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Scaled pier fractals do not strictly self-assemble∗

David Furcy† Scott M. Summers‡

Abstract

A pier fractal is a discrete self-similar fractal whose generator contains at least onepier, that is, a member of the
generator with exactly one adjacent point. Tree fractals and pinch-point fractals are special cases of pier fractals. In
this paper, we studyscaled pier fractals, where ascaled fractalis the shape obtained by replacing each point in the
original fractal by ac×c block of points, for somec∈ Z

+. We prove that no scaled discrete self-similar pier fractal
strictly self-assembles, at any temperature, in Winfree’sabstract Tile Assembly Model.

1 Introduction

The stunning, often mysterious complexities of the naturalworld, from nanoscale crystalline structures to unthinkably
massive galaxies, all arise from the same elemental processknown asself-assembly. In the absence of a mathematically
rigorous definition, self-assembly is colloquially thought of as the process through which simple, unorganized com-
ponents spontaneously combine, according to local interaction rules, to form some kind of organized final structure.
A major objective of nanotechnology is to harness the power of self-assembly, perhaps for the purpose of engineering
atomically precise medical, digital and mechanical components at the nanoscale. One strategy for doing so, developed
by Nadrian Seeman, isDNA tile self-assembly[8,9].

In DNA tile self-assembly, the fundamental components are “tiles”, which are comprised of interconnected DNA
strands. Remarkably, these DNA tiles can be “programmed”, via the careful configuration of their constituent DNA
strands, to automatically coalesce into a desired target structure, the characteristics of which are completely determined
by the “programming” of the DNA tiles. In order to fully realize the power of DNA tile self-assembly, we must study
the algorithmic and mathematical underpinnings of tile self-assembly.

Perhaps the simplest mathematical model of algorithmic tile self-assembly is Erik Winfree’s abstract Tile Assem-
bly Model (aTAM) [11]. The aTAM is a deliberately over-simplified, combinatorial model of nanoscale (DNA) tile
self-assembly that “effectivizes” classical Wang tiling [10] in the sense that the former augments the latter with a
mechanism for sequential “growth” of a tile assembly. Very briefly, in the aTAM, the fundamental components are
un-rotatable, translatable square “tile types” whose sides are labeled with (alpha-numeric) glue “colors” and (integer)
“strengths”. Two tiles that are placed next to each otherbind if the glues on their abutting sides match in both color
and strength, and the common strength is at least a certain (integer) “temperature”. Self-assembly starts from a “seed”
tile type, typically assumed to be placed at the origin of thecoordinate system, and proceeds nondeterministically and
asynchronously as tiles bind to the seed-containing assembly one at a time.

Despite its deliberate over-simplification, the aTAM is a computationally expressive model. For example, Winfree
[11] proved that the model is Turing universal, which means that, in principle, the process of self-assembly can be
directed by any algorithm. In this paper, we study the extentto which tile sets in the aTAM can be algorithmically
directed to “strictly” self-assemble (i.e., place tiles atand only at locations that belong to) shapes that are self-similar
“pier fractals”.

Intuitively, a “pier fractal” is a just-barely connected, self-similar fractal that contains the origin, as well as in-
finitely many, arbitrarily-large subsets of specially-positioned points that either lie at or “on the far side” from the
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origin of a pinch-point location (we make this notion precise in Section 2.2). Note that “tree” and “pinch-point”
fractals constitute notable, previously-studied sub-classes of pier fractals (e.g., see [3,4,6] for definitions).

There are examples of prior results related to the strict self-assembly of fractals in the aTAM. For example, Theo-
rem 3.2 of [3] bounds from below the size of the smallest tile set in which an arbitrary shapeX strictly self-assembles,
by the depth ofX’s largest finite sub-tree. Although not stated explicitly,an immediate corollary of this result is that
no tree-fractal strictly self-assembles in the aTAM. In [4], Lutz and Shutters prove that a notable example of a tree
fractal, the Sierpinski triangle, does not even “approximately” strictly self-assemble, in the sense that the discrete frac-
tal dimension (see [2]) of the symmetric difference of any set that strictly self-assembles and the Sierpinski triangle
is at least that of the latter, which is approximately log23. Theorem 3.12 of [6], the only prior result related to (the
impossibility of) the strict self-assembly of pinch-pointfractals, is essentially a qualitative generalization of Theorem
3.2 of [3].

While the strict self-assembly of certain classes of fractals in the aTAM has been studied previously,nothing is
known about the strict self-assembly in the aTAM of scaled-up versions of fractals, where “scaled-up” means that each
point in the original shape is replaced by ac× c block of points, for somec∈ Z

+. After all, certain classes of fractals
defined by intricate geometric properties, such as the existence of “pinch-points” or “tree-ness”, are not closed under
the scaling operation. To see this, consider the full connectivity graph of any shape in which each point in the shape is
represented by one vertex and edges exist between vertices that represent adjacent points in the shape. If this graph is
a tree and/or contains one or more pinch-points, then the scaled-up version of the original shape (withc> 1) is not a
tree and does not contain any pinch points. This means that prior proof techniques that exploit similar subtle geometric
sub-structures of fractals (e.g., [3,4,6]) simply cannot be applied to scaled-up versions of fractals. Thus, in this paper,
we ask if it is possible for a scaled-up version of a pier fractal to strictly self-assemble in the aTAM.

The main contribution of this paper provides an answer to theprevious question, perhaps not too surprisingly to
readers familiar with the aTAM, in the negative: we prove that there is no pier fractal that strictly self-assembles in
the aTAM at any positive scale factor. Furthermore, our definition of pier fractal includes, as a strict subset, the set
of all pinch-point fractals from [6]. Our proof makes crucial use of a (modified version of a) recent technical lemma
developed by Meunier, Patitz, Summers, Theyssier, Winslowand Woods [5], known as the “Window Movie Lemma”
(WML). This (standard) WML is a kind of pumping lemma for self-assembly since it gives a sufficient condition for
taking any pair of tile assemblies, at any temperature, and “splicing” them together to create a new valid tile assembly.
Our modified version of the WML, which we call the “Closed Window Movie Lemma” (see Section 2.3 for a formal
statement and proof), allows one to replace a portion of a tile assembly with another portion of the same assembly,
assuming a certain extra “containment” condition is met. Moreover, unlike in the standard WML that lacks the extra
containment assumptions, the replacement of one part of thetile assembly with another in our Closed WML only goes
“one way”, i.e., the part of the tile assembly being used to replace another part cannot itself be replaced by the part of
the tile assembly it is replacing.

2 Definitions

In this section, we give a formal definition of Erik Winfree’sabstract Tile Assembly Model (aTAM), define “pier
fractals” and develop a “Closed” Window Movie Lemma.

2.1 Formal description of the abstract Tile Assembly Model

This section gives a formal definition of the abstract Tile Assembly Model (aTAM) [11]. For readers unfamiliar with
the aTAM, [7] gives an excellent introduction to the model.

Fix an alphabetΣ. Σ∗ is the set of finite strings overΣ. LetZ,Z+, andN denote the set of integers, positive integers,
and nonnegative integers, respectively. GivenV ⊆ Z

2, the full grid graph of V is the undirected graphGf
V = (V,E),

such that, for all~x,~y∈ V, {~x,~y} ∈ E ⇐⇒ ‖~x−~y‖ = 1, i.e., if and only if~x and~y are adjacent in the 2-dimensional
integer Cartesian space.

A tile typeis a tuplet ∈ (Σ∗×N)4, e.g., a unit square, with four sides, listed in some standardized order, and each
side having aglue g∈ Σ∗×N consisting of a finite stringlabeland a nonnegative integerstrength.
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We assume a finite set of tile types, but an infinite number of copies of each tile type, each copy referred to as a
tile. A tile set is a set of tile types and is usually denoted asT.

A configurationis a (possibly empty) arrangement of tiles on the integer lattice Z
2, i.e., a partial functionα :

Z
2
99K T. Two adjacent tiles in a configurationinteract, or areattached, if the glues on their abutting sides are equal

(in both label and strength) and have positive strength. Each configurationα induces abinding graph Gb
α , a grid graph

whose vertices are positions occupied by tiles, according to α, with an edge between two vertices if the tiles at those
vertices bind. Anassemblyis a connected, non-empty configuration, i.e., a partial function α : Z2

99K T such that
Gf

domα is connected and domα 6=∅.
Givenτ ∈Z

+, α is τ-stableif every cut-set ofGb
α has weight at leastτ, where the weight of an edge is the strength

of the glue it represents.1 Whenτ is clear from context, we sayα is stable. Given two assembliesα,β , we sayα
is a subassemblyof β , and we writeα ⊑ β , if dom α ⊆ domβ and, for all points~p ∈ domα, α(~p) = β (~p). For
two non-overlapping assembliesα andβ , α ∪ β is defined as the unique assemblyγ satisfying, for all~x ∈ domα,
γ(~x) = α(~x), for all~x∈ domβ , γ(~x) = β (~x), andγ(~x) is undefined at any point~x∈ Z

2\(domα ∪domβ ).
A tile assembly system(TAS) is a tripleT = (T,σ ,τ), whereT is a tile set,σ : Z2

99K T is the finite,τ-stable,
seed assembly, andτ ∈ Z

+ is thetemperature.
Given twoτ-stable assembliesα,β , we writeα →T

1 β if α ⊑ β and|domβ \domα|= 1. In this case we sayα T -
producesβ in one step. If α →T

1 β , domβ \domα = {~p}, andt = β (~p), we writeβ = α +(~p 7→ t). TheT -frontier
of α is the set∂T α =

⋃

α→T
1 β (domβ \domα), i.e., the set of empty locations at which a tile could stably attach to

α. Thet-frontier of α, denoted∂T
t α, is the subset of∂T α defined as

{

~p∈ ∂T α
∣

∣ α →T
1 β andβ (~p) = t

}

.
Let A T denote the set of all assemblies of tiles fromT, and letA T

<∞ denote the set of finite assemblies of tiles
from T. A sequence ofk ∈ Z

+ ∪{∞} assembliesα0,α1, . . . overA T is aT -assembly sequenceif, for all 1 ≤ i < k,
αi−1 →

T
1 αi . Theresultof an assembly sequence~α, denoted as res(~α), is the unique limiting assembly (for a finite

sequence, this is the final assembly in the sequence).
We writeα →T β , and we sayα T -producesβ (in 0 or more steps), if there is aT -assembly sequenceα0,α1, . . .

of lengthk= |domβ \domα|+1 such that (1)α = α0, (2) domβ =
⋃

0≤i<k domαi , and (3) for all 0≤ i < k, αi ⊑ β .
If k is finite then it is routine to verify thatβ = αk−1.

