Skip to main content
Log in

Process calculi for biological processes

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Systems biology is a research area devoted to developing computational frameworks for modeling biological systems in a holistic fashion. Within this approach, the typical advantages of using computer systems and formal methodologies are applicable. Experiments can indeed be carried on in silico that turn out to be much quicker and less expensive than wet-lab experiments. This paper surveys a specific computational approach to systems biology, based on the so-called process calculi, a formalism for describing concurrent systems. After a gentle, intuitive introduction to both fields, we present the most successful process calculi designed and used for this purpose. We start from a basic process calculus that is then extended with increasingly expressive features to better reflect the biological aspects of interest. We then compare the expressive power of the resulting calculi, mentioning if they are supported by software tools. From this comparison we derive some suggestions on the most suitable frameworks for dealing with specific cases of interest, with the help of three relevant case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. A state (at time t) is given by the actual population of each species.

  2. Note the different usage of \(+\): while it stands for a nondeterministic choice in process calculi (hence a single alternative process runs), it indicates that both its arguments are present in a chemical equation.

  3. A tutorial on the eXtensible Markup Language is in XML.

  4. Molecular chaperones are proteins that assist the assembly, or disassembly, of other macromolecules.

  5. Alleles are variants of the same gene that determine differences in phenotypes.

  6. In a community of food web, the trophic link measures the distance of a species from the primary source of food.

  7. Interspecific interactions occur among members of different species.

  8. The subscript CY means that the phosphorylated molecule RELA-P is in the domain of the CYtoplasm

References

  • Abate A, Bai Y, Sznajder N, Talcott CL, Tiwari A (2007) Quantitative and probabilistic modeling in pathway logic. In: ‘BIBE’, pp 922–929

  • Akman O, Ciocchetta F, Degasperi A, Guerriero M (2009) Modelling biological clocks with Bio-PEPA: stochasticity and robustness for the neurospora crassa circadian network. In: Degano P, Gorrieri R (eds) Computational methods in systems biology, CMSB 2009. Springer, pp 52–67

  • Akman O, Guerriero M, Loewe L, Troein C (2010) Complementary approaches to understanding the plant circadian clock. In: Proc. Third Workshop From Biology To Concurrency and back, FBTC 2010. EPTCS, pp 1–19

  • Alon U (2006) An introduction to systems biology: design principles of biological circuits. Chapman and Hall, London

    MATH  Google Scholar 

  • Arkin A, Ross J, McAdams H (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149(4):1633–1648

    Google Scholar 

  • Balázsi G, van Oudenaarden A, Collins JJ (2011) Cellular decision making and biological noise: from microbes to mammals. Cell 144(6):910–925

    Article  Google Scholar 

  • Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  Google Scholar 

  • Barbuti R, Maggiolo-Schettini A, Milazzo P, Pardini G, Tesei L (2011) Spatial P systems. Nat Comput 10(1):3–16

    Article  MathSciNet  MATH  Google Scholar 

  • Bartholomay AF (1960) Molecular set theory: a mathematical representation for chemical reaction mechanisms. Bull Math Biophys 22(3):285–307

    Article  MathSciNet  Google Scholar 

  • Bartocci E, Liò P (2016) Computational modeling, formal analysis, and tools for systems biology. PLoS Comput Biol 12(1):e1004591

    Article  Google Scholar 

  • Bartocci E, Corradini F, di Berardini M, Merelli E, Tesei L (2010) Shape calculus. A spatial mobile calculus for 3D shapes. Sci Ann Comput Sci 20:1–31

    MathSciNet  Google Scholar 

  • Bhattacharjee M, Raju R, Radhakrishnan A et al (2012) A bioinformatics resource for TWEAK-Fn14 signaling pathway. J Signal Transduct

  • Bodei C (2009) A control flow analysis for beta-binders with and without static compartments. Theor Comput Sci 410(33–34):3110–3127

    Article  MathSciNet  MATH  Google Scholar 

  • Bodei C, Brodo L, Bruni R, Chiarugi D (2014) A flat process calculus for nested membrane interactions. Sci Ann Comput Sci 24(1):91–136

