glues of
lengthc, namely on its non-free side.

Second, ifG does not contain any real pies,must contain at least one single-bridge pier. So we wrap isp th
proof by considering the two types of single-bridge piers.

If G contains at least one parallel single-bridge pier, acogrth Lemma 313, it is always possible to choose one
pier (p,q) and one pain{e, f), both in G, such that, for i< se N, W(e, f, p,q) encloses a configuration that is
connected td° via a single connected line of glues of length

Finally, if G contains at least one orthogonal single-bridge pier, atiagrto Lemmda 34, it is always possible to
choose one piefp, q) and one poinfe, f), both inG, such that, for k se N, WS(e, f, p,q) encloses a configuration
that is connected tB° via a single connected line of glues of length O

3.2 Main result

We are now ready to prove our main result.



Theorem 3.6. LetP be any pier fractal. If &= Z ", thenP® does not strictly self-assemble in the aTAM.

Proof. Let P be any pier fractal with g x g generatoG, where 1< g € N. Letc be any positive integer. For the sake
of obtaining a contradiction, assume tiRtdoes strictly self-assemble in some TAS= (T, o, 1). Further assume
thatd is some assembly sequencedhwhose result i, such that donar = P°.

Generator:

il
=
=
Hr
=
£
Hir
=
ﬁ
rir

0 1E 20 N 4 T T T A T T T T A

L}

Figure 3: First three stages-£ 1,2, 3) of an unscaledo(= 1) pier fractal with an east-pointing pier at positi812).
The east-free point0,1) is at the tip of the arrow (see the rectangular magnificatiax).bIn other wordsg = 4,

(p,0) = (3,2), and(e, f) = (0,1).

v

According to Lemma&aZ315, we can always pick one gigig) and a poin{e, f), both inG, such that, for k se N,
the window\s (e, f, p, ), which we will abbreviatevs, encloses a configuration that is connecteetuia a single line
of glues of Iength:ﬁ The maximum number of distinct combinations and ordeririggue positionings along this line
of glues is finitd By the generalized pigeonhole principle, siné¢es | 1 < s< N} is infinite, there must be at least
one bond-forming submovie such that an infinite number ofdems generate this submovie (up to translation). Let
us pick two such windows, say; andw; with i < j, such that#(Mg . ) and%’(Ma,Wj) are equal (up to translation).
We must pick these windows carefully, since as stated in thefpf Lemmd2.B, the seed of must be either in
both windows or in neither. This condition can always bes$iati. The only case where the seed is in more than one
window is when it is at positiofi0,0) ande = f = p= g = 0, which implies that all windows include the origin. So,
in this case, any choice ofindj > i will do. In all other cases, none of the windows overlap. $the seed belongs
to one of them, say, then we can pick aniygreater thark (andj > i). Finally, if the seed does not belong to any
windows, then any choice éfandj > i will do.

Swithout loss of generality, we will assume that this line afeg is positioned on the western side of the windows andits tertical (see the
jagged lines in FigurEl3, whese= 2 ands = 3 for the small and large windows, respectively, dpdy) = (3,2) and(e, f) = (0,1)), because the
chosen pier in our example points east. A similar reasonatdshfor piers pointing north, south or west.

4This number is bounded above Pﬁjﬁe- (2c)!, whereTge is the total number of distinct glue typesTn
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Translation Formulas for (x,y)
North-pointing Pier .
w; x=acz)_? g
Vertical Bridge
y=0
with Southern w;
Bridge Point afa,0) x|,
East-pointing Pier
Horizontal Bridge . _
||y y=bczl 3 ok
with Western ! w; k=i-2
Bridge Point af0, b) |
South-pointing Pier - N .
R— x=acz)_? g
. . y
Vertical Bridge @2 g-?)
= C e—Qq
with Northern TR Y d g
Bridge Point afa,g— 1)
West-pointing Pier . .
w x=c(g?-g"?)
Horizontal Bridge : .
. F y= bczll(:izgk
with Eastern wil l
: y
Bridge Point a{lg— 1,b) |—x>

Figure 4: Computing the coordinatésy) of the translation that aligns the bond-forming glues (shas a dotted
line) of the windowsw; andw;. Note that(a,b) with a € Ng andb € Ny are the coordinates of the point@within
the (horizontal or vertical) bridge that determines thetamsof the bond-forming glues.
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gxg generator (zoomed in view)

2 southern vertical bridge
0 point at (a,b)=(2,0)

1
012
< cg’ = cg” ,
X | | g
| | | |
[ [ cg® = cg3 [ [
! € >
Y
! -
cg® = cg? D
cg’
H «—>
=2 1 ==
AN A 1§ )
> . >
acg?+acg™+ . + acg’3 l

(x,y) = acEL(,Zg 0)

wj_+ tcl_y_] (e;f;P;Q) Wj_+ t(;__>J (e;f;P;Q) :'+ (X.Y)

Figure 5: (x,y) translation needed to aligs andw; on their east side once their southwest corners alreadyhmatc
Example with a north-pointing pier (not shown) age- 3,i =5, j = 9, and southern vertical bridge point at location

(a,b) = (2,0).
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We will now prove thatv; andw; satisfy the two conditions of Lemma 2.6.