We sayα is T -producibleif σ →T α, and we writeA [T ] to denote the set ofT -producible assemblies. The
relation→T is a partial order onA [T ] [3,7].

An assemblyα is T -terminal if α is τ-stable and∂T α = ∅. We writeA�[T ] ⊆ A [T ] to denote the set of
T -producible,T -terminal assemblies. If|A�[T ]|= 1 thenT is said to bedirected.

We say that a TAST strictly (or uniquely) self-assembles X⊆ Z
2 if, for all α ∈ A�[T ], domα = X, i.e., if every

terminal assembly produced byT places a tile on every point inX and does not place any tiles on points inZ
2\X.

In this paper, we consider scaled-up versions of subsets ofZ
2. Formally, if X is a subset ofZ2 andc∈ Z

+, then a
c-scalingof X is defined as the setXc =

{

(x,y) ∈ Z
2
∣

∣

(⌊

x
c

⌋

,
⌊ y

c

⌋)

∈ X
}

. Intuitively, Xc is the subset ofZ2 obtained
by replacing each point inX with a c× c block of points. We refer to the natural numberc as thescaling factoror
resolution loss.

2.2 Pier fractals

In this section, we first introduce some terminology and thendefine a class of fractals called “pier fractals” that is the
focus of this paper.

Notation. We useNg to denote the subset{0, . . . ,g−1} of N.

Notation. If A andB are subsets ofN2 andk∈N, thenA+ kB= {~m+ k~n | ~m∈ A and~n∈ B}.

The following definition is a modification of Definition 2.11 in [6].

1A cut-setis a subset of edges in a graph which, when removed from the graph, produces two or more disconnected subgraphs. Theweightof a
cut-set is the sum of the weights of all of the edges in the cut-set.
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Definition 2.1. Let 1< g∈ N andX ⊂ N
2. We say thatX is ag-discrete self-similar fractal(or g-dssf for short), if

there is a set{(0,0)} ⊂ G⊂N
2
g with at least one point in every row and column, such thatX =

∞
⋃

i=1

Xi , whereXi , theith

stageof X, is defined byX1 = G andXi+1 = Xi + giG. We say thatG is thegeneratorof X.

Intuitively, a g-dssf is built as follows. Start by selecting points inN2
g satisfying the constraints listed in Defini-

tion 2.1. This first stage of the fractal is the generator. Then, each subsequent stage of the fractal is obtained by adding
a full copy of the previous stage for every point in the generator and translating these copies so that their relative
positions are identical to the relative positions of the individual points in the gnerator.

Definition 2.2. Let Sbe any finite subset ofZ2. Let l , r, b, andt denote the following integers:
lS= min

(x,y)∈S
x rS= max

(x,y)∈S
x bS= min

(x,y)∈S
y tS= max

(x,y)∈S
y

An h-bridgeof S is any subset ofSof the formhbS(y) = {(lS,y),(rS,y)}. Similarly, av-bridgeof S is any subset
of Sof the formvbS(x) = {(x,bS),(x, tS)}. We say that a bridge isconnectedif there is a simple path inSconnecting
the two bridge points.

Notation. Let S be any finite subset ofZ2. We will denote bynhbS andnvbS, respectively, the number of h-bridges
and the number of v-bridges ofS.

Notation. The directionsD = {N,E,S,W} will be used as functions fromZ2 to Z
2 such thatN(x,y) = (x,y+ 1),

E(x,y) = (x+1,y), S(x,y) = (x,y−1) andW(x,y) = (x−1,y). Note thatN−1 = SandW−1 = E.

Notation. Let X ⊆ Z
2. We say that a point(x,y) ∈ X is D-free in X, for some directionD ∈ D , if D(x,y) 6∈ X.

Definition 2.3. Let G be the generator of anyg-discrete self-similar fractal. Apier is a point inG that isD-free in
G for exactly three of the four directions inD . We say that a pier(x,y) is D-pointing(or points D) if D−1(x,y) ∈ G.
Note that a pier always points in exactly one direction.

Definition 2.4. LetG be the generator of anyg-discrete self-similar fractal with exactly one h-bridge and one v-bridge.
G may contain up to four distinct types of piers characterizedby the number of bridges they belong to. Each pier may
belong to no more than two bridges. Areal pier is a pier that does not belong to any bridge inG. A single-bridge
pier belongs to exactly one bridge. Adouble-bridge pierbelongs to exactly two bridges. Finally, we will distinguish
between two sub-types of single-bridge piers. If the pier ispointing in a direction that is parallel to the direction of
the bridge (i.e., if the pier points north or south and belongs to a v-bridge, or the pier points east or west and belongs
to an h-bridge), the pier is aparallel single-bridge pier. If the pier is pointing in a direction that is orthogonal to the
direction of the bridge (i.e., if the pier points north or south and belongs to an h-bridge, or the pier points east or west
and belongs to a v-bridge), the pier is anorthogonal single-bridge pier.

For example, the generator in Figure 1 below contains the h-bridge{(0,0),(4,0)} and the v-bridge{(4,0),(4,4)}.
The point(1,4) is a real pier. The point(0,0) is an orthogonal single-bridge pier. The point(4,4) is a parallel
single-bridge pier. The point(4,0) is a double-bridge pier.

We are now ready to define the class of fractals that is the mainfocus of this paper.

Definition 2.5. P is apier fractal if and only if P is a discrete self-similar fractal with generatorG such that:
a. The full grid graph ofG is connected, and
b. nhbG = nvbG = 1, and
c. G contains at least one pier.

2.3 The Closed Window Movie Lemma

In this subsection, we develop a more accommodating (modified) version of the standard Window Movie Lemma
(WML) [5]. Our version of the WML, which we call the “Closed Window Movie Lemma”, allows us to replace one
portion of a tile assembly with another, assuming certain extra “containment” conditions are met. Moreover, unlike
in the standard WML that lacks the extra containment assumptions, the replacement of a portion of one tile assembly
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Figure 1: A 5×5 generator containing one h-bridge, one v-bridge and four piers.

with another portion of the same assembly in our Closed WML only goes “one way”, i.e., the part of the tile assembly
being used to replace another part cannot itself be replacedby the part of the tile assembly it is replacing. We must
first define some notation that we will use in our Closed WindowMovie Lemma.

A window w is a set of edges forming a cut-set of the full grid graph ofZ
2. For the purposes of this paper,

we say that aclosed window winduces a cut2 of the full grid graph ofZ2, written asCw = (C<∞,C∞), whereC∞ is
infinite, C<∞ is finite and for all pairs of points~x,~y ∈ C<∞, no simple path connecting~x and~y in the full grid graph
of C<∞ crosses the cutCw. We call the set of vertices that make upC<∞ the inside of the windoww, and write
inside(w) =C<∞ andoutside(w) = Z

2\ inside(w) =C∞. We say that a windoww is enclosedin another windoww′ if
inside(w)⊆ inside(w′).

Given a windoww and an assemblyα, a window thatintersectsα is a partitioning ofα into two configurations
(i.e., after being split into two parts, each part may or may not be disconnected). In this case we say that the window
w cuts the assemblyα into two configurationsαL andαR, whereα = αL ∪αR. If w is a closed window, for notational
convenience, we writeαI for the configuration insidew andαO for the configuration outsidew. Given a windoww,
its translation by a vector~c, writtenw+~c is simply the translation of each ofw’s elements (edges) by~c.

For a windoww and an assembly sequence~α, we define a window movieM to be the order of placement, position
and glue type for each glue that appears along the windoww in ~α. Given an assembly sequence~α and a window
w, the associatedwindow movieis the maximal sequenceM~α ,w = (v0,g0),(v1,g1),(v2,g2), . . . of pairs of grid graph
verticesvi and gluesgi , given by the order of the appearance of the glues along window w in the assembly sequence~α.
Furthermore, ifk glues appear alongw at the same instant (this happens upon placement of a tile which has multiple
sides touchingw) then thesek glues appear contiguously and are listed in lexicographical order of the unit vectors
describing their orientation inM~α ,w.

Let w be a window and~α be an assembly sequence andM = M~α ,w. We use the notationB (M) to denote the
bond-forming submovieof M, i.e., a restricted form ofM, which consists of only those steps ofM that place glues
that eventually form positive-strength bonds in the assembly α = res(~α). Note that every window movie has a unique
bond-forming submovie.

Lemma 2.6(Closed Window Movie Lemma). Let~α = (αi | 0≤ i < l), with l ∈ Z
+∪{∞}, be an assembly sequence

in some TAST with resultα. Let w be a closed window that partitionsα into αI andαO, and w′ be a closed window
that partitionsα into α ′

I andα ′
O. If B(M~α ,w)+~c= B(M~α ,w′) for some~c 6= (0,0) and the window w+~c is enclosed

in w′, then the assemblyα ′
O∪ (αI +~c) is in A [T ].

