Skip to main content
Log in

Boost particle swarm optimization with fitness estimation

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

It is well known that the classical particle swarm optimization (PSO) is time-consuming when used to solve complex fitness optimization problems. In this study, we perform in-depth research on fitness estimation based on the distance between particles and affinity propagation clustering. In addition, support vector regression is employed as a surrogate model for estimating fitness values instead of using the objective function. The particle swarm optimization algorithm based on affinity propagation clustering, the efficient particle swarm optimization algorithm, and the particle swarm optimization algorithm based on support vector regression machine are then proposed. The experimental results show that the new algorithms significantly reduce the computational counts of the objective function. Compared with the classical PSO, the optimization results exhibit no loss of accuracy or stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

References

  • Bo L, Aliakbarian H, Zhongkun M, Vandenbosch GAE, Gielen G, Excell P (2014) An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques. IEEE Trans Antennas Propag 62(1):7–18. https://doi.org/10.1109/TAP.2013.2283605

    Article  Google Scholar 

  • Changfeng M (2010) Optimization method and its Matlab program design. Science Press, Beijing

    Google Scholar 

  • Chaoli S, Jianchao Z, Jengshyang P, Songdong X, Yaochu J (2013) A new fitness estimation strategy for particle swarm optimization. Inf Sci 221(1):355–370. https://doi.org/10.1016/j.ins.2012.09.030

    Article  MathSciNet  MATH  Google Scholar 

  • Chaoli S, Yaochu J, Jianchao Z, Yang Y (2015) A two-layer surrogate-assisted particle swarm optimization algorithm. Soft Comput Fusion Found Methodol Appl 19(6):1461–1475. https://doi.org/10.1007/s00500-014-1283-z

    Article  Google Scholar 

  • Chellapilla K (1998) Combining mutation operators in evolutionary programming. IEEE Trans Evol Comput 2(3):91–96

    Google Scholar 

  • Davidon WC (1959) Variable metric method for minimization. A.E.C. Research and Development, report ANL-5990

  • Davidon WC (1967) Variance algorithm for minimization. Comput J 10(4):406–410. https://doi.org/10.1093/comjnl/10.4.406

    Article  MathSciNet  MATH  Google Scholar 

  • Dueck D, Frey BJ (2007) Non-metric affinity propagation for unsupervised image categorization. In: 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, pp 1–8. https://doi.org/10.1109/ICCV.2007.4408853

  • Fei K, Junjie L, Zhenyue M (2011) Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions. Inf Sci 181:3508–3531

    MathSciNet  MATH  Google Scholar 

  • Fletcher R, Powell MJD (1964) A rapidly convergent descent method for minimization. Comput J 6(27):163–168. https://doi.org/10.1093/comjnl/6.2.163

    Article  MathSciNet  MATH  Google Scholar 

  • Fogel DB (1991) System identification through simulated evolution: a machine learning approach to modeling. Ginn Press, Needham

    Google Scholar 

  • Frey BJ, Delbert D (2008) Response to comment on clustering by passing messages between data points. Science 319(5864):726d

    Google Scholar 

  • Hackwood S, Beni G (1992) Self-organization of sensors for swarm intelligence. In: IEEE international conference on robotics and automation. IEEE Press, Piscataway, NJ, pp 819–829

  • He S, Wu QH, Wen JY, Saunders JR, Paton RC (2004) A particle swarm optimizer with passive congregation. BioSystems 78:135–147

    Google Scholar 

  • Holland J (1992) Adaptation in natural and artificial systems. MIT Press, New York

    Google Scholar 

  • Jong DK (1975) An analysis of the behavior of a class of genetic adaptive systems. University of Michigan, Michigan

    Google Scholar 

  • Kennedy J (1997) The particle swarm: social adaptation of knowledge. In: Proceedings of IEEE international conference on evolutionary computation, pp 303–308. https://doi.org/10.1109/ICEC.1997.592326

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol IV, pp 1942–1948

  • Kim HS, Cho SB (2001) An efficient genetic algorithm with less fitness evaluation by clustering. In: Proceedings of IEEE congress on evolutionary computation, pp 887–894

  • Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Google Scholar 

  • Magnus RH, Eduard S (1952) Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand 49:409–436

    MathSciNet  MATH  Google Scholar 

  • Powell MJD (1970) A new algorithm for unconstrained optimization. In: Rosen JB, Mangasarian OL, Ritter K (eds) Nonlinear programming. Academic, New York, pp 31–66. https://doi.org/10.1016/B978-0-12-597050-1.50006-3

    Chapter  Google Scholar 

  • Powell MJD (1975) Convergence properties of a class of minimization algorithms. In: Mangasarian OL, Meyer R, Robinson S (eds) Nonlinear programming 2. Academic, New York, pp 1–27

    Google Scholar 

  • Powell MJD, Yuan Y (1991) A trust region algorithm for equality constrained optimization. Math Program 49:189–211

    MathSciNet  MATH  Google Scholar 

  • Quanlong C, Xiaosong H, Heow PL, Yanchun L, Binghong W, Jingqing J, Chunguo W (2017) Globally-optimal prediction-based adaptive mutation particle swarm optimization. Inf Sci 418–419:186–217. https://doi.org/10.1016/j.ins.2017.07.038

    Article  Google Scholar 

  • Rommel GR (2014) Particle swarm with radial basis function surrogates for expensive black-box optimization. J Comput Sci 5(1):12–23. https://doi.org/10.1016/j.jocs.2013.07.004

    Article  MathSciNet  Google Scholar 

  • Rommel GR, Christine AS (2013a) A quasi-multistart framework for global optimization of expensive functions using response surface models. J Glob Optim 56(4):1719–1753. https://doi.org/10.1007/s10898-012-9940-1

    Article  MathSciNet  MATH  Google Scholar 

  • Rommel GR, Christine AS (2013b) Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization. Eng Optim 45(5):529–555

    MathSciNet  Google Scholar 

  • Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings of IEEE international conference on evolutionary computation, pp 69–73. https://doi.org/10.1109/ICEC.1998.699146

  • Suykens JA, Gestel TV, Brabanter JD, Moor BD, Vandewalle J (2002) Least squares support vector machines. World Scientific, New Jersey

    MATH  Google Scholar 

  • Tao Y, Liangbin S (2009) Particle swarm optimization with improved K means clustering analysis strategy. Comput Eng Appl 45(12):52–54

    Google Scholar 

  • Xiaosong H, Yanchun L, Xiaozhou W, Chunguo W (2015) An efficient genetic algorithm for optimization problems with time-consuming fitness evaluation. Int J Comput Methods. https://doi.org/10.1142/S0219876213501065

    Article  MathSciNet  MATH  Google Scholar 

  • Yanchun L (2009) Theory and application of swarm intelligence optimization algorithm. Science Press, Beijing

    Google Scholar 

  • Yanmin L, Changling S, Qingzhen Z (2011) Multi-group particle swarm optimization based on K-mean clustering and its application. Control Decis 26(7):1019–1025

    Google Scholar 

  • Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102

    Google Scholar 

  • Ying G, Shengli X, Ruoning X (2006) Multigroup particle swarm optimization algorithm based on Clustering. Comput Appl Res 2006(4):40–41

    Google Scholar 

  • Yoel T (2012) A computational intelligence algorithm for expensive engineering optimization problems. Eng Appl Artif Intell 25(5):1009–1021. https://doi.org/10.1016/j.engappai.2012.03.009

    Article  Google Scholar 

  • Yoel T (2013) An optimization algorithm employing multiple metamodels and optimizers. Int J Autom Comput 10(3):227–241. https://doi.org/10.1007/s11633-013-0716-y

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China under Grants 61503150, 61472158, 61572228 and Jilin Scientific and Technological Development Program under Grant 20160520012JH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosong Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liang, Y., Li, T. et al. Boost particle swarm optimization with fitness estimation. Nat Comput 18, 229–247 (2019). https://doi.org/10.1007/s11047-018-9699-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-018-9699-5

Keywords

Navigation