First, we comput& such that#(Mg ;) + €= #(Mg ;). We know thatw +17,(e f, p,q) andw; share their
southwest corner. We need to perform one more transl@tion to align the bond-forming glues @f andw;. The
values ofx andy depend on the direction in which the chosen pier is poinfirige formulas corresponding to all four
directions are given in Figuté 4. Furthermore, a justifarafior the recurring summation in the formulas of Figure 4
is provided in Figuréls. In that figure, the chosen case is ehrmointing pier. However, our example in Figlide 3
above uses an east-pointing pier. We now complete the pomdhi‘s case. To align the bond-forming gluesvgf

andwj, we must translate; +tHJ( f,p,q) by (x,y) = (O bczk .0 ) with b < g—1. Sincex=0<m (as

defined in LemmB&3]1) ang—bey )2 gk < (g—1)ey )2 o= C(Zk 2 o —5122 g ) =c(g?-g¢g?)=m,
we can apply Lemmia3.1 to infer that, with= tHJ (e f,p,q)+(xY), wi +Cis enclosed iwj. Therefore, the second
condition of Lemm& 216 holds.

Second, by constructiom?(Mg ) +C= %(Mg w, ). Therefore, the first condition of LemrhaR.6 holds.

In conclusion, the two conditions of Lemihal. 6 are satisfieth a; anda(, defined as the intersection Bf with
the inside ofw and the outside of/j, respectively. We can thus conclude that the assemly (a; +C) is producible
in .7. Note that this assembly is identical (up to translationPtpexcept that the interior of the large windavy is
replaced by the interior of the small windowy. Since the configurations in these two windows cannot betickdn
we have proved tha? does not strictly self-assemtRg, which is a contradiction.

O

3.3 Corollaries of our main result

In this section, we discuss both special cases and geradiafiz of our main resuilt.

3.3.1 Specializations of our main result

In [1], we proved that no scaled tree fractal strictly sedé@mbles in the aTAM, whereteee fractalis a discrete
self-similar fractal whose underlying graph is a tree. lis #ection, we start by proving a new characterization & tre
fractals in terms of simple connectivity properties of thggnerator.

[ee]

Theorem 3.7. T= U T, is a g-discrete self-similar tree fractal, for some-gl, with generator G if and only if

a.Gisa tree and
b. nhilg = nvhg = 1.

The proof of this theorem is in the appendix. Next, the follagpwobservation follows from the fact that a tree with
more than one vertex must contain at least two leaf nodes.

Observation 3.8. If G is the generator of any discrete self-similar fractalb@ is a tree, then it must contain at least
two piers.

Finally, we can recast the main resultlin [1] as a special ohser main result.
Corollary 3.9. [From [1]] Let T be any tree fractal. If & Z ", thenT® does not strictly self-assemble in the aTAM.

Proof. Let T be any tree fractal with generat@t According to Theorem 317, the full grid graph@fis a tree and is
thus connected, anthhs = nvhs = 1. Furthermore, according to Observation 338nust contain at least one pier.
Therefore[T is a pier fractal and © does not strictly self-assemble in the aTAM. O

We now turn our attention to a second specialization of ouinmesult by considering “pinch-point fractals,”
which are defined iri 6] as follows.

Definition 3.10. Let X ¢ N? be ag-discrete self-similar fractal with generatét We say thaiX is a pinch-point
discrete self-similar fractalf G satisfies the following four conditions:

13



1. {(0,0).(0,-1),(g—- 1,0} CG.
2.GN({L,....d-1} x{g—-1})=@.
3.GN({g—-1} x{1,...,.0-1}) =@.

4. The full grid graph of5 is connected.

Theorem 3.12 in[]6] establishes that no pinch-point frastettly self-assembles in the aTAM. We can now
generalize this result as follows.

Corollary 3.11. LetX be any pinch-pointdiscrete self-similar fractal. IE&Z™, thenX® does not strictly self-assemble
in the aTAM.

Proof. LetX be any pinch-point discrete self-similar fractal with geaterG c Né, for someg > 1. First, by definition
of a pinch-point fractal, the full grid graph & is connected. Second, since the pdmt 1,0) is the only point ofG
that belongs tdg— 1} x N and the poin{0,0) also belongs t6, nhbs = 1. Similarly, since the point0,g—1) is the
only point of G that belongs taN x {g— 1} and the poin{0,0) also belongs t@, nvhz = 1. Third, since the point
(0,g—1) is a pier inG, G contains at least one pier. Therefoxeis a pier fractal. In conclusion, i € Z*, thenX®
does not strictly self-assemble in the aTAM.

O

3.3.2 Generalizations of our main result

We now discuss how to extend our main result to differentsela®f fractals. More specifically, we will relax the last
two conditions in the definition of pier fractals and still dlele to use the same reasoning as we did in the proof of our
main result.