    MathSciNet  Google Scholar 

  • Bodei C, Gori R, Levi F (2015a) Causal static analysis for brane calculi. Theor Comput Sci 587:73–103

    Article  MathSciNet  MATH  Google Scholar 

  • Bodei C, Brodo L, Gori R, Hermith D, Levi F (2015b) A global occurrence counting analysis for brane calculi. In: Proc. of LOPSTR 2015, vol 9527 of Lecture Notes in Computer Science. Springer, pp 179–200

  • Bodei C, Brodo L, Gori R, Levi F, Bernini A, Hermith D (2017) A static analysis for Brane Calculi providing global occurrence counting information. Theor Comput Sci 696:11–51

    Article  MathSciNet  MATH  Google Scholar 

  • Borman S (2004) Much ado about enzyme mechanisms. Chem Eng News 82(8):35

    Article  Google Scholar 

  • Bortolussi L, Policriti A (2008a) Modeling biological systems in stochastic concurrent constraint programming. Constraints 13(1–2):66–90

    Article  MathSciNet  MATH  Google Scholar 

  • Bortolussi L, Policriti A (2008b) Hybrid systems and biology. In: Bernardo M, Degano P, Zavattaro G (eds) Formal methods for computational systems biology, SFM 2008, vol 5016 of Lecture Notes in Computer Science. Springer, pp 424–448

  • Bracciali A, Degano P (2012) Process calculi, systems biology and artificial chemistry. In: Rozenberg G, Bäck T, Kok JN (eds) Handbook of natural computing, vol 4. Springer, Berlin, pp 1863–1896

    Google Scholar 

  • Bracciali A, Brunelli M, Cataldo E, Degano P (2008) Synapses as stochastic concurrent systems. Theor Comput Sci 408(1):66–82

    Article  MathSciNet  MATH  Google Scholar 

  • Brijder R, Ehrenfeucht A, Main MG, Rozenberg G (2011) A tour of reaction systems. Int J Found Comput Sci 22(7):1499–1517

    Article  MathSciNet  MATH  Google Scholar 

  • Brodo L (2011) On the expressiveness of the pi-calculus and the mobile ambients. In: Algebraic Methodology and Software Technology. AMAST 2010’, vol 6486 of Lecture Notes in Computer Science. Springer, pp 44–59

  • Brodo L, Degano P, Priami C (2007) A stochastic semantics for bioambients. In: Malyshkin V (ed) Parallel computing technologies, vol 4671 of Lecture Notes in Computer Science. Springer, pp 22–34

  • Buti F, Cacciagrano D, Corradini F, Merelli E, Tesei L (2010) Bioshape: a spatial shape-based scale-independent simulation environment for biological systems. Procedia Comput Sci 1(1):827–835. Proc. of 7th Int. Workshop on Multiphysics Multiscale Systems, ICCS 2010

  • Buti F, Corradini F, Merelli E, Tesei L (2012) A geometrical refinement of shape calculus enabling direct simulation. In: Proc. of the 2nd international conference on simulation and modeling methodologies, technologies and applications—volume 1: SIMULTECH’, pp 218–227

  • Cacciagrano D, Corradini F, Merelli E, Tesei L (2017) Uniformity in multiscale models: from complex automata to bioshape. J Cell Autom 12(5):333–359

    MathSciNet  Google Scholar 

  • Caires L, Cardelli L (2003) A spatial logic for concurrency (part I). Inf Comput 186(2):194–235

    Article  MATH  Google Scholar 

  • Calder M, Hillston J (2009) Process algebra modelling styles for biomolecular processes. In: Priami C, Back R-J, Petre I (eds) Transactions on computational systems biology XI’, vol 5750 of Lecture Notes in Computer Science. Springer, pp 1–25

  • Cao Y, Liang J (2008) Optimal enumeration of state space of finitely buffered stochastic molecular networks and exact computation of steady state landscape probability. BMC Syst Biol 2(1):30

    Article  MathSciNet  Google Scholar 

  • Cao Y, Li H, Petzold L (2004) Efficient formulation of the stochastic simulation algorithm for chemically reacting system. J Chem Phys 121:4059–4067