Proof. Before we proceed with the proof, the next paragraph introduces some notation taken directly from [5].

2A cut is a partition of the vertices of a graph into two disjoint subsets that are joined by at least one edge.
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For an assembly sequence~α = (αi | 0 ≤ i < l), we write |~α | = l (note that if~α is infinite, thenl = ∞). We
write ~α[i] to denote~x 7→ t, where~x and t are such thatαi+1 = αi +(~x 7→ t), i.e.,~α[i] is the placement of tile type
t at position~x, assuming that~x ∈ ∂tαi . We write~α[i] +~c, for some vector~c, to denote(~x+~c) 7→ t. We define
~α = ~α +(~x 7→ t) = (αi | 0≤ i < k+1), whereαk = αk−1+(~x 7→ t) if ~x∈ ∂tαk−1 and undefined otherwise, assuming
|~α| > 0. Otherwise, if|~α | = 0, then~α = ~α +(~x 7→ t) = (α0), whereα0 is the assembly such thatα0 (~x) = t and is
undefined at all other positions. This is our notation for appending steps to the assembly sequence~α : to do so, we must
specify a tile typet to be placed at a given location~x∈ ∂tαi . If αi+1 = αi +(~x 7→ t), then we writePos(~α[i]) =~x and
Tile(~α[i]) = t. For a window movieM = (v0,g0),(v1,g1), . . ., we writeM[k] to be the pair(vk,gk) in the enumeration
of M andPos(M[k]) = vk, wherevk is a vertex of a grid graph.

We now proceed with the proof, throughout which we will assume thatM = B
(

M~α ,w

)

and M′ = B
(

M~α ,w′

)

.
SinceM+~c= M′ for some~c 6= (0,0) andw andw′ are both closed windows, it must be the case that the seed tileof
α is in domαO∩domα ′

O or in domαI ∩domα ′
I . In other words, the seed tile cannot be in domαI\domα ′

I nor in
domα ′

I\domαI . Therefore, assume without loss of generality that the seedtile is in domαO∩domα ′
O.

The algorithm in Figure 2 describes how to produce a new validassembly sequence~γ.

Initialize i, j = 0 and~γ to be empty
for k= 0 to |M|−1 do

if Pos(M′[k]) ∈ domα ′
O then

while Pos(~α[i]) 6= Pos(M′[k]) do
if Pos(~α[i]) ∈ domα ′

O then
~γ =~γ +~α[i]

i = i +1
~γ =~γ +~α[i]
i = i +1

else
while Pos(~α[ j]) 6= Pos(M[k]) do

if Pos(~α[ j]) ∈ domαI then
~γ =~γ +(~α[ j]+~c)

j = j +1
~γ =~γ +(~α [ j]+~c)
j = j +1

while inside(w)∩∂ res(~γ) 6=∅ do
if Pos(~α[ j]) ∈ domαI then

~γ =~γ +(~α[ j]+~c)
j = j +1

while i < |~α| do
if Pos(~α[i]) ∈ domα ′

O then
~γ =~γ +~α[i]

i = i +1
return ~γ

Figure 2: The algorithm to produce a valid assembly sequence~γ.

If we assume that the assembly sequence~γ ultimately produced by the algorithm is valid, then the result of ~γ is
indeedα ′

O∪ (αI +~c). Observe thatαI must be finite, which implies thatM is finite. If |~α| < ∞, then all loops will
terminate. If|~α|= ∞, then|α ′

O|= ∞ and the first two loops will terminate and the last loop will run forever. In either
case, for every tile inα ′

O andαI +~c, the algorithm adds a step to the sequence~γ involving the addition of this tile to the
assembly. However, we need to prove that the assembly sequence~γ is valid. It may be the case that either: 1. there is
insufficient bond strength between the tile to be placed and the existing neighboring tiles, or 2. a tile is already present
at this location.

Case 1: In this case, we claim the following: at each step of the algorithm, the current version of~γ is a valid
assembly sequence whose result is a producible subassemblyof α ′

O ∪ (αI +~c). Note that the three loops in the al-
gorithm iterate through all steps of~α, such that, when adding~α[i] (or ~α[ j]+~c) to~γ, all steps of the window movie
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corresponding to the positions/glues of tiles to which~α[i] (or ~α [ j] +~c) initially bind in ~α have occurred. In other
words, when adding~α [i] (or~α[ j]+~c) to~γ, the tiles to which~α [i] (or~α [ j]+~c) initially bind have already been added
to~γ by the algorithm. Similarly, all tiles inα ′

O (or αI +~c) added toα before stepi (or j) in the assembly sequence~α
have already been added to~γ.

So, if the tileTile(~α [i]) that is added to the subassembly ofα produced afteri −1 steps can bond at a location
in α ′

O to form aτ-stable assembly, then the same tile added to the result of~γ, which is producible, must also bond to
the same location in the result of~γ, as the neighboring glues consist of (i) an identical set of glues from tiles in the
subassembly ofα ′

O and (ii) glues on the side of the window movie containingαI +~c. Similarly, the tiles ofαI +~c must
also be able to bind.

Case 2:Since we only assume thatB
(

M~α ,w

)

+~c=B
(

M~α ,w′

)

, as opposed to the stronger conditionB
(

M~α ,w+~c

)

=

B
(

M~α ,w′

)

, which is assumed in the standard WML, we must show that dom(αI +~c)∩domα ′
O = ∅. To see this,

observe that, by assumption,w+~c is enclosed inw′, which, by definition, means thatinside(w+~c) ⊆ inside(w′).
Then we have~x ∈ domα ′

O ⇒ ~x ∈ outside(w′) ⇒ ~x 6∈ inside(w′) ⇒ ~x 6∈ inside(w+~c) ⇒ ~x 6∈ dom(αI +~c). Thus,
locations inαI +~c only have tiles fromαI placed in them, and locations inα ′

O only have tiles fromα ′
O placed in them.

So the assembly sequence of~γ is valid, i.e., every single-tile addition in~γ adds a tile to the assembly to form a new
producible assembly. Since we have a valid assembly sequence, as argued above, the resulting producible assembly
is α ′

O∪ (αI +~c).

3 Scaled pier fractals do not strictly self-assemble in the aTAM

In this section, we first define some notation and establish preliminary results. Then we prove our main result, namely
that no scaled pier fractal self-assembles in the aTAM. Finally, we prove corollaries of our main result, including the
fact that no scaled tree fractal self-assembles in the aTAM.

3.1 Preliminaries

Recall that each stageXs (s> 1) of ag-dssf (scaled by a factorc) is made up of copies of the previous stageXs−1, each
of which is a square of sizecgs−1.

In the proof of our main result, we will need to refer to one of the squares of sizecgs−2 inside the copies of stage
Xs−1, leading to the following notation.

Notation. Let c∈ Z
+, 1< s∈ N and 1< g∈ N. Let e, f , p,q∈ Ng. We useSc

s(e, f , p,q) to denote{0,1, . . . ,cgs−2−
1}2+cgs−1(e, f )+cgs−2(p,q) andWc

s (e, f , p,q) to denote the square-shaped, closed window whose inside isSc
s(e, f , p,q).

In Figure 3 below, the bottom and top (circular) magnifications show the windowsW1
2 (0,1,3,2) andW1

3 (0,1,3,2),
respectively.

Next, we will need to translate a small window to a position inside a larger window. These two windows will
correspond to squares at the same relative position in different stagesi and j of a g-dssf.

Notation. Let c ∈ Z
+, 1 < i ∈ N, 1 < j ∈ N, with i < j, ande, f ,xsp,q ∈ Ng. We use~tc

i→ j(e, f , p,q) to denote
the vector joining the southwest corner ofWc

i (e, f , p,q) to the southwest corner ofWc
j (e, f , p,q). In other words,

~tc
i→ j(e, f , p,q) =

(

c
(

g j−1−gi−1
)

e+ c
(

g j−2−gi−2
)

p,c
(

g j−1−gi−1
)

f + c
(

g j−2−gi−2
)

q
)

.

For example, in Figure 3 below,~t1
2→3(0,1,3,2) = (9,18).

To apply Lemma 2.6, we will need the bond-forming submovies to line up. Therefore, once the two square
windows share their southwest corner after using the translation defined above, we will need to further translate the
smallest one either up or to the right, or both, depending on which side of the windows contains the bond-forming
glues, which, in the case of scaled pier fractals, always form a straight (vertical or horizontal) line of lengthc. We will
compute the coordinates of this second translation in our main proof. For now, we establish an upper bound on these
coordinates that will ensure that the translated window will remain enclosed in the larger window.
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Lemma 3.1. Let c∈ Z
+, 1< i ∈ N, 1< j ∈ N, with i < j, e, f , p,q ∈ Ng, and x,y ∈ N. Let m= c(g j−2−gi−2). If

x≤ m and y≤ m, then the window Wci (e, f , p,q)+~tc
i→ j(e, f , p,q)+ (x,y) is enclosed in the window Wcj (e, f , p,q).

Proof. Let W andw denoteWc
j (e, f , p,q) andWc

i (e, f , p,q)+~tc
i→ j (e, f , p,q), respectively. SinceW andw are square

windows that have the same southwest corner and whose respective sizes arecgj−2 andcgi−2, W enclosesw. The
eastern side ofw+(x,0) still lies within W, because the maximum value ofx is equal to the difference between the
size ofW and the size ofw. The same reasoning applies to a northward translation ofw by (0,y). In conclusion,
w+(x,y) must be enclosed inW, as long as neitherx nory exceedsm.

Finally, in our main result, we will use the fact that, for anyscaled pier fractalPc, we can find an infinite number
of closed windows that all cut the fractal along a single lineof glues (see Lemma 3.5 below), the proof of which uses
the following three intermediate lemmas.