First, our proof of Theorerh 3.6 uses the fact that there eisinfinite collection of square windows, each of
which encloses a sub-configuration of the fractal that icattd to the rest of the fractal at a single point (or single
line of points). In other words, each window in the collentiwas three free sides. If, for example, the east and west
sides of each window are free, then the number of horizomtdfjbs in the generatd® does not matter. Even if
nhhs > 1, our construction for the windows still works. Figlife 6 isecexample of such a fractal to which our main
result generalizes, with the first three windows shown askttblack squares. In this case, our proof technique still
works, even though the generator contains three horizbritdes. Here is a precise statement of the corollary.

Corollary 3.12. LetF be a discrete self-similar fractal with generator G suchtttie full grid graph of G is connected,
nvls = 1, and G contains at least one north-pointing pier or one seuiinting pier. If ce Z*, thenF¢ does not strictly
self-assemble in the aTAM.

Symmetrically, a similar result holds for fractals whosegmtorG contains either at least one west-pointing pier
or at least one east-pointing pier, and such tidi; = 1.

Second, having relaxed the second condition (ppdf the definition of pier fractals, we can now relax the third
condition (partc) as well. To apply our Closed Window Movie Lemma, a pier is sioictly needed. Instead, the
generator only need containpaer-like sub-configurationthat is, a sub-configuration of one or more tiles that is
attached to the rest of the fractal at a single point. Figligivés one example of such a fractal with the first two
windows shown as thick, solid, black squares. In this cagepmof technique still works, even though the generator
contains five horizontal bridges and no pier. Here is a peestistement of the corollary.

Corollary 3.13. LetF be a discrete self-similar fractal with generator G suchtttee full grid graph of G is connected,
nvbs = 1, and G contains at least one north-pointing pier-like suvdiguration or at least one south-pointing pier-
like sub-configuration. If € Z*, thenF® does not strictly self-assemble in the aTAM.

Symmetrically, a similar result holds for fractals whosex@®torG contains either at least one west-pointing
pier-like sub-configuration or at least one east-pointieg-fike sub-configuration, and such thdtls = 1.

Finally, the Closed Window Movie Lemma may be applicablerewsnen the generator does not contain any
pier-like sub-configuration. The key requirement in thegbrof our main result is to be able to find at least two
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Generator:

Figure 6: First three stages=£ 1, 2,3) of an unscaledd(= 1) 5-discrete self-similar fractal with a north-pointingp
nhi =3, nvils =1, (p,q) = (2,2), and(e, f) = (0,0).
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Generator:

Figure 7: First two stages & 1, 2) of an unscalede(= 1) 7-discrete self-similar fractal with a north-pointingplike

=1

5 andnvig

sub-configuratiomhhg
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windows that share a common bond-forming window movie bubsehinsides contain different sub-configurations.

This requirement can be met even when the sub-configuratiotained in each window is attached to the rest of the
fractal at more than one point. Figurk 8 illustrates suchtumton. For a general characterization, we need some
definitions.

If G is agx g generator, then aolumnis any setG N ({x} x Ng), wherex € Ny is the index of the column.
Therefore, columns are indexed from left to right startib@.aTwo columns arequivalentf they contain the same
number of points and, for each point in one column, there isiatin the other column with the sarnyecoordinate. A
vertical cutis any set of edges connecting two adjacent columia diwo vertical cuts arequivalenif they contain
the same number of edges and, for each edge in one cut, treredge in the other cut with the sageoordinate.
Figure[8 depicts a & 5 generatofs in which columns 2 and 3 are equivalent. Furthermore, indkémple, cuts 2 and
3 are also equivaleﬁtNote that the fact that two colummngnd j are equivalent does not imply that the vertical cuts
i andj are also equivalent. That both facts hold is just a coinaidén this example. If, for example, the poiit 1)
were removed from the generator in Figlire 8, then columnsiBamould still be equivalent, but vertical cuts 2 and 3
would no longer be equivaletln general, there is no correlation between the indices oivatent columns and the
indices of equivalent vertical cuts. However, the co-@xise of equivalent columns and equivalent vertical cuthén t
same generator may render the Window Movie Lemma applicable

In the example of Figurgl 8, vertical cut 2 is to the east of thdiwal bridge (which is a subset of column 1).
Therefore, if we can find an east-free pointGn e.g., the poin(1,0) in our running example, we will be able to
position a closed window that only cuts the fractal on one gftkre, its western side), e.g., the smallest of the two
solid windows in Figur€I8. Similarly, we can position anathlwsed window of the same size that cuts the generator
through vertical cut 3, e.g., the dotted window that ovesl#pe small solid window. By construction, the window
movies corresponding to these two windows have the saméhlergl contain exactly the same positions (up to
translation). Of course, these window movies may not belaguto translation because the glues in their respective
positions may not match. But this is where we can take adgané the existence of two equivalent columns. By
self-similarity, these two columns will, in the next staddlte fractal, become two 5-wide sets of columns of height
20 that are pairwise equivalent, that is, colunspgindc) are equivalent, columns andc, are equivalent, ..., and
columnscs andcg are equivalent. More importantly, the 20-high cuts labelel, ¢, and d in Figulle 8 are all pairwise
equivalent. Therefore, at this stage of the fractal, we aalu four larger square windows, as shown in Figure 8.
Furthermore, at each successive stage of the fractal, wéevéble to build twicéf as many square windows that
all generate window movies of the same length and with posstihat are equal up to translation. Since the number
of window movies grows without bound as the stage numbeeas®s, but the number of distinct combinations and
orderings of glue positionings is finite (following a reasansimilar to the one in Footnoig 4), there is always a
stage (in fact, an infinite number of them) that contains twadforming window movies that are identical up to
translation. The sub-configurations inside the two cowasing windows cannot be equivalent because of the way
the windows overlap. Additionally, since the two windowséaxactly the same shape and size, the translation of
the eastmost one is enclosed in (in fact, equal to) the otmer dherefore, we can apply the Closed Window Movie
Lemma and conclude the proof by contradiction. Here is aipeestatement of the corollary that covers the class of
similar situations.