    Article  Google Scholar 

  • Cao Y, Lu H, Liang J (2010) Probability landscape of heritable and robust epigenetic state of lysogeny in phage lambda. Proc Natl Acad Sci 107(43):18445–18450

    Article  Google Scholar 

  • Cardelli L (2005) Brane calculi. In: Danos V, Schachter V (eds) Computational methods in systems biology, vol 3082 of Lecture Notes in Computer Science, Springer, pp 257–278

  • Cardelli L (2008) On process rate semantics. Theor Comput Sci 391(3):190–215

    Article  MathSciNet  MATH  Google Scholar 

  • Cardelli L (2009) A process model of actin polymerisation. Electron Notes Theor Comput Sci 229(1):127–144

    Article  MathSciNet  MATH  Google Scholar 

  • Cardelli L (2011) Strand algebras for DNA computing. Nat Comput 10(1):407–428

    Article  MathSciNet  MATH  Google Scholar 

  • Cardelli L, Csikász-Nagy A (2012) The cell cycle switch computes approximate majority. Sci Rep 2:656

    Article  Google Scholar 

  • Cardelli L, Gardner P (2012) Processes in space. Theor Comput Sci 431:40–55

    Article  MathSciNet  MATH  Google Scholar 

  • Cardelli L, Gordon A (2000) Mobile ambients. Theor Comput Sci 240(1):177–213

    Article  MathSciNet  MATH  Google Scholar 

  • Cardelli L, Phillips A (2006) Spim: stochastic pi machine. https://www.microsoft.com/en-us/research/project/stochastic-pi-machine/

  • Cardelli L, Caron E, Gardner P, Kahramanoğulları O, Phillips A (2009) A process model of Rho GTP-binding proteins. Theor Comput Sci 410(33):3166–3185

    Article  MathSciNet  MATH  Google Scholar 

  • Cavalier-Smith T (2002) The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52(1):7–76

    Article  Google Scholar 

  • Chiarugi D, Degano P, Marangoni R (2007a) A computational approach to the functional screening of genomes. PLoS Comput Biol 9:1801–1806

    MathSciNet  Google Scholar 

  • Chiarugi D, Degano P, Marangoni R (2007b) A computational approach to the functional screening of genomes. PLoS Comput Biol 3(9):e174

    Article  MathSciNet  Google Scholar 

  • Chiarugi D, Curti M, Degano P, Marangoni R (2005) Vice: a virtual cell. In: Proceedings of the 20 international conference on computational methods in systems biology, CMSB’04, pp 207–220

  • Chiarugi D, Falaschi M, Hermith D, Olarte C, torella L (2015) Modelling non-Markovian dynamics in biochemical reactions. BMC Syst Biol 9(S–3):S8

    Article  Google Scholar 

  • Ciocchetta F, Guerriero ML (2009) Modelling biological compartments in bio-PEPA. Electron Notes Theor Comput Sci 227:77–95

    Article  MATH  Google Scholar 

  • Ciocchetta F, Hillston J (2008) Process algebras in systems biology. In: Bernardo M, Degano P, Zavattaro G (eds) Formal methods for computational systems biology, SFM 2008, vol 5016 of Lecture Notes in Computer Science. Springer, pp 265–312

  • Ciocchetta F, Hillston J (2009) Bio-PEPA: a framework for the modelling and analysis of biochemical networks. Theor Comput Sci 410(33):3065–3084

    Article  MATH  Google Scholar 

  • Ciocchetta F, Degasperi A, Heath J, Hillston J (2010a) Modelling and analysis of the NF-kappaB pathway in Bio-PEPA. Trans Comput Syst Biol 12:229–262

    Article  Google Scholar 

  • Ciocchetta F, Guerriero M, Hillston J (2010b) Investigating modularity in the analysis of process algebra models of biochemical systems. In: Proc. third workshop from biology to concurrency and back, FBTC 2010, pp 55–69

  • Clavel M, Durán F, Escobar S, Eker S, Lincoln P, Martí-Oliet N, Meseguer J, Talcott C (2015) Maude manual (version 2.7), Technical report, University of Illinois at Urbana-Champaign. http://maude.cs.illinois.edu