Lemma 3.2. If P is any pier fractal with generator G, then G contains at leastone pier that is not a double-bridge
pier.

Proof. For the sake of obtaining a contradiction, assume thatG contains exactly one pier, say(p,q), and that(p,q)
is a double-bridge pier. Note that any double-bridge pier must be positioned at one of the corners ofG, that is,
(p,q) ∈ {(0,0),(g−1,0),(0,g−1),(g−1,g−1)}. Without loss of generality, assume that(p,q) = (g−1,0), as in
Figure 1 above. Since(p,q) is a double-bridge pier,(0,0) must be the other point in the h-bridge and(g−1,g−1)
must be the other point in the v-bridge. Thus,(0,0) ∈ G (this is also true by definition ofG) and(g−1,g−1) ∈ G.
Since(p,q) is the only pier inG, (0,0) cannot be north-free (nor east-free), which implies that(0,1) ∈ G. Therefore,
(g−1,1) 6∈G (otherwise,Gwould contain a second h-bridge). Similarly, since(p,q) is the only pier inG, (g−1,g−1)
cannot be west-free (nor south-free), which implies that(g−2,g−1) ∈ G. Therefore,(g−2,0) 6∈ G (otherwise,G
would contain a second v-bridge). In conclusion, the point(p,q) = (g−1,0) is in G but it is not connected to the rest
of G, which contradicts the definition ofP, whose generator must be connected.

Lemma 3.3. LetP be any pier fractal with generator G such that(p,q)∈ G is a parallel single-bridge pier. If c∈ Z
+,

then it is always possible to pick one point(e, f ) in G such that, for1< s∈ N, Wc
s (e, f , p,q) encloses a configuration

that is connected toPc via a single connected line of glues of length c.

Proof. Without loss of generality, assume that the pier(p,q) is pointing north, that it belongs to a v-bridge and that
q= g−1 (a similar reasoning holds ifq= 0 and the pier points south, or if the pier belongs to an h-bridge and points
either west or east). Now, we must pick a point(e, f ) such that any window of the formWc

s (e, f , p,q) has exactly three
free sides. We distinguish two cases.

1. If p= 0, that is, the pier is in the leftmost column ofG, then(1,g−1) 6∈ G, since(0,g−1) is a north-pointing
pier. Therefore, there must exist at least one point inG∩ ({1}×Ng−1), say(1,y), with 0≤ y < g− 1, that
is north-free. In this case, we pick(e, f ) to be equal to(1,y). Now, consider any windoww of the form
Wc

s (e, f , p,q). The north side ofw is free (sinceq= g−1, (e, f ) is north-free inG and f = y< g−1), the east
side ofw is free (since(1,g−1) 6∈G), and the west side ofw is free (since the facts that(0,0)∈ G, (0,g−1)∈G
and(0,g−1) is a single-bridge pier together imply that(g−1,g−1) 6∈ G). Furthermore, since(0,g−1) is a
north-pointing pier,S(0,g−1)∈ G.

2. If p > 0, then(p−1,g−1) 6∈ G. Therefore, there must exist at least one point inG∩ ({p−1}×Ng−1), say
(p−1,y), with 0≤ y < g− 1, that is north-free. In this case, we pick(e, f ) to be equal to(p−1,y). Now,
consider any windoww of the formWc

s (e, f , p,q). The north side ofw is free (sinceq= g−1, (e, f ) is north-
free inG and f = y < g−1), the west side ofw is free (because(p−1,g−1) 6∈ G), and the east side ofw is
free (since, eitherp< g−1 and(p+1,g−1) 6∈ G, or p= g−1, in which case the facts that(g−1,g−1) ∈ G,
(g−1,0) ∈ G and(g−1,g−1) is a single-bridge pier together imply that(0,g−1) 6∈ G). Furthermore, since
(p,g−1) is a north-pointing pier,S(p,g−1)∈ G.

Therefore, in both cases,Wc
s (e, f , p,q) has exactly three free sides and encloses a configuration that is connected toPc

via a single connected horizontal line of glues of lengthc positioned on the south side of the window.
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Lemma 3.4. Let P be any pier fractal with generator G such that(p,q) ∈ G is an orthogonal single-bridge pier. If
c ∈ Z

+, then it is always possible to pick one point(e, f ) in G such that, for1 < s∈ N, Wc
s (e, f , p,q) encloses a

configuration that is connected toPc via a single connected line of glues of length c.

Proof. Without loss of generality, assume that the pier(p,q) is pointing east, that it belongs to a v-bridge and that
q= g−1 (a similar reasoning holds ifq= 0, or if the pier points west, or if the pier belongs to an h-bridge and points
either north or south). Note that, in this case,g must be strictly greater than 2, since(p,g− 1) ∈ G, (p,0) ∈ G but
(p,g−2) 6∈ G. Now, we must pick a point(e, f ) such that any window of the formWc

s (e, f , p,q) has exactly three free
sides. We distinguish two cases.

1. If p < g−1, then(p,g−2) 6∈ G, since(p,g−1) is an east-pointing pier. Therefore, there must exist at least
one point inG∩ ({p}×Ng−2), say(p,y), with 0≤ y< g−2, that is north-free. In this case, we pick(e, f ) to
be equal to(p,y). Now, consider any windoww of the formWc

s (e, f , p,q). The north side ofw is free (since
q= g−1, (e, f ) is north-free inG and f = y < g−2< g−1), the east side ofw is free (sincep < g−1 and
(p+1,g−1) 6∈ G), and the south side ofw is free (since(p,g−2) 6∈ G). Furthermore, since(p,g−1) is an
east-pointing pier,W(p,g−1) ∈ G.

2. If p= g−1, that is, the pier is in the rightmost column ofG, then the facts that(g−1,0)∈ G, (g−1,g−1)∈ G
and(g− 1,g−1) is a single-bridge pier together imply that(0,g−1) 6∈ G. This, together with the fact that
(0,0) ∈ G, implies that there must exist at least one point inG∩ ({0}×Ng−1), say(0,y), with 0≤ y< g−1,
that is north-free. In this case, we pick(e, f ) to be equal to(0,y). Now, consider any windoww of the form
Wc

s (e, f , p,q). The north side ofw is free (sinceq= g−1, (e, f ) is north-free inG and f = y< g−1), the east
side ofw is free (since(0,g−1) 6∈ G), and the south side ofw is free (since(p,g−2) 6∈ G). Furthermore, since
(g−1,g−1) is an east-pointing pier,W(g−1,g−1)∈ G.

Therefore, in both cases,Wc
s (e, f , p,q) has exactly three free sides and encloses a configuration that is connected toPc

via a single connected horizontal line of glues of lengthc positioned on the west side of the window.

Lemma 3.5. Let P be any pier fractal with generator G. If c∈ Z
+, then it is always possible to pick one pier(p,q)

and one point(e, f ), both in G, such that, for1< s∈N, Wc
s (e, f , p,q) encloses a configuration that is connected toPc

via a single connected (horizontal or vertical) line of glues of length c.

Proof. Let P be any pier fractal with generatorG. Letc∈ Z
+ and 1< s∈N. By definition of a pier fractal,G contains

at least one pier. We will pick one of these piers carefully.
According to Lemma 3.2, it is always possible to choose a pierin G that is not a double-bridge pier. Therefore, we

can always choose either a real pier or a single-bridge pier.We now consider the three possible cases.
First, if G contains one or more real piers, we can simply choose one of them as(p,q). In this case, we pick

(e, f ) = (p,q), since any window of the formWc
s (p,q, p,q), where(p,q) is a real pier inG, must have exactly three

free sides. Therefore,Wc
s (p,q, p,q) must enclose a configuration that is connected toPc via a single line of glues of

lengthc, namely on its non-free side.
Second, ifG does not contain any real piers,G must contain at least one single-bridge pier. So we wrap up this

proof by considering the two types of single-bridge piers.
If G contains at least one parallel single-bridge pier, according to Lemma 3.3, it is always possible to choose one

pier (p,q) and one point(e, f ), both in G, such that, for 1< s∈ N, Wc
s (e, f , p,q) encloses a configuration that is

connected toPc via a single connected line of glues of lengthc.
Finally, if G contains at least one orthogonal single-bridge pier, according to Lemma 3.4, it is always possible to

choose one pier(p,q) and one point(e, f ), both inG, such that, for 1< s∈ N, Wc
s (e, f , p,q) encloses a configuration

that is connected toPc via a single connected line of glues of lengthc.

3.2 Main result

We are now ready to prove our main result.
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Theorem 3.6. Let P be any pier fractal. If c∈ Z
+, thenPc does not strictly self-assemble in the aTAM.

Proof. Let P be any pier fractal with ag×g generatorG, where 1< g∈N. Let c be any positive integer. For the sake
of obtaining a contradiction, assume thatPc does strictly self-assemble in some TAST = (T,σ ,τ). Further assume
that~α is some assembly sequence inT whose result isα, such that domα = Pc.

Generator:

Figure 3: First three stages (s= 1,2,3) of an unscaled (c= 1) pier fractal with an east-pointing pier at position(3,2).
The east-free point(0,1) is at the tip of the arrow (see the rectangular magnification box). In other words,g = 4,
(p,q) = (3,2), and(e, f ) = (0,1).

According to Lemma 3.5, we can always pick one pier(p,q) and a point(e, f ), both inG, such that, for 1< s∈N,
the windowWc

s (e, f , p,q), which we will abbreviatews, encloses a configuration that is connected toPc via a single line
of glues of lengthc.3 The maximum number of distinct combinations and orderings of glue positionings along this line
of glues is finite.4 By the generalized pigeonhole principle, since|{ws | 1< s∈ N}| is infinite, there must be at least
one bond-forming submovie such that an infinite number of windows generate this submovie (up to translation). Let
us pick two such windows, say,wi andwj with i < j, such thatB(M~α ,wi

) andB(M~α ,w j
) are equal (up to translation).