Corollary 3.14. LetF be a discrete self-similar fractal with generator G suchtttee full grid graph of G is connected,
G contains two equivalent columns, and G contains two edgriNaertical cuts that are positioned on the same side
of all vertical bridges. If c= Z ", thenF¢ does not strictly self-assemble in the aTAM.

Symmetrically, a similar result holds for fractals with @glent rows and equivalent horizontal cuts.

To conclude this section, we note that Corollary 8.14 coadehbeen proved using the standard Window Movie
Lemma introduced in]5], since the windows used in the pranfehexactly the same shape and size. In the next
section, we motivate our introduction of the Closed Windoawi¢ Lemma as a more convenient tool in the study of
scaled pier fractals.

5The index of a vertical cut is given by the index of the leftinoisthe two columns that its edges connect.

5We included poin{4,1) in the generator to exclude piers from the generator in thasngle.

"Note that, in this example, cut 1 is also equivalent to cuta@® 2 So we can actually build three windows for each one ofetnévalent
columns in the generator. Therefore, we could could havwerif 6, 12, etc. windows for stages 2, 3, 4, etc., respegtitédwever, we chose to
use only two of the three equivalent cuts in our discussiaorder to keep the figure as legible as possible.
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Figure 8: First two stages (and part of the third stage) ofrzstaled ¢ = 1) 5-discrete self-similar fractal with two
equivalent columns and two equivalent vertical cuts.
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4 Discussion

A fair question for one to ask is: why not simply prove Theofg@ using the standard Window Movie Lemma
from [5]? Our response is that we currently do not know thatamnot.
For the sake of discussion, the statement of the standard \édtricted to bond-forming submovies, is as follows.

Lemma 4.1 (Standard Window Movie Lemmal[5])Letd = (a; [0< i< I) andf = (Bi|0< i< m), with
I,me Z* U{w}, be assembly sequences in some PA&ith resultsa and 3, respectively. Let w be a window that
partitionsa into two configurations andag, and, for som& # (0,0), w = w+ € be a translation of w that partitions
B into two configurationg_ andBr. Furthermore, define i, and I\/b v t0 be the respective window movies fow
andﬁ,V\/ and definex,, B to be the sub-configurations afand 3 containing the seed tiles of and 3, respectively.
Then, ife%’(Ma’W) +C=9%4 (Mﬁ.w)' it is the case that the following two assemblies are alsapaoible: (1) the
assemblya B; = ai U B and (2) the assembf§ ar = B U ar, wheref/ = B — € andf; = Br—C.

Generator' [TTTTITIT I I T I I I I I T I I I

o5

o

,q‘_‘ ,q_‘ Frovrmsrmsenaenny
:q‘_‘ :q_‘ :q_‘ :q_‘
:q‘_‘ —""FZ::
,q‘_‘ fq_‘ N N |

e ]
L e

]

Figure 9: In each stage of the Sierpinski triangle, it is flleso define a sequence of closed-rectangular window
movies, with the following properties: the number of windavovies in the sequence is proportional to the stage
number and the set of points contained in each window is @niqu

Basically, the reason we do not use the standard WML to privemiien] 3.6 is because we simply are not able
to devise a unified strategy for finding two closed-rectaagwindow movies in a pier-fractal-shaped assembly that
(1) have equivalent (up to translation) bond-forming subie®and (2) contain different sub-shapes of the assembly.
On the one hand, it is trivial to find two such closed-rectdagwindow movies in a pier-fractal-shaped assembly
whose sub-shapes are equal. But this does not help us degigentradiction that we need to prove Theofem 3.6. On
the other hand, it is also trivial to find two closed-rectalagwindow movies that contain different sub-shapes of the
assembly, but, as a result of the self-similarity of piectads, do not have equivalent (up to translation) bond-fogm
submovies, at which point the conditions of the hypothekie®standard WML are no longer satisfied.