  • Cohen J (2008) The crucial role of CS in systems and synthetic biology. Commun ACM 51(5):15–18

    Article  Google Scholar 

  • Corradini F, Merelli E, Tesei L, Cacciagrano D, Di Bernardi M, Bartocci E, Buti F (2011) The bioshape simulator. http://cosy.cs.unicam.it/bioshape/download.html. Accessed: 2017-04-30

  • Credia A, Garavellia M, Laneve C, Pradalierc S, Silvi S, Zavattaro G (2008) nano$\kappa $: a calculus for the modeling and simulation of nano devices. Theor Comput Sci 408:17–30

    Article  MathSciNet  Google Scholar 

  • Dalchau N, Phillips A, G LD, Howarth M, Cardelli L, Emmott S, Elliott T, Werner J (2011) A peptide filtering relation quantifies MHC class I peptide optimization. PLoS Comput Biol 7(10):e1002144

    Article  Google Scholar 

  • Danos V, Laneve C (2004) Formal molecular biology. Theor Comput Sci 325(1):69–110

    Article  MathSciNet  MATH  Google Scholar 

  • Degano P, De Nicola R, Montanari U (1988) A distributed operational semantics for CCS based on condition/event systems. Acta Inf 26(1/2):59–91

    Article  MathSciNet  MATH  Google Scholar 

  • Demattè L, Priami C, Romanel A (2008a) The Beta Workbench: a computational tool to study the dynamics of biological systems. Brief Bioinform 9(5):437–449

    Article  Google Scholar 

  • Demattè L, Priami C, Romanel A (2008b) The BlenX Language: a tutorial. In: Bernardo M, Degano P, Zavattaro G (eds) Formal methods for computational systems biology, vol 5016 of Lecture Notes in Computer Science. Springer, pp 313–365

  • Demattè L, Larcher R, Palmisano A, Priami C, Romanel A (2010) Programming biology in blenx. Syst Biol Signal Netw 1:777–820

    Article  Google Scholar 

  • Di Ventura B, Lemerle C, Michalodimitrakis K, Serrano L (2006) From in vivo to in silico biology and back. Nature 443(7111):527–533

    Article  Google Scholar 

  • Dooms G, Deville Y, Dupont P (2004) Constrained path finding in biochemical networks. In: 5emes Journees Ouvertes Biologie Informatique Mathematiques, p 40

  • Doudna JA, Cech TR (2002) Review article the chemical repertoire of natural ribozymes. Nature 418:222–228

    Article  Google Scholar 

  • Duguid A, Gilmore S, Guerriero M, Hillston J, Loewe L (2009) Design and development of software tools for Bio-PEPA. In: Winter Simulation Conference, WSC ’09, pp 956–967

  • Ehrenfeucht A, Rozenberg G (2007) Reaction systems. Fundam Inform 75(1–4):263–280

    MathSciNet  MATH  Google Scholar 

  • Ehrenfeucht A, Rozenberg G (2010a) Reaction systems: a formal framework for processes based on biochemical interactions. ECEASST 26

  • Ehrenfeucht A, Rozenberg G (2010b) Reaction systems: a model of computation inspired by biochemistry. In: Springer (ed) Developments in language theory, DLT 2010, vol 6224 of Lecture Notes in Computer Science, pp 1–3

  • Errampalli D, Priami C, Quaglia P (2005) A formal language for computational systems biology. OMICS 8(4):370–380

    Article  Google Scholar 

  • Fages F, Soliman S (2006) Type inference in systems biology. In: Proceedings of the 2006 international conference on computational methods in systems biology, CMSB’06. Springer, pp 48–62

  • Fages F, Soliman S (2008) Formal cell biology in biocham. In: Formal methods for computational systems biology, SFM 2008, vol 5016 of Lecture Notes in Computer Science. Springer, pp 54–80

  • Fellermann H, Cardelli L (2014) Programming chemistry in DNA-addressable bioreactors. J R Soc Interface 11(99):407–428

    Article  Google Scholar 

  • Fisher J, Henzinger T (2007) Executable cell biology. Nat Biotechnol 25(11):1239–1249