We must pick these windows carefully, since as stated in the proof of Lemma 2.6, the seed ofα must be either in
both windows or in neither. This condition can always be satisfied. The only case where the seed is in more than one
window is when it is at position(0,0) ande= f = p= q= 0, which implies that all windows include the origin. So,
in this case, any choice ofi and j > i will do. In all other cases, none of the windows overlap. So, if the seed belongs
to one of them, saywk, then we can pick anyi greater thank (and j > i). Finally, if the seed does not belong to any
windows, then any choice ofi and j > i will do.

3Without loss of generality, we will assume that this line of glues is positioned on the western side of the windows and is thus vertical (see the
jagged lines in Figure 3, wheres= 2 ands= 3 for the small and large windows, respectively, and(p,q) = (3,2) and(e, f ) = (0,1)), because the
chosen pier in our example points east. A similar reasoning holds for piers pointing north, south or west.

4This number is bounded above byT2c
glue· (2c)!, whereTglue is the total number of distinct glue types inT.
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Translation Formulas for (x,y)

North-pointing Pier

Vertical Bridge

with Southern

Bridge Point at(a,0)

x= acΣ j−3
k=i−2gk

y= 0

East-pointing Pier

Horizontal Bridge

with Western

Bridge Point at(0,b)

x= 0

y= bcΣ j−3
k=i−2gk

South-pointing Pier

Vertical Bridge

with Northern

Bridge Point at(a,g−1)

x= acΣ j−3
k=i−2gk

y= c(g j−2−gi−2)

West-pointing Pier

Horizontal Bridge

with Eastern

Bridge Point at(g−1,b)

x= c(g j−2−gi−2)

y= bcΣ j−3
k=i−2gk

Figure 4: Computing the coordinates(x,y) of the translation that aligns the bond-forming glues (shown as a dotted
line) of the windowswi andwj . Note that(a,b) with a∈ Ng andb∈ Ng are the coordinates of the point inG within
the (horizontal or vertical) bridge that determines the position of the bond-forming glues.
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Figure 5: (x,y) translation needed to alignwi andwj on their east side once their southwest corners already match.
Example with a north-pointing pier (not shown) andg= 3, i = 5, j = 9, and southern vertical bridge point at location
(a,b) = (2,0).
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We will now prove thatwi andwj satisfy the two conditions of Lemma 2.6.
First, we compute~c such thatB(M~α ,wi

)+~c = B(M~α ,w j
). We know thatwi +~tc

i→ j(e, f , p,q) andwj share their
southwest corner. We need to perform one more translation(x,y) to align the bond-forming glues ofwi andwj . The
values ofx andy depend on the direction in which the chosen pier is pointing.The formulas corresponding to all four
directions are given in Figure 4. Furthermore, a justification for the recurring summation in the formulas of Figure 4
is provided in Figure 5. In that figure, the chosen case is a north-pointing pier. However, our example in Figure 3
above uses an east-pointing pier. We now complete the proof for this case. To align the bond-forming glues ofwi

andwj , we must translatewi +~tc
i→ j (e, f , p,q) by (x,y) =

(

0,bc∑ j−3
k=i−2gk

)

, with b ≤ g− 1. Sincex = 0 ≤ m (as

defined in Lemma 3.1) andy= bc∑ j−3
k=i−2gk ≤ (g−1)c∑ j−3

k=i−2gk = c
(

∑ j−2
k=i−1gk−∑ j−3

k=i−2gk
)

= c
(

g j−2−gi−2
)

= m,

we can apply Lemma 3.1 to infer that, with~c=~tc
i→ j (e, f , p,q)+(x,y), wi +~c is enclosed inwj . Therefore, the second

condition of Lemma 2.6 holds.
Second, by construction,B(M~α ,wi

)+~c= B(M~α ,w j
). Therefore, the first condition of Lemma 2.6 holds.

In conclusion, the two conditions of Lemma 2.6 are satisfied,with αI andα ′
O defined as the intersection ofPc with

the inside ofwi and the outside ofwj , respectively. We can thus conclude that the assemblyα ′
O∪(αI +~c) is producible

in T . Note that this assembly is identical (up to translation) toPc, except that the interior of the large windowwj is
replaced by the interior of the small windowwi . Since the configurations in these two windows cannot be identical,
we have proved thatT does not strictly self-assemblePc, which is a contradiction.

3.3 Corollaries of our main result

In this section, we discuss both special cases and generalizations of our main result.

3.3.1 Specializations of our main result

In [1], we proved that no scaled tree fractal strictly self-assembles in the aTAM, where atree fractal is a discrete
self-similar fractal whose underlying graph is a tree. In this section, we start by proving a new characterization of tree
fractals in terms of simple connectivity properties of their generator.

Theorem 3.7. T=
∞
⋃

i=1

Ti is a g-discrete self-similar tree fractal, for some g> 1, with generator G if and only if

a. G is a tree and
b. nhbG = nvbG = 1.

The proof of this theorem is in the appendix. Next, the following observation follows from the fact that a tree with
more than one vertex must contain at least two leaf nodes.

Observation 3.8. If G is the generator of any discrete self-similar fractal and G is a tree, then it must contain at least
two piers.

Finally, we can recast the main result in [1] as a special caseof our main result.

Corollary 3.9. [From [1]] Let T be any tree fractal. If c∈ Z
+, thenTc does not strictly self-assemble in the aTAM.

Proof. Let T be any tree fractal with generatorG. According to Theorem 3.7, the full grid graph ofG is a tree and is
thus connected, andnhbG = nvbG = 1. Furthermore, according to Observation 3.8,G must contain at least one pier.
Therefore,T is a pier fractal andTc does not strictly self-assemble in the aTAM.

We now turn our attention to a second specialization of our main result by considering “pinch-point fractals,”
which are defined in [6] as follows.

Definition 3.10. Let X ⊂ N
2 be ag-discrete self-similar fractal with generatorG. We say thatX is a pinch-point

discrete self-similar fractalif G satisfies the following four conditions:

13



1. {(0,0),(0,g−1),(g−1,0)}⊆ G.

2. G∩ ({1, . . . ,g−1}×{g−1})=∅.

3. G∩ ({g−1}×{1, . . .,g−1}) =∅.

4. The full grid graph ofG is connected.

Theorem 3.12 in [6] establishes that no pinch-point fractalstrictly self-assembles in the aTAM. We can now
generalize this result as follows.

Corollary 3.11. LetX be any pinch-point discrete self-similar fractal. If c∈Z
+, thenXc does not strictly self-assemble

in the aTAM.

Proof. LetX be any pinch-point discrete self-similar fractal with generatorG⊂N
2
g, for someg> 1. First, by definition

of a pinch-point fractal, the full grid graph ofG is connected. Second, since the point(g−1,0) is the only point ofG
that belongs to{g−1}×N and the point(0,0) also belongs toG, nhbG = 1. Similarly, since the point(0,g−1) is the
only point ofG that belongs toN×{g−1} and the point(0,0) also belongs toG, nvbG = 1. Third, since the point
(0,g−1) is a pier inG, G contains at least one pier. Therefore,X is a pier fractal. In conclusion, ifc∈ Z

+, thenXc

does not strictly self-assemble in the aTAM.

3.3.2 Generalizations of our main result

We now discuss how to extend our main result to different classes of fractals. More specifically, we will relax the last
two conditions in the definition of pier fractals and still beable to use the same reasoning as we did in the proof of our
main result.

First, our proof of Theorem 3.6 uses the fact that there existan infinite collection of square windows, each of
which encloses a sub-configuration of the fractal that is attached to the rest of the fractal at a single point (or single
line of points). In other words, each window in the collection has three free sides. If, for example, the east and west
sides of each window are free, then the number of horizontal bridges in the generatorG does not matter. Even if
nhbG > 1, our construction for the windows still works. Figure 6 is one example of such a fractal to which our main
result generalizes, with the first three windows shown as thick, black squares. In this case, our proof technique still
works, even though the generator contains three horizontalbridges. Here is a precise statement of the corollary.

Corollary 3.12. LetF be a discrete self-similar fractal with generator G such that the full grid graph of G is connected,
nvbG= 1, and G contains at least one north-pointing pier or one south-pointing pier. If c∈Z

+, thenFc does not strictly
self-assemble in the aTAM.

Symmetrically, a similar result holds for fractals whose generatorG contains either at least one west-pointing pier
or at least one east-pointing pier, and such thatnhbG = 1.

Second, having relaxed the second condition (partb) of the definition of pier fractals, we can now relax the third
condition (partc) as well. To apply our Closed Window Movie Lemma, a pier is notstrictly needed. Instead, the
generator only need contain apier-like sub-configuration, that is, a sub-configuration of one or more tiles that is
attached to the rest of the fractal at a single point. Figure 7gives one example of such a fractal with the first two
windows shown as thick, solid, black squares. In this case, our proof technique still works, even though the generator
contains five horizontal bridges and no pier. Here is a precise statement of the corollary.

Corollary 3.13. LetF be a discrete self-similar fractal with generator G such that the full grid graph of G is connected,
nvbG = 1, and G contains at least one north-pointing pier-like sub-configuration or at least one south-pointing pier-
like sub-configuration. If c∈ Z

+, thenFc does not strictly self-assemble in the aTAM.

Symmetrically, a similar result holds for fractals whose generatorG contains either at least one west-pointing
pier-like sub-configuration or at least one east-pointing pier-like sub-configuration, and such thatnhbG = 1.