In our attempts to resolve this dilemma, we investigatedeof an infinite-open window strategy, as opposed
to a closed-rectangular window strategy. But this apprdechits own set of technical challenges. Fortunately, these
challenges can be dismissed! One must simply observe thatder to prove Theorem 3.6, one does not need the
“two-way-assembly-replacement” power offered by the ¢asion of the standard WML. In fact, in order to derive
a contradiction to prove Theordm B.6, one merely needs tdbleeta replace one portion of a tile assembly with
another portion in a strictly “one-way” fashion, i.e., tharpof the tile assembly being used to replace another part
does not need to be able to be replaced by the part of the séarddy it is replacing. Thus, we weaken the conclusion
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Figure 10: A generator for a pier fractal and the first threges of an unscaled version of it. Note that it is possible
to apply the standard WML to this pier fractal using infinitpen windows.

and strengthen the hypothesis of the standard WML to get thee@ WML, which turns out to be much more
accommodating to a unified, closed-rectangular window fiexthnique for pier fractals.

It appears that the hypothesis of the standard WML, unlile¢ ¢ the Closed WML, is too strong to be able to
“handle” all pier fractals under a unified closed-rectamgwindow proof technique. However, it is worthy of note
that in some special cases, it is possible to use the stavdiMtd to prove that certain pier fractals do not strictly
self-assemble. For example, it is possible to prove thaSikepinski triangle does not strictly self-assemble at any
positive scale factor (see Figurk 9 for the proof idea). Neahsider the tree fractal defined by the generator given
in Figure[I0. In this case, it is possible to apply the stad®ML using an open-infinite window proof technique
(informally depicted in Figure_10). Unfortunately, depamglon the geometry of the particular fractal, neither of the
previous two applications of the standard WML, either wittsed-rectangular or open-infinite windows, immediately
generalizes to even the set of all tree fractals, which igiet Sub-class of pier fractals. Even more troubling, we
suspect that, for the pier fractal whose generator is shaviigure 11, it is not possible to apply the standard WML,
with windows of any shape, to prove that it does not stric#lif-assemble at any positive scale factor.

Figure 11: How can one apply the standard WML to prove thataajed version of the pier fractal with this generator
does not strictly self-assemble?
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5 Conclusion

In this paper, we made three contributions. First, we gaveva ¢haracterization of tree fractals in terms of simple
geometric properties of their generator (see Sedflon 6ok we proved a new variant of the Window Movie
Lemma in [5], which we call the “Closed Window Movie LemmagésSectiof 213). Third, we proved that no scaled-
up version of any discrete self-similar pier fractal styicielf-assembles in the aTAM (see Secfiond 3.2).

As we pointed out in Sectidn 3.3.2, the scope of applicatitithe Closed Window Movie Lemma is much wider
than the class of pier fractals. Recall that Corollary B.pgli@s the Closed Window Movie Lemma to discrete self-
similar fractals with no pier-like sub-configurations amd abitrary number of vertical and horizontal bridges. In
future work, we would like to provide a characterizationtod tlass of all fractals to which the Closed Window Movie
Lemma applies, that is, a strict super-class of the clasgoffactals. In addition, it would be satisfying to find agpi
characterization of the differences (if any) between thapsoof applicability of the standard WML and that of the
Closed WML. For instance, we would like to prove our conjeetihat it is not possible to use the standard WML to
prove that any scaled version of the pier fractal whose gaoeis shown in Figure_11 does not strictly self-assemble
in the aTAM.
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6 Appendix

Definition 6.1. If Gis the generator of any-discrete self-similar fractal, then tireterior of Gis GN (Ng_1 x Ng_1).

Lemma 6.2. Let G be any finite subset & that has at least one connected h-bridge. If G contains a eote
component G- G such that ©\ (N x {tg}) # @ and CN ({lg} x N) = &, then there exists a poiRk € G\C such that
N (Xn) € G andXy € N x {tg}.

Proof. Let h be a connected h-bridge (& and letrr be a connected component@that contains a path connecting
the two points irh. Sincert connects the leftmost and rightmost column&andC does not contain any point in the
leftmost column oG, CNn = @. SinceC is a connected component that extends vertically fromtgow tg down to
row bc andCn = &, mmust go around (and below) Furthermore, no point i€ is adjacent to any point irr. Let

p denote a bottommost poifit,bc) in C, with Ig < x <rg. Letq denote the topmost poilik,y) in 71N ({x} x Ny.).
Note thatp andd are in the same column and ttais above (but not adjacent tg) that is,y < bc — 1. Furthermore,
N(d) ¢ G. Sincege mC G andg ¢ C, < G\C. Furthermore, sincg = (x,y) andy < bc — 1 < bc <tc =tg,

d ¢ N x {tg}. In conclusiong exists and is a candidate for the rolexqf O

Lemma 6.3. Let G be any finite subset 8 that has at least one connected v-bridge. If G contains a eote
component G- G such that Y ({rec} xN) # @, CN(N x {tg}) # @ and CnN (N x {bg}) = @, then there exists a
pointXye € G\C such that EXye) € G, Xne € N x {tg} andXne & {rc} x N.