    Article  Google Scholar 

  • Fontana W, Buss LW (1994) The arrival of the fittest: toward a theory of biological organization. Bull Math Biol 56:1–64

    MATH  Google Scholar 

  • Galpin V (2014) Hybrid semantics for Bio-PEPA. Inf Comput 236(C):122–145

    Article  MathSciNet  MATH  Google Scholar 

  • Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem 104(9):1876–1889

    Article  Google Scholar 

  • Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22(4):403–434

    Article  MathSciNet  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361

    Article  Google Scholar 

  • Gillespie DT (2000) The chemical Langevin equation. J Chem Phys 113(1):297–306

    Article  Google Scholar 

  • Gillespie D (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55

    Article  Google Scholar 

  • Gilmore S (2008) Bio-PEPA workbench. http://homepages.inf.ed.ac.uk/stg/software/biopepa/

  • Gómez-Uribe C, Verghese G (2007) Mass fluctuation kinetics: capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations. J Chem Phys 126(2):024109

    Article  Google Scholar 

  • Gong H, Zuliani P, Komuravelli A, Faeder JR, Clarke EM (2010) Computational modeling and verification of signaling pathways in cancer. In: HK, NM, PN (eds) Proc. of algebraic and numeric biology (ANB’10), vol 6479 of Lecture Notes in Computer Science. Springer, pp 117–135

  • Gori R, Levi F (2006) An analysis for proving temporal properties of biological systems. In: Kobayashi N (ed) Programming languages and systems, vol 4279 of Lecture Notes in Computer Science. Springer, pp 234–252

  • Gorrieri R (2017) Process algebras for Petri nets—the alphabetization of distributed systems. Monographs in Theoretical Computer Science, An EATCS Series. Springer

  • Gorrieri R, Versari C (2015) CCS: a calculus of communicating systems. In: Introduction to concurrency theory: transition systems and CCS. Springer International Publishing, chapter 3:81–161

  • Guerriero M (2009) Qualitative and quantitative analysis of a Bio-PEPA model of the gp130/jak/stat signalling pathway. In: Priami C, Back R-J, Petre I (eds) Transactions on computational systems biology XI, vol 5750 of Lecture Notes in Computer Science. Springer, pp 90–115

  • Guerriero ML, Priami C, Romanel A (2007) Modeling static biological compartments with beta-binders. In: Anai H, Horimoto K, Kutsia T (eds) Algebraic biology, vol 4545 of LNCS. Springer, pp 247–261

  • Guerriero ML, Prandi D, Priami C, Quaglia P (2009) Process calculi abstractions for biology. In: Condon A, Harel D, Kok JN, Salomaa A, Winfree E (eds) Algorithmic Bioprocesses. Natural computing. Springer, Berlin, pp 463–486

    Chapter  Google Scholar 

  • Guerriero M, Pokhilko A, Fernández A, Halliday K, Millar A, Hillston J (2012) Stochastic properties of the plant circadian clock. J R Soc Interface 9(69):744–756

    Article  Google Scholar 

  • Henzinger TA, Mateescu M, Wolf V (2009) Sliding window abstraction for infinite Markov chains. Lect Notes Comput Sci 5643:337–352

    Article  MATH  Google Scholar 

  • Hillston J (1993) PEPA—performance enhanced process algebra. Ph.D. thesis, University of Edinburgh, Computer Science Department

  • Hinton A, Kwiatkowska M, Norman G, Parker D (2006) Prism: a tool for automatic verification of probabilistic systems. In: Hermanns H, Palsberg J (eds) TACAS’06, vol 3920 of Lecture Notes in Computer Science. Springer, pp 441–444

  • Hood L, Galas D (2003) The digital code of DNA. Nature 421(6921):444–448

    Article  Google Scholar 

  • Kampen NV (2007) Stochastic processes in physics and chemistry. North-Holland Personal Library, Amsterdam

    MATH  Google Scholar 

  • Karamanogullari O, Lecca P, Morpurgo D, Fantaccini G, Priami C (2012) Algorithmic modeling quantifies the complementary contribution of metabolic inhibitions to gemcitabine efficacy. PLoS ONE 7(12):e50176