Finally, the Closed Window Movie Lemma may be applicable even when the generator does not contain any
pier-like sub-configuration. The key requirement in the proof of our main result is to be able to find at least two
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Figure 6: First three stages (s= 1,2,3) of an unscaled (c= 1) 5-discrete self-similar fractal with a north-pointing pier,
nhbG = 3, nvbG = 1, (p,q) = (2,2), and(e, f ) = (0,0).
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Figure 7: First two stages (s= 1,2) of an unscaled (c= 1) 7-discrete self-similar fractal with a north-pointing pier-like
sub-configuration,nhbG = 5 andnvbG = 1.
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windows that share a common bond-forming window movie but whose insides contain different sub-configurations.
This requirement can be met even when the sub-configuration contained in each window is attached to the rest of the
fractal at more than one point. Figure 8 illustrates such a situation. For a general characterization, we need some
definitions.

If G is a g× g generator, then acolumn is any setG∩ ({x}×Ng), wherex ∈ Ng is the index of the column.
Therefore, columns are indexed from left to right starting at 0. Two columns areequivalentif they contain the same
number of points and, for each point in one column, there is a point in the other column with the samey coordinate. A
vertical cutis any set of edges connecting two adjacent columns ofG. Two vertical cuts areequivalentif they contain
the same number of edges and, for each edge in one cut, there isan edge in the other cut with the samey coordinate.
Figure 8 depicts a 5×5 generatorG in which columns 2 and 3 are equivalent. Furthermore, in thisexample, cuts 2 and
3 are also equivalent.5 Note that the fact that two columnsi and j are equivalent does not imply that the vertical cuts
i and j are also equivalent. That both facts hold is just a coincidence in this example. If, for example, the point(4,1)
were removed from the generator in Figure 8, then columns 2 and 3 would still be equivalent, but vertical cuts 2 and 3
would no longer be equivalent.6 In general, there is no correlation between the indices of equivalent columns and the
indices of equivalent vertical cuts. However, the co-existence of equivalent columns and equivalent vertical cuts in the
same generator may render the Window Movie Lemma applicable.

In the example of Figure 8, vertical cut 2 is to the east of the vertical bridge (which is a subset of column 1).
Therefore, if we can find an east-free point inG, e.g., the point(1,0) in our running example, we will be able to
position a closed window that only cuts the fractal on one side (here, its western side), e.g., the smallest of the two
solid windows in Figure 8. Similarly, we can position another closed window of the same size that cuts the generator
through vertical cut 3, e.g., the dotted window that overlaps the small solid window. By construction, the window
movies corresponding to these two windows have the same length and contain exactly the same positions (up to
translation). Of course, these window movies may not be equal up to translation because the glues in their respective
positions may not match. But this is where we can take advantage of the existence of two equivalent columns. By
self-similarity, these two columns will, in the next stage of the fractal, become two 5-wide sets of columns of height
20 that are pairwise equivalent, that is, columnsc1 andc′1 are equivalent, columnsc2 andc′2 are equivalent, . . . , and
columnsc5 andc′5 are equivalent. More importantly, the 20-high cuts labeleda, b, c, and d in Figure 8 are all pairwise
equivalent. Therefore, at this stage of the fractal, we can build four larger square windows, as shown in Figure 8.
Furthermore, at each successive stage of the fractal, we will be able to build twicef7 as many square windows that
all generate window movies of the same length and with positions that are equal up to translation. Since the number
of window movies grows without bound as the stage number increases, but the number of distinct combinations and
orderings of glue positionings is finite (following a reasoning similar to the one in Footnote 4), there is always a
stage (in fact, an infinite number of them) that contains two bond-forming window movies that are identical up to
translation. The sub-configurations inside the two corresponding windows cannot be equivalent because of the way
the windows overlap. Additionally, since the two windows have exactly the same shape and size, the translation of
the eastmost one is enclosed in (in fact, equal to) the other one. Therefore, we can apply the Closed Window Movie
Lemma and conclude the proof by contradiction. Here is a precise statement of the corollary that covers the class of
similar situations.

Corollary 3.14. LetF be a discrete self-similar fractal with generator G such that the full grid graph of G is connected,
G contains two equivalent columns, and G contains two equivalent vertical cuts that are positioned on the same side
of all vertical bridges. If c∈ Z

+, thenFc does not strictly self-assemble in the aTAM.

Symmetrically, a similar result holds for fractals with equivalent rows and equivalent horizontal cuts.
To conclude this section, we note that Corollary 3.14 could have been proved using the standard Window Movie

Lemma introduced in [5], since the windows used in the proof have exactly the same shape and size. In the next
section, we motivate our introduction of the Closed Window Movie Lemma as a more convenient tool in the study of
scaled pier fractals.

5The index of a vertical cut is given by the index of the leftmost of the two columns that its edges connect.
6We included point(4,1) in the generator to exclude piers from the generator in this example.
7Note that, in this example, cut 1 is also equivalent to cuts 2 and 3. So we can actually build three windows for each one of theequivalent

columns in the generator. Therefore, we could could have drawn 3, 6, 12, etc. windows for stages 2, 3, 4, etc., respectively. However, we chose to
use only two of the three equivalent cuts in our discussion inorder to keep the figure as legible as possible.
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cut d

cut c
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cut a

Figure 8: First two stages (and part of the third stage) of an unscaled (c= 1) 5-discrete self-similar fractal with two
equivalent columns and two equivalent vertical cuts.
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4 Discussion

A fair question for one to ask is: why not simply prove Theorem3.6 using the standard Window Movie Lemma
from [5]? Our response is that we currently do not know that wecannot.

For the sake of discussion, the statement of the standard WML, restricted to bond-forming submovies, is as follows.

Lemma 4.1 (Standard Window Movie Lemma [5]). Let~α = (αi | 0 ≤ i < l) and~β = (βi | 0 ≤ i < m), with
l ,m∈ Z

+ ∪{∞}, be assembly sequences in some TAST with resultsα andβ , respectively. Let w be a window that
partitionsα into two configurationsαL andαR, and, for some~c 6=(0,0), w′ =w+~c be a translation of w that partitions
β into two configurationsβL andβR. Furthermore, define M~α ,w and M~β ,w′ to be the respective window movies for~α,w

and~β ,w′ and defineαL,βL to be the sub-configurations ofα andβ containing the seed tiles ofα andβ , respectively.

Then, ifB
(

M~α ,w

)

+~c = B

(

M~β ,w′

)

, it is the case that the following two assemblies are also producible: (1) the

assemblyαLβ ′
R = αL ∪β ′

R and (2) the assemblyβ ′
LαR = β ′

L ∪αR, whereβ ′
L = βL −~c andβ ′

R = βR−~c.

Generator:

Figure 9: In each stage of the Sierpinski triangle, it is possible to define a sequence of closed-rectangular window
movies, with the following properties: the number of windowmovies in the sequence is proportional to the stage
number and the set of points contained in each window is unique.

Basically, the reason we do not use the standard WML to prove Theorem 3.6 is because we simply are not able
to devise a unified strategy for finding two closed-rectangular window movies in a pier-fractal-shaped assembly that
(1) have equivalent (up to translation) bond-forming submovies and (2) contain different sub-shapes of the assembly.
On the one hand, it is trivial to find two such closed-rectangular window movies in a pier-fractal-shaped assembly
whose sub-shapes are equal. But this does not help us derive the contradiction that we need to prove Theorem 3.6. On
the other hand, it is also trivial to find two closed-rectangular window movies that contain different sub-shapes of the
assembly, but, as a result of the self-similarity of pier fractals, do not have equivalent (up to translation) bond-forming
submovies, at which point the conditions of the hypothesis of the standard WML are no longer satisfied.

In our attempts to resolve this dilemma, we investigated theuse of an infinite-open window strategy, as opposed
to a closed-rectangular window strategy. But this approachhas its own set of technical challenges. Fortunately, these
challenges can be dismissed! One must simply observe that, in order to prove Theorem 3.6, one does not need the
“two-way-assembly-replacement” power offered by the conclusion of the standard WML. In fact, in order to derive
a contradiction to prove Theorem 3.6, one merely needs to be able to replace one portion of a tile assembly with
another portion in a strictly “one-way” fashion, i.e., the part of the tile assembly being used to replace another part
does not need to be able to be replaced by the part of the tile assembly it is replacing. Thus, we weaken the conclusion
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Generator:

Figure 10: A generator for a pier fractal and the first three stages of an unscaled version of it. Note that it is possible
to apply the standard WML to this pier fractal using infinite-open windows.

and strengthen the hypothesis of the standard WML to get the Closed WML, which turns out to be much more
accommodating to a unified, closed-rectangular window proof technique for pier fractals.

It appears that the hypothesis of the standard WML, unlike that of the Closed WML, is too strong to be able to
“handle” all pier fractals under a unified closed-rectangular window proof technique. However, it is worthy of note
that in some special cases, it is possible to use the standardWML to prove that certain pier fractals do not strictly
self-assemble. For example, it is possible to prove that theSierpinski triangle does not strictly self-assemble at any
positive scale factor (see Figure 9 for the proof idea). Next, consider the tree fractal defined by the generator given
in Figure 10. In this case, it is possible to apply the standard WML using an open-infinite window proof technique
(informally depicted in Figure 10). Unfortunately, depending on the geometry of the particular fractal, neither of the
previous two applications of the standard WML, either with closed-rectangular or open-infinite windows, immediately
generalizes to even the set of all tree fractals, which is a strict sub-class of pier fractals. Even more troubling, we
suspect that, for the pier fractal whose generator is shown in Figure 11, it is not possible to apply the standard WML,
with windows of any shape, to prove that it does not strictly self-assemble at any positive scale factor.