Proof. Letv be a connected v-bridge 1@ and letrr be a connected component@that contains a path connecting
the two points inv. Let 7§ denote the setrtn (N x {tg}). Since this set cannot be empty, let us call its rightmost
point p = (xn,tg). Similarly, letC; denoteCN (N x {tg}). Since this set cannot be empty, let us call its leftmosttpoin
4= (X, t)-

Sincert connects the topmost and bottommost row&@&ndC does not contain any point in the bottommost row
of G,Cnm= @. This, together with the fact th& contains a path from the topmost row to the rightmost colufnn o
G (that is,C “cuts off” the subset of5 that lies to the north-east & from the rest ofG), implies that each point in
T8 must appear to the left of all the points@, namelyx; < Xc. In fact, sincerrandC cannot be connecte@,andd
cannot be adjacent, i.exgz < xc — 1. Thereforep andd are both in the topmost row & (thusp € N x {tg}) andpis
to the left ofq (thusp ¢ {rc} x N). Finally, by constructionp € G\C andE(p) ¢ G. In conclusion is a candidate
for the role of¥\E. O

Lemma 6.4. Let G be any finite subset 8 that has at least one connected v-bridge. If G contains a eote
component G- G such that @ ({rg} x N) # @ and CN (N x {bg}) = @, then there exists a poixt € G\C such
that E(Xe) ¢ G andXe & {rg} x N.

Proof. Letv be a connected v-bridge 1@ and letrr be a connected component@that contains a path connecting
the two points inv. Sincer connects the topmost and bottommost row&aindC does not contain any point in
the bottommost row o5, CNn = @. SinceC is a connected component that extends horizontally frorarmoolc

to columnrc =rg andCn = @, mmust go around (and to the left af) Furthermore, no point i€ is adjacent
to any point in7t. Let p denote a leftmost pointc,y) in C, with bg <y <tg. Letd denote the rightmost point
(x,y) in TN (Ni. x {y}). Note thatp andd are in the same row and thatis to the left of (but not adjacent tqj,
that is,x < Ic — 1. FurthermoreE(d) ¢ G. Sinceg € mC G andq ¢ C, g € G\C. Furthermore, sincg = (x,y) and
x<lc—1<lc <rc=rg,d¢ {rc} x N. In conclusiong exists and is a candidate for the rolexgf O

Lemma 6.5. LetX = |Ji2.1 X; be a g-discrete self-similar fractal with generator GXfis a tree, then G must have at
least one connected h-bridge and at least one connecteitigeor

Proof. In this proof, we assume only th@& does not have a connected h-bridge and reach a contradittieromit
the symmetric reasoning that would allow us to prove tatust contain at least one connected v-bridge. Together,
these two subproofs establish the fact iBanust ontain at least one connected h-bridge and at leastarmected
v-bridge.

Assume thaG does not have a connected h-bridge. We consider two casectdrized by the number of points
in the leftmost column o6.
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Case 1]GN ({0} x N)| = g. Then, the following three propositions hold:

(a) Forevery poinfl,y) € G,N(1,y) ¢ G. Indeed, if(1,y) e GandN(1,y) € G, then{(0,y),N(0,y),N(1,y), (1,y)} C
X would constitute a cycle iX, which contradicts the fact that is a tree.

(b) For every poinfl)y) € G, S(1,y) ¢ G. The justification is similar to the one for (a) above.

() (1,g—1) e G= (1,0) £ G. Indeed, if(1,0) € Gand(1,g—1) € G, then{(0,g—1),N(0,g— 1),N(1,g—
1),(1,9—1)} ¢ X would constitute a cycle iX, which contradicts the fact that is a tree.

We will now prove that there is no path ¥afrom the origin to any poinfx,y) € X with x > 2g. If there were such
a pathrm, it would include at least one pair of consecutive poi@g— 1,y') and(2g,Yy’). Let us consider the first such
pair in Tand IetL%J =a. Then(2g—1,y) € G+ (g,ag). Since this copy o6 belongs to the second column of copies
of G in Xp, we can use the conjunction of propositions (a), (b) andifoya to infer thak N (G+ (g, (a—1)g) = @
andX N (G+ (g,(a+1)g) = @. Therefore,,m must contain a sub-path’ from the leftmost column o6 + (g,ag)
to (2g—1,¥), that is, a path fronig,y”) to (29— 1,y), for ag<y”’ < (a+ 1)g. But since the leftmost column of
G+ (g,ag) containsg points, there must be a (vertical) path frqmy’) to (g,y”) fully contained in the leftmost
column of G+ (g,ag). Therefore, by concatenation of this pathrio G + (g,ag) must contain a path frorfg,y’) to
(2g—1,y). But this path would be a connected h-bridgé&af (g, ag), which would imply thaG contains a connected
h-bridge. So we can conclude that there is no pafk from the origin to any point east of the like=2g — 1. Since
X contains an infinite number of points in this regiom&t, X cannot be connected, which is impossible siXds a
tree. This contradiction implies th& must contain at least one connected h-bridge.

Case 2:|GN ({0} x N)| < g. SinceG does not have a connected h-bridge, one can show via a cdgsiaiizat
eitherX is disconnected or contains a cycle. However, both of thesessios are impossible sinZeis a tree.

O

Notation. Letc,se€ Z* and 1< g€ N. Lete, f € Ng. We useX(e, f) to denote{0,1,...,cg> 1 — 1}2+cg® (e f).