    Article  Google Scholar 

  • Kitano H (2001) Foundations of systems biology. The Massachusetts Institute of Technology Press, Cambridge

    Google Scholar 

  • Koch I (2015) Petri nets in systems biology. Softw Syst Model 14(2):703–710

    Article  MathSciNet  Google Scholar 

  • Koch I, Reisig W, Schreiber F (eds) (2011) Modeling in systems biology–the Petri net approach. Springer, Berlin

    MATH  Google Scholar 

  • Kuttler C (2006) Simulating bacterial transcription and translation in a stochastic pi-calculus. Trans Comput Syst Biol V I(4220):113–149

    MathSciNet  Google Scholar 

  • Kuznetsov A (2009) Genetic networks described in stochastic pi machine (spim) programming language: compositional design. J Comput Sci Syst Biol 2(5):272–282

    Article  Google Scholar 

  • Lakin MR, Youssef S, Cardelli L, Phillips A (2012) Abstractions for DNA circuit design. J R Soc Interface 9(68):470–486

    Article  Google Scholar 

  • Landin PJ (1966) The next 700 programming languages. Commun ACM 9(3):157–166

    Article  MATH  Google Scholar 

  • Lecca P (2011) Blenx models of alpha-synuclein and parkin kinetics in neuropathology of Parkinson’s disease. J Biol Syst 19(2):149–181

    Article  MathSciNet  MATH  Google Scholar 

  • Lecca P, Priami C (2007) Cell cycle control in eukaryotes: a biospi model. Electron Notes Theor Comput Sci 180(3):51–63

    Article  Google Scholar 

  • Lecca P, Priami C, Laudanna C, Constantin G (2004) A biospi model of lymphocyte-endothelial interactions in inflamed brain venules. In: Online proceedings of Pacific Symposium on Biocomputing PSB 2004. World Scientific Publishing, pp 521–532

  • Lecca P, Kahramanoullari O, Morpurgo D, Priami C, Soo RA (2011) Modelling and estimating dynamics of tumor shrinkage with BlenX and KInfer. In: Proc. of the 2011 UKSim 13th Int. conference on modelling and simulation, UKSIM ’11. IEEE, pp 75–80

  • Liu F, Heiner M (2013) Modeling membrane systems using colored stochastic Petri nets. Nat Comput 12(4):617–629

    Article  MathSciNet  MATH  Google Scholar 

  • Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky L, Darnell J (2004) Molecular cell biology. W.H. Freeman, New York

    Google Scholar 

  • Matsuno H, Doi A, Nagasaki M, Miyano S (2000) Hybrid Petri net representation of gene regulatory network. In: Proceedings of the Pacific Symposium on Biocomputing, vol 5, pp 341–352

  • Mayr E (1998) Comparative biochemistry of archaea and bacteria. Proc Natl Acad Sci USA 95(17):9720–9723

    Article  Google Scholar 

  • McQuarrie DA (1967) Stochastic approach to chemical kinetics. J Appl Probab 4(3):413–478

    Article  MathSciNet  MATH  Google Scholar 

  • Miculan M, Bacci G (2006) Modal logics for brane calculus. In: Priami C (ed) Computational methods in systems biology, vol 4210. Lecture Notes in Computer Science. Springer, Berlin, pp 1–16

  • Miller L, Spoolman S (2012) Environmental science. Cengage Learning, New York

    Google Scholar 

  • Milner R (1982) A calculus of communicating systems. Springer, New York

    MATH  Google Scholar 

  • Muganthan V, Phillips A, Vigliotti M (2005) Bioambient machine (bam). http://aesop.doc.ic.ac.uk/tools/bam/. Accessed: 2017-05-31

  • Munsky B, Khammash M (2006) The finite state projection algorithm for the solution of the chemical master equation. J Chem Phys 124(4):044104

    Article  MATH  Google Scholar 

  • Nassiri I, Lombardo R, Lauria M, Morine M, Moyseos P, Varma V, Nolen G, Knox B, Sloper D, Kaput J, Priami C (2016) Systems view of adipogenesis via novel omics-driven and tissue-specific activity scoring of network functional modules. Sci Rep 6:28851