Figure 11: How can one apply the standard WML to prove that anyscaled version of the pier fractal with this generator
does not strictly self-assemble?
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5 Conclusion

In this paper, we made three contributions. First, we gave a new characterization of tree fractals in terms of simple
geometric properties of their generator (see Section 6). Second, we proved a new variant of the Window Movie
Lemma in [5], which we call the “Closed Window Movie Lemma” (see Section 2.3). Third, we proved that no scaled-
up version of any discrete self-similar pier fractal strictly self-assembles in the aTAM (see Section 3.2).

As we pointed out in Section 3.3.2, the scope of applicability of the Closed Window Movie Lemma is much wider
than the class of pier fractals. Recall that Corollary 3.14 applies the Closed Window Movie Lemma to discrete self-
similar fractals with no pier-like sub-configurations and an arbitrary number of vertical and horizontal bridges. In
future work, we would like to provide a characterization of the class of all fractals to which the Closed Window Movie
Lemma applies, that is, a strict super-class of the class of pier fractals. In addition, it would be satisfying to find a crisp
characterization of the differences (if any) between the scope of applicability of the standard WML and that of the
Closed WML. For instance, we would like to prove our conjecture that it is not possible to use the standard WML to
prove that any scaled version of the pier fractal whose generator is shown in Figure 11 does not strictly self-assemble
in the aTAM.
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6 Appendix

Definition 6.1. If G is the generator of anyg-discrete self-similar fractal, then theinterior of G is G∩ (Ng−1×Ng−1).

Lemma 6.2. Let G be any finite subset ofN2 that has at least one connected h-bridge. If G contains a connected
component C⊂ G such that C∩ (N×{tG}) 6=∅ and C∩ ({lG}×N) =∅, then there exists a point~xN ∈ G\C such that
N (~xN) 6∈ G and~xN 6∈ N×{tG}.

Proof. Let h be a connected h-bridge inG and letπ be a connected component inG that contains a path connecting
the two points inh. Sinceπ connects the leftmost and rightmost columns ofG andC does not contain any point in the
leftmost column ofG, C∩π =∅. SinceC is a connected component that extends vertically from rowtC = tG down to
row bC andC∩π =∅, π must go around (and below)C. Furthermore, no point inC is adjacent to any point inπ . Let
~p denote a bottommost point(x,bC) in C, with lG < x≤ rG. Let~q denote the topmost point(x,y) in π ∩ ({x}×NbC).
Note that~p and~q are in the same column and that~p is above (but not adjacent to)~q, that is,y< bC−1. Furthermore,
N(~q) /∈ G. Since~q ∈ π ⊂ G and~q 6∈ C, ~q ∈ G\C. Furthermore, since~q = (x,y) andy < bC − 1 < bC ≤ tC = tG,
~q 6∈ N×{tG}. In conclusion,~q exists and is a candidate for the role ofxN.

Lemma 6.3. Let G be any finite subset ofN2 that has at least one connected v-bridge. If G contains a connected
component C⊂ G such that C∩ ({rG}×N) 6= ∅, C∩ (N×{tG}) 6= ∅ and C∩ (N×{bG}) = ∅, then there exists a
point~xNE ∈ G\C such that E(~xNE) 6∈ G,~xNE ∈ N×{tG} and~xNE 6∈ {rG}×N.

Proof. Let v be a connected v-bridge inG and letπ be a connected component inG that contains a path connecting
the two points inv. Let πt denote the setπ ∩ (N×{tG}). Since this set cannot be empty, let us call its rightmost
point~p= (xπ , tG). Similarly, letCt denoteC∩ (N×{tG}). Since this set cannot be empty, let us call its leftmost point
~q= (xC, tG).

Sinceπ connects the topmost and bottommost rows ofG andC does not contain any point in the bottommost row
of G, C∩π = ∅. This, together with the fact thatC contains a path from the topmost row to the rightmost column of
G (that is,C “cuts off” the subset ofG that lies to the north-east ofC from the rest ofG), implies that each point in
πt must appear to the left of all the points inCt , namelyxπ < xC. In fact, sinceπ andC cannot be connected,~p and~q
cannot be adjacent, i.e.,xπ < xC−1. Therefore,~p and~q are both in the topmost row ofG (thus~p∈N×{tG}) and~p is
to the left of~q (thus~p 6∈ {rG}×N). Finally, by construction,~p∈ G\C andE(~p) 6∈ G. In conclusion,~p is a candidate
for the role of~xNE.

Lemma 6.4. Let G be any finite subset ofN2 that has at least one connected v-bridge. If G contains a connected
component C⊂ G such that C∩ ({rG}×N) 6= ∅ and C∩ (N×{bG}) = ∅, then there exists a point~xE ∈ G\C such
that E(~xE) 6∈ G and~xE 6∈ {rG}×N.

Proof. Let v be a connected v-bridge inG and letπ be a connected component inG that contains a path connecting
the two points inv. Sinceπ connects the topmost and bottommost rows ofG andC does not contain any point in
the bottommost row ofG, C∩π = ∅. SinceC is a connected component that extends horizontally from column lC
to columnrC = rG andC∩π = ∅, π must go around (and to the left of)C. Furthermore, no point inC is adjacent
to any point inπ . Let ~p denote a leftmost point(lC,y) in C, with bG < y ≤ tG. Let ~q denote the rightmost point
(x,y) in π ∩ (NlC ×{y}). Note that~p and~q are in the same row and that~q is to the left of (but not adjacent to)~p,
that is,x< lC−1. Furthermore,E(~q) /∈ G. Since~q∈ π ⊂ G and~q 6∈C, ~q∈ G\C. Furthermore, since~q= (x,y) and
x< lC−1< lC ≤ rC = rG,~q 6∈ {rG}×N. In conclusion,~q exists and is a candidate for the role ofxE.

Lemma 6.5. Let X =
⋃∞

i=1Xi be a g-discrete self-similar fractal with generator G. IfX is a tree, then G must have at
least one connected h-bridge and at least one connected v-bridge.

Proof. In this proof, we assume only thatG does not have a connected h-bridge and reach a contradiction. We omit
the symmetric reasoning that would allow us to prove thatG must contain at least one connected v-bridge. Together,
these two subproofs establish the fact thatG must ontain at least one connected h-bridge and at least one connected
v-bridge.

Assume thatG does not have a connected h-bridge. We consider two cases characterized by the number of points
in the leftmost column ofG.
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Case 1:|G∩ ({0}×N)|= g. Then, the following three propositions hold:
(a) For every point(1,y)∈G, N(1,y) 6∈G. Indeed, if(1,y)∈GandN(1,y)∈G, then{(0,y),N(0,y),N(1,y),(1,y)}⊂

X would constitute a cycle inX, which contradicts the fact thatX is a tree.
(b) For every point(1,y) ∈ G, S(1,y) 6∈ G. The justification is similar to the one for (a) above.
(c) (1,g− 1) ∈ G ⇒ (1,0) 6∈ G. Indeed, if(1,0) ∈ G and(1,g−1) ∈ G, then{(0,g− 1),N(0,g− 1),N(1,g−

1),(1,g−1)} ⊂ X would constitute a cycle inX, which contradicts the fact thatX is a tree.
We will now prove that there is no path inX from the origin to any point(x,y) ∈ X with x≥ 2g. If there were such

a pathπ , it would include at least one pair of consecutive points(2g−1,y′) and(2g,y′). Let us consider the first such

pair inπ and let⌊ y′

g ⌋= a. Then(2g−1,y′)∈ G+(g,ag). Since this copy ofG belongs to the second column of copies
of G in X2, we can use the conjunction of propositions (a), (b) and (c) above to infer thatX ∩ (G+(g,(a−1)g) = ∅

andX ∩ (G+(g,(a+ 1)g) = ∅. Therefore,π must contain a sub-pathπ ′ from the leftmost column ofG+(g,ag)
to (2g− 1,y′), that is, a path from(g,y′′) to (2g− 1,y′), for ag≤ y′′ < (a+ 1)g. But since the leftmost column of
G+(g,ag) containsg points, there must be a (vertical) path from(g,y′) to (g,y′′) fully contained in the leftmost
column ofG+(g,ag). Therefore, by concatenation of this path toπ ′, G+(g,ag) must contain a path from(g,y′) to
(2g−1,y′). But this path would be a connected h-bridge ofG+(g,ag), which would imply thatGcontains a connected
h-bridge. So we can conclude that there is no path inX from the origin to any point east of the linex= 2g−1. Since
X contains an infinite number of points in this region ofN

2, X cannot be connected, which is impossible sinceX is a
tree. This contradiction implies thatG must contain at least one connected h-bridge.

Case 2:|G∩ ({0}×N)| < g. SinceG does not have a connected h-bridge, one can show via a case analysis that
eitherX is disconnected or contains a cycle. However, both of these scenarios are impossible sinceX is a tree.

Notation. Let c,s∈ Z
+ and 1< g∈ N. Let e, f ∈Ng. We useSc

s(e, f ) to denote{0,1, . . . ,cgs−1−1}2+ cgs−1(e, f ).

Notation. Let 1< g∈ N. Let X =
⋃∞

i=1Xi be ag-discrete self-similar fractal. Ifs∈ Z
+, we usePX(s) to denote the

property: “Xs is a tree andnhbXs = nvbXs = 1”.

Lemma 6.6. Let 1< g∈N. If X is a g-discrete self-similar fractal, then PX(i)⇒ PX(i +1) for i ∈ Z
+.

Proof. Let X be anyg-discrete self-similar fractal. Leti ∈ Z
+. We will abbreviateXi ∩S1

i (x,y) andXi+1∩S1
i+1(x,y)

to U(x,y) andV(x,y), respectively, wherex,y∈Ng. The definition ofX implies that the following proposition, which
we refer to as(∗), is true: “Every non-emptyV subset ofXi+1 is a translated copy ofXi”.