Notation. Let 1< ge N. Let X = [JZ1 X be ag-discrete self-similar fractal. < Z*, we useP(s) to denote the
property: “Xs is a tree anchhly, = nvby, = 1".

Lemma 6.6. Letl < g € N. If X is a g-discrete self-similar fractal, therxB) = Px (i + 1) fori € Z™.

Proof. Let X be anyg-discrete self-similar fractal. Létc Z*. We will abbreviatex; N S(x,y) andX 1N 1+1(x, y)
toU(x,y) andV (x,y), respectively, wherg,y € Ng. The definition ofX implies that the following proposition, which
we refer to agx), is true: “Every non-empty subset ofX; 1 is a translated copy of;”.

Assume thaP (i) holds.

First, we prove thaX;, ; is connected. Pick any two distinct poirigndd in X;; 1. If g andd belong to the same
V subset 0fX; 1, then there is a simple path frofto g (because ofx) and the fact thak; is connected, b (i)).

If pandq belong to two distincV subsets oK, 1, say,V (xo,Yo) andV (X, Y«), then consider the corresponding two
U subsetdJ (X, Yo) andU (x, yk) of X, neither of which can be empt (i) implies that there exists a simple path
from any point inU (o, Yo) to any point inU (x, yk). Assume that this path goes through the following sequénce
of U subsets oK;: U (xo,Y0),U (X1,¥1), - --,U (%_1,¥k-1),U (X, ¥«)- Px(i) and(x) together imply that each one of the
correspondiny subsets oK;1, i.e.,V(Xo,Yo0), --.,V(X,Y«), IS connected and contains a connected h-bridge and a
connected v-bridge. Furthermore, since any pair of corisedu subsets irP are adjacent ifx;, the same is true of
theV subsets 0K; 1 in the sequencB . 1: V (X0, ¥0),V (X1,¥1); -,V (%1, Yk-1),V (X, Yk). Since, fori € Ny, V(x;, Vi)

is adjacent t&/ (x;+1,Yi1) and each one of these subsets is connected and has at lehstrizoatal bridge and one
vertical bridge, there must be at least one simple path faoyrpaint inV (xg, yo) to any point inV (X, yk). Therefore,
there exists a simple path betwegr V (Xo,yo) andg € V (X, Yk)- Since this is true for any two distinct poinfisand
gin X1, Xj+1 is connected.

Second, we prove thahby  , = nvby_, = 1. Since the reasoning is similar for both horizontal andiearbridges,
we only deal withnhby,,, here. ByPx (i), X contains exactly one horizontal bridge. Therefore, theeeeaactly two
subsets oK; of the formU (0,y) andU (g—1,y), for somey in Ny, such that there exist exactly two poifits= (Xp,Yp)
inU(0,y) andd = (Xg,Yq) in U(g—1,y) with y, = yq. Now considel (0,y) andV (g—1,y). Since each one of these
subsets 0¥, is a translated copy of;, the westmost column &f(0,y) is identical to the westmost column Xf
and the eastmost columné{g — 1,y) is identical to the eastmost columnXif Therefore, the number of horizontal
bridges inX; 1 that belong td/(0,y) UV (g—1,y) is equal tonhby, = 1. In other wordsphby,,, > 1. Since bothX;
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andX;, 1 are built out of copies of their preceding stage accordirthéssame pattern (namely the generatoXpand
we argued above that the only horizontal bridgeXjibelong toU (0,y) UU (g — 1,y), the horizontal bridges iX; 1
can only belong to the subsaf$0,y) andV (g — 1,y). In other wordsnhby,, < 1. Finally,nhby_, = 1.

Third, we prove thak 1 is acyclic. For the sake of obtaining a contradiction, asstimat there exists a simple
cycleCin X, 1. Let the sequencB_; of adjacen¥ subsets that traverses b® (xo,Yo), - ..,V (X, Yk). If P11 has
length one, theR is contained in a single (translated) copy®fby (x)), which contradicts the fact th¥ is acyclic
(by Px(i)). OtherwiseC traverses all of th& subsets irR. 1, whose length is at least two. Following the same
reasoning as above, there must exist a corresponding sesfdenamelyU (Xo,Yo), - - ., U (X, Y«), of U subsets irX;.
Since each subset in this sequence is connected, cont&farontal bridge and one vertical bridge @(i)), and
is adjacent to its neighbors in the sequence, the union séthebsets forms a connected component that must contain
at least one simple cycle, which contradicts the factX& a tree (by (i)). In all cases, we reached a contradiction.
Therefore X ;1 is acyclic.

Finally, sinceX1 is a tree anehhby,, = nvbx,, = 1, P« (i + 1) holds.

O
Theorem 6.2. T= U T; is a g-discrete self-similar tree fractal, for some-gl, with generator G if and only if
a.Gisa trecle,land
b. nhiz=nvis =1

Proof. Assume thafl is ag-discrete self-similar tree fractal with genera€r Thus,T is acyclic and connected. If
nhbs < 1 ornvhg < 1, thenT is trivially disconnected. Thusthbs > 1, nvhg > 1.