    Article  Google Scholar 

  • Nurse P (2008) Life, logic and information. Nature 454(7203):424–426

    Article  Google Scholar 

  • Olarte C, Chiarugi D, Falaschi M, Hermith D (2016) A proof theoretic view of spatial and temporal dependencies in biochemical systems. Theor Comput Sci 641:25–42

    Article  MathSciNet  MATH  Google Scholar 

  • Paoletti N, Liò P, Merelli E, Viceconti M (2012) Multilevel computational modeling and quantitative analysis of bone remodeling. IEEE ACM Trans Comput Biol Bioinform 9(5):1366–1378

    Article  Google Scholar 

  • Paulevè L, Youssef S, Lakin M, Phillips A (2010) A generic abstract machine for stochastic process calculi. In: Proc. of the 8th int. conference on computational methods in systems biology, CMSB ’10, pp 43–54

  • Paulsson J, Berg OG, Ehrenberg M (2000) Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. Proc Natl Acad Sci 97(13):7148–7153

    Article  Google Scholar 

  • Păun G (2001) From cells to computers: computing with membranes (p systems). Biosystems 59(3):139–158

    Article  Google Scholar 

  • Petri CA (1962) Kommunikation mit automaten. Ph.D. thesis, Technical report, University of Bonn

  • Phillips A (2009a) A visual process calculus for biology. In: Iyengar MS (ed) Symbolic systems biology: theory and methods. Jones and Bartlett Publ., chapter 5

  • Phillips A (2009b) An abstract machine for the stochastic bioambient calculus. Electron Notes Theor Comput Sci 227:143–159

    Article  MATH  Google Scholar 

  • Phillips A, Cardelli L, Castagna G (2006), A graphical representation for biological processes in the stochastic pi-calculus. In: Priami C, Ingólfsdóttir A, Mishra B, Nielson HR (eds) Transactions on computational systems biology, vol VII. Springer, pp 123–152

  • Plotkin GD (2004) The origins of structural operational semantics. J Log Algebraic Semant 60–61:3–15

    Article  MathSciNet  MATH  Google Scholar 

  • Pokhilko A, Hodge SK, Stratford K, Knox K, Edwards KD, Thomson AW, Mizuno T, Millar AJ (2010) Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model. Mol Syst Biol 6(1):416

    Google Scholar 

  • Priami C (2009a) Algorithmic systems biology. Commun ACM 52(5):80–88

    Article  Google Scholar 

  • Priami C (2009b) Algorithmic systems biology: computer science propels systems biology. In: Rozenberg G, Back T, Kok J (eds) Handbook of natural computing. Springer, Berlin, pp 1835–1862

    Google Scholar 

  • Priami C, Morine M (2015) Analysis of biological systems. Imperial College Press, London

    Book  Google Scholar 

  • Priami C, Quaglia P (2004) Modeling the dynamics of biosystems. Brief Bioinform 5(3):259–269

    Article  Google Scholar 

  • Priami C, Quaglia P (2005) Beta binders for biological interactions. In: Danos V, Schachter V (eds) Computational methods in systems biology, vol 3082. LNCS. Springer, Berlin, pp 20–33

  • Priami C, Regev A, Shapiro E, Silvermann W (2009a) Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Theor Comput Sci 325:141–167

    Google Scholar 

  • Priami C, Ballarini P, Quaglia P (2009b) Blenx4bio—blenx for biologists. In: Degano P, Gorrieri R (eds) Computational methods in systems biology: 7th Int. Conference, CMSB 2009. Springer, pp 26–51

  • Programming DNA Circuits (2009) https://www.microsoft.com/en-us/research/project/programming-dna-circuits/. Accessed: 2017-03-30

  • Raj A, Rifkin SA, Andersen E, van Oudenaarden A (2010) Variability in gene expression underlies incomplete penetrance. Nature 463:913–918

    Article  Google Scholar 

  • Rao CV, Arkin AP (2003) Stochastic chemical kinetics and the quasi- steady-state assumption: application to the gillespie algorithm. J Chem Phys 118(11):4999–5010