Assume thatPX(i) holds.
First, we prove thatXi+1 is connected. Pick any two distinct points~p and~q in Xi+1. If ~p and~q belong to the same

V subset ofXi+1, then there is a simple path from~p to~q (because of(∗) and the fact thatXi is connected, byPX(i)).
If ~p and~q belong to two distinctV subsets ofXi+1, say,V(x0,y0) andV(xk,yk), then consider the corresponding two
U subsetsU(x0,y0) andU(xk,yk) of Xi, neither of which can be empty.PX(i) implies that there exists a simple path
from any point inU(x0,y0) to any point inU(xk,yk). Assume that this path goes through the following sequencePi

of U subsets ofXi : U(x0,y0),U(x1,y1), . . . ,U(xk−1,yk−1),U(xk,yk). PX(i) and(∗) together imply that each one of the
correspondingV subsets ofXi+1, i.e.,V(x0,y0), . . . ,V(xk,yk), is connected and contains a connected h-bridge and a
connected v-bridge. Furthermore, since any pair of consecutiveU subsets inPi are adjacent inXi , the same is true of
theV subsets ofXi+1 in the sequencePi+1: V(x0,y0),V(x1,y1), . . . ,V(xk−1,yk−1),V(xk,yk). Since, fori ∈Nk, V(xi ,yi)
is adjacent toV(xi+1,yi+1) and each one of these subsets is connected and has at least onehorizontal bridge and one
vertical bridge, there must be at least one simple path from any point inV(x0,y0) to any point inV(xk,yk). Therefore,
there exists a simple path between~p∈V(x0,y0) and~q∈V(xk,yk). Since this is true for any two distinct points~p and
~q in Xi+1, Xi+1 is connected.

Second, we prove thatnhbXi+1 = nvbXi+1 = 1. Since the reasoning is similar for both horizontal and vertical bridges,
we only deal withnhbXi+1 here. ByPX(i), Xi contains exactly one horizontal bridge. Therefore, there are exactly two
subsets ofXi of the formU(0,y) andU(g−1,y), for somey in Ng, such that there exist exactly two points~p= (xp,yp)
in U(0,y) and~q= (xq,yq) in U(g−1,y) with yp = yq. Now considerV(0,y) andV(g−1,y). Since each one of these
subsets ofXi+1 is a translated copy ofXi, the westmost column ofV(0,y) is identical to the westmost column ofXi

and the eastmost column ofV(g−1,y) is identical to the eastmost column ofXi . Therefore, the number of horizontal
bridges inXi+1 that belong toV(0,y)∪V(g−1,y) is equal tonhbXi = 1. In other words,nhbXi+1 ≥ 1. Since bothXi
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andXi+1 are built out of copies of their preceding stage according tothe same pattern (namely the generator ofX) and
we argued above that the only horizontal bridges inXi belong toU(0,y)∪U(g−1,y), the horizontal bridges inXi+1

can only belong to the subsetsV(0,y) andV(g−1,y). In other words,nhbXi+1 ≤ 1. Finally,nhbXi+1 = 1.
Third, we prove thatXi+1 is acyclic. For the sake of obtaining a contradiction, assume that there exists a simple

cycleC in Xi+1. Let the sequencePi+1 of adjacentV subsets thatC traverses beV(x0,y0), . . . ,V(xk,yk). If Pi+1 has
length one, thenC is contained in a single (translated) copy ofXi (by (∗)), which contradicts the fact thatXi is acyclic
(by PX(i)). Otherwise,C traverses all of theV subsets inPi+1, whose length is at least two. Following the same
reasoning as above, there must exist a corresponding sequencePi , namelyU(x0,y0), . . . ,U(xk,yk), of U subsets inXi .
Since each subset in this sequence is connected, contains one horizontal bridge and one vertical bridge (byPX(i)), and
is adjacent to its neighbors in the sequence, the union of these subsets forms a connected component that must contain
at least one simple cycle, which contradicts the fact thatXi is a tree (byPX(i)). In all cases, we reached a contradiction.
Therefore,Xi+1 is acyclic.

Finally, sinceXi+1 is a tree andnhbXi+1 = nvbXi+1 = 1, PX(i +1) holds.

Theorem 6.2. T=
∞
⋃

i=1

Ti is a g-discrete self-similar tree fractal, for some g> 1, with generator G if and only if

a. G is a tree, and
b. nhbG = nvbG = 1

Proof. Assume thatT is ag-discrete self-similar tree fractal with generatorG. Thus,T is acyclic and connected. If
nhbG < 1 ornvbG < 1, thenT is trivially disconnected. Thus,nhbG ≥ 1, nvbG ≥ 1.

SinceT is acyclic,G must be acyclic as well, for ifG were not acyclic, thenT would not be, asG⊂ T.
We will now show thatG is connected. To see this, assume thatG is disconnected. First, note that, ifG has a

connected component contained strictly within its interior, thenT is trivially disconnected.
Second, ifG is disconnected, thenG contains a connected component that touches at most two sides of G. To see

this, note that Lemma 6.5 says thatG has at least one connected h-bridge and at least one connected v-bridge. IfG
had a connected component, sayC, that touched three or more sides ofG, then due to the existence of at least one
connected h-bridge and at least one connected v-bridge,G would necessarily have another connected component, say
C′, that could only touch at most two sides ofG.

We now proceed with a case analysis based on the number of sides of G that the connected component touches
(one or two sides) and the relative positions of these sides (adjacent or opposite sides).

Case 1: Assume thatG has a connected component, sayC, that does not contain the origin but does contain points
in the northmost row and eastmost column ofG (and there is no path inG from the origin to any point inC). We will
call this case “NE”. Lemma 6.5 says thatG has at least one connected h-bridge and at least one connected v-bridge.
Therefore, Lemma 6.2 says thatG has a north-free point not in the northmost row, say~xN, and Lemma 6.3 says thatG
has an east-free point in the northmost row but not in the eastmost column, say~xNE. LetC′ =C+g2~xN +g~xNE. Since

~xN is north-free and not in the northmost row ofG, N (~xN) 6∈G, whenceT∩
(

{

0, . . . ,g2−1
}2

+g2N (~xN)
)

=∅. Since

~xNE is in the northmost row, this means the northmost point in every column ofC′ is north-free inT. Since~xNE is

not in the eastmost column ofG, E (~xNE) 6∈ G, whenceT ∩
(

g2~xN +
(

{0, . . . ,g−1}2+gE(~xNE)
))

=∅. This means

that the eastmost point in every row ofC′ is east-free inT. We also know that the westmost point in every row ofC is
west-free inG and the southmost point in every column ofC is south-free inG, therefore the westmost point in every
row of C′ is west-free inT and the southmost point in every column ofC′ is south-free inT. Thus, there is no path in
T from any point inC′ to the origin, which contradicts the assumption thatT is connected. The “NW” and “SE” cases
can be handled with a similar argument. Note that, in the “SW”case, the connected component is contained strictly
within the interior of the generator. Such situations were handled above.

Case 2: Assume thatG has a connected component, sayC, that contains points in the eastmost column but does not
contain the origin nor points in the westmost column ofG nor the northmost or southmost rows ofG. This is the “E”
case. In this case, Lemma 6.4 says that there is an east-free point in G that is not in the eastmost column ofG. Call this
point~xE and defineC′ =C+g~xE. Following directly from the definition of the “E” case, the northmost point in every
column ofC is north-free inG, the southmost point in every column ofC is south-free inG and the westmost point in

24



every row ofC is west-free inG. From the definition ofC′ and the fact that~xE is east-free, it follows that the eastmost
(respectively, westmost) point in every row ofC′ is east-free (respectively, west-free) inT. Similarly, the northmost
(respectively, southmost) point in every column ofC′ is north-free (respectively, south-free) inT. Therefore, there is
no path inT from any point inC′ to the origin, which contradicts the assumption thatT is connected. The “N” case
can be handled with a similar argument. Note that, in the “W” and “S” cases, the connected component is contained
strictly within the interior of the generator. Such situations were handled above.

Case 3: Assume thatG has a connected component, sayC, that contains points in both the eastmost and westmost
columns ofG. This is the “EW” case. In this case, sinceG contains at least one connected v-bridge,C must contain all
connected v-bridges ofG (sinceC must have a non-empty intersection with each connected v-bridge inG). Therefore,
C touches all four sides ofG. If C contains the origin, then there must exist another disconnected component, sayC′,
that does not contain the origin andC′ must belong to one of the previous cases. IfC does not contain the origin, then
the origin itself must be part of a connected component that is not connected toC nor to any other point inT, which
contradicts the assumption thatT is connected. The “NS” case can be handled with a similar argument.

Therefore, in all cases,G is connected. Since we argued above thatG is acyclic, we may conclude thatG is a tree.
Finally, sinceG is a tree, it must be the case thatnvbG ≤ 1 andnhbG ≤ 1, otherwiseT would contain a cycle,

whencenvbG = nhbG = 1.
Now we prove that ifG is a tree andnhbG = nvbG = 1, thenT is a tree.
Assume thatG is a tree andnhbG = nvbG = 1. ThenPT(1) holds (sinceG = T1). Furthermore, by Lemma 6.6,

PT(i)⇒ PT(i +1) for i ∈ Z
+. Thus, by induction,PT(i) holds fori ∈ Z

+, which implies that each stage inT is a tree.
We now prove thatT is a tree.

First,T is connected, since each stage ofT is connected.
Second, we prove thatT cannot contain a cycle. Assume, for the sake of obtaining a contradiction, that there exist

two distinct points~p and~q in T such that there exist two distinct simple paths from~p to~q. Since both of these paths
must be finite, the cycle that they form must also be finite. Therefore, this cycle must be fully contained in some stage
of T, which contradicts the fact that all stages ofT are trees.

In conclusion,T is connected and acyclic, and is thus a tree.
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