SinceT is acyclic,G must be acyclic as well, for & were not acyclic, thefl would notbe, a&s C T.

We will now show thatG is connected. To see this, assume tBads disconnected. First, note that,Gfhas a
connected component contained strictly within its intertleenT is trivially disconnected.

Second, ifG is disconnected, the@ contains a connected component that touches at most twa @i To see
this, note that Lemmla_8.5 says tlathas at least one connected h-bridge and at least one codnebti&lge. 1fG
had a connected component, €aythat touched three or more sides@fthen due to the existence of at least one
connected h-bridge and at least one connected v-brielgeuld necessarily have another connected component, say
C/, that could only touch at most two sides®f

We now proceed with a case analysis based on the number afaid@that the connected component touches
(one or two sides) and the relative positions of these sig@igs¢ent or opposite sides).

Case 1: Assume th& has a connected component, §gy¥hat does not contain the origin but does contain points
in the northmost row and eastmost columrGofand there is no path i@ from the origin to any point irC). We will
call this case “NE”. LemmB6l5 says thathas at least one connected h-bridge and at least one codnebt&ge.
Therefore, Lemm@a6l2 says tHathas a north-free point not in the northmost row, Egyand Lemm&a6]3 says that
has an east-free point in the northmost row but not in thevezsttcolumn, sayne. LetC’ = C+ g?Xn + gXne. Since

XN is north-free and not in the northmost row®fN (X\) ¢ G, whenceT N ({O, N 1}2 +9°N (XN)) =@. Since
XNE IS in the northmost row, this means the northmost point imegelumn ofC’ is north-free inT. SinceXye is
not in the eastmost column &, E (Xng) € G, whenceT N (gZXN + ({O, N B 1}2+gE(XNE))) = ¢@. This means

that the eastmost point in every row®fis east-free ifT. We also know that the westmost point in every rovCd
west-free inG and the southmost point in every column®is south-free irG, therefore the westmost point in every
row of C' is west-free inT and the southmost point in every columnGifis south-free iflT. Thus, there is no path in

T from any point inC’ to the origin, which contradicts the assumption thas connected. The “NW” and “SE” cases
can be handled with a similar argument. Note that, in the “S¥8e, the connected component is contained strictly
within the interior of the generator. Such situations weaadied above.

Case 2: Assume th& has a connected component, €ayhat contains points in the eastmost column but does not
contain the origin nor points in the westmost columr@Gofior the northmost or southmost rows®f This is the “E”
case. In this case, Lemmal.4 says that there is an eastsiirgerpG that is not in the eastmost column®f Call this
pointXe and defin€C’ = C + gXe. Following directly from the definition of the “E” case, thenthmost point in every
column ofC is north-free inG, the southmost point in every column®fis south-free irG and the westmost pointin

24



every row ofC is west-free inG. From the definition o€’ and the fact thatz is east-free, it follows that the eastmost
(respectively, westmost) point in every row©fis east-free (respectively, west-free)Tin Similarly, the northmost
(respectively, southmost) point in every columr@fis north-free (respectively, south-free)Tn Therefore, there is

no path inT from any point inC’ to the origin, which contradicts the assumption thas connected. The “N” case
can be handled with a similar argument. Note that, in the “W &S” cases, the connected component is contained
strictly within the interior of the generator. Such siteais were handled above.

Case 3: Assume th& has a connected component, §aythat contains points in both the eastmost and westmost
columns ofG. This is the “EW” case. In this case, sinGeontains at least one connected v-bridgejust contain all
connected v-bridges @& (sinceC must have a non-empty intersection with each connecteitlgdnG). Therefore,

C touches all four sides dB. If C contains the origin, then there must exist another discctiedecomponent, say,
that does not contain the origin a@dmust belong to one of the previous case€ Hoes not contain the origin, then
the origin itself must be part of a connected component thabt connected t€ nor to any other point iff, which
contradicts the assumption thais connected. The “NS” case can be handled with a similarmaegi.

Therefore, in all case§; is connected. Since we argued above & acyclic, we may conclude th&tis a tree.

Finally, sinceG is a tree, it must be the case thafyz < 1 andnhbs < 1, otherwiseT would contain a cycle,
whencenvig = nhig = 1.

Now we prove that ifG is a tree anshhbs = nvlg = 1, thenT is a tree.

Assume thaG is a tree andhhbg = nvhs = 1. ThenPy (1) holds (sinceG = Ty). Furthermore, by Lemn{a 8.6,
Pr(i) = Pr(i+1) fori € Z*. Thus, by inductionPr (i) holds fori € Z*, which implies that each stage This a tree.
We now prove thaT is a tree.

First, T is connected, since each stagd ds connected.

Second, we prove thdt cannot contain a cycle. Assume, for the sake of obtainingieradiction, that there exist
two distinct pointsg andd in T such that there exist two distinct simple paths frpro . Since both of these paths
must be finite, the cycle that they form must also be finite.ré&foge, this cycle must be fully contained in some stage
of T, which contradicts the fact that all stagesToére trees.

In conclusionT is connected and acyclic, and is thus a tree. O
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