    Article  Google Scholar 

  • Regev A, Shapiro E (2002) Cellular abstractions: cells as computation. Nature 419(6905):343

    Article  Google Scholar 

  • Regev A, Shapiro E (2004) The $\pi $-calculus as an abstraction for biomolecular systems. In: Ciobanu G, Rozenberg G (eds) Modelling in molecular biology. Springer, Berlin, pp 219–266

    Chapter  Google Scholar 

  • Regev A, Silverman W, Shapiro EY (2001) Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Pacific Symposium on Biocomputing, pp 459–470

  • Regev A, Panina E, Silverman W, Cardelli L, Shapiro E (2005) Bioambients: an abstraction for biological compartments. Theor Comput Sci 325(1):141–167

    Article  MathSciNet  MATH  Google Scholar 

  • Samoilov M, Plyasunov S, Arkin AP (2005) Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations. Proc Natl Acad Sci 102(7):2310–2315

    Article  Google Scholar 

  • Sangers F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Nat Acad Sci 74:5463–5467

    Article  Google Scholar 

  • Sangiorgi D, Walker D (2001) PI-calculus: a theory of mobile processes. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5(1):16–18

    Article  Google Scholar 

  • Scotti M (2012) The role of stochastic simulations to extend food web analyses. In: Lecca P, Tulpan D, Rajaraman K (eds) Systemic approaches in bioinformatics and computational systems biology: recent advances. IGI Global, pp 163–196

  • Scotti M, Gjata N, Livi C, Jordán F (2012) Dynamical effects of weak trophic interactions in a stochastic food web simulation. Community Ecol 13(2):230–237

    Article  Google Scholar 

  • Searls D (2002) The language of genes. Nature 420(6912):211–217

    Article  Google Scholar 

  • Steinfeld J-I, Francisco J-S, Hase W-L (1989) Chemical kinetics and dynamics. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Stumpf M, Balding DJ, Girolami M (2011) Handbook of statistical systems biology. Wiley, New York

    Book  MATH  Google Scholar 

  • Thanh VH, Zunino R, Priami C (2016) Accelerating rejection-based simulation of biochemical reactions with bounded acceptance probability. J Chem Phys 144(22):22410

    Article  Google Scholar 

  • Thanh VH, Zunino R, Priami C (2017) Efficient constant-time complexity algorithm for stochastic simulation of large reaction networks. IEEE/ACM Trans Comput Biol Bioinform 14(3):657–667

    Article  Google Scholar 

  • The Beta WorkBench (2008) http://www.cosbi.eu/research/prototypes/betawb. Accessed: 2017-05-31

  • The System Biology Markup Language (2001) http://sbml.org/Main_Page

  • Veliz-Cuba A, Salam JA, Reinhard L (2010) The origins of structural operational semantics. Bioinformatics 26:13

    Article  Google Scholar 

  • Voit E (2000) Computational analysis of biochemical systems—a practical guide for biochemists and molecular biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Wang DY, Cardelli L, Phillips A, Piterman N, Fisher J (2009) Computational modeling of the EGFR network elucidates control mechanisms regulating signal dynamics. BMC Syst Biol 3(1):118

    Article  Google Scholar 

  • Wolkenhauer O, Kitano H, Kwang-Hyun C (2003) Systems biology: looking at opportunities and challenges in applying systems theory to molecular and cell biology. IEEE Control Syst Mag 23(4):38–48

    Article  Google Scholar 

  • XML Tutorial (n.d.) https://www.w3schools.com/xml/

Download references

Acknowledgements

We are deeply indebted with Grzegorz Rozenberg for many precious suggestions and advices on the structure of this work, and for having urged us to write this survey. We thank Corrado Priami and Chiara Bodei for many careful comments and remarks, as well as the anonymous reviewers for their detailed and very useful criticisms and recommendations that greatly helped us to improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierpaolo Degano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernini, A., Brodo, L., Degano, P. et al. Process calculi for biological processes. Nat Comput 17, 345–373 (2018). https://doi.org/10.1007/s11047-018-9673-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-018-9673-2

Keywords

Navigation