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Abstract We consider the self-assembly of fractals in

one of the most well-studied models of tile based self-

assembling systems known as the Two-handed Tile As-

sembly Model (2HAM). In particular, we focus our at-

tention on a class of fractals called discrete self-similar

fractals (a class of fractals that includes the discrete

Sierpiński carpet). We present a 2HAM system that

finitely self-assembles the discrete Sierpiński carpet with

scale factor 1. Moreover, the 2HAM system that we give

lends itself to being generalized and we describe how

this system can be modified to obtain a 2HAM sys-

tem that finitely self-assembles one of any fractal from

an infinite set of fractals which we call 4-sided fractals.

The 2HAM systems we give in this paper are the first

examples of systems that finitely self-assemble discrete

self-similar fractals at scale factor 1 in a purely growth

model of self-assembly. Finally, we show that there ex-

ists a 3-sided fractal (which is not a tree fractal) that

cannot be finitely self-assembled by any 2HAM system.

1 Introduction

The study of fractals has both a mathematical and a

practical basis, as patterns similar to these recursively

self-similar patterns occur in nature in the form of cir-

culatory systems and branch patterns. Evidently many

fractals found in nature are the result of a process where

a simple set of rules dictating how individual basic com-

ponents (such as individual molecules) interact to yield
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larger complexes with recursive self-similar structure.

One approach to understanding this process is to model

such a process with artificial self-assembling systems.

One of the first and also one of the most stud-

ied mathematical models of self-assembling systems is

Winfree’s abstract Tile Assembly Model (aTAM) [43]

where individual autonomous components are repre-

sented as tiles with glues on their edges. The aTAM

was intended to model DNA tile self-assembly, where

tiles are implemented using DNA molecules. In the con-

text of DNA tile self-assembly, there have been two

main reasons for considering the self-assembly of frac-

tals. First, in [17] and [40], DNA-based tiles are used to

self-assemble the Sierpiński triangle, showing the po-

tential for DNA tile self-assembly to be used for the

controlled formation of complex nanoscale structures.

Second, there are many proposed theoretical models

(and generalizations of these models) of DNA tile self-

assembly (see [1,6,9,12,14,24,27,35,43] for some exam-

ples). While mathematical notions of simulation rela-

tions between systems in such models continue to fur-

ther elucidate how these various models relate [3, 10,

13, 22, 33, 34], many “benchmark” problems have also

been introduced. These benchmarks include the effi-

cient self-assembly of squares and/or general shapes [11,

37, 41, 42], the capacity to perform universal computa-

tion [7,15,16,18,21,35,37], and the self-assembly of frac-

tals [2, 20, 28, 29, 32, 38, 39]. In addition to providing a

way of benchmarking models of self-assembly, studying

the self-assembly of fractals has the potential to lead to

new techniques for the design self-assembling systems.

When considering the self-assembly of discrete self-

similar fractals (dssf’s) such as the Sierpiński triangle

one can consider either “strict” self-assembly, wherein

a shape is made by placing tiles only within the domain

of the shape, or “weak” self-assembly where a pattern

representing the shape forms as part of a complex of
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tiles that contains specially labeled tiles corresponding

to points in the shape and possibly additional tiles not

corresponding to points of the shape. Previous work

(including [2,28,29,32,38,39]) has shown the difficulty

of strict self-assembly of dssf’s in the aTAM as no non-

trivial dssf has been shown to self-assemble in the strict

sense. In fact, the Sierpiński triangle is known to be

impossible to self-assemble in the aTAM [30]; though

it is possible to design systems which “approximate”

the strict self-assembly of fractals [30, 32, 38]. Interest-

ingly, it is unknown whether there exists a dssf which

strictly self-assembles in the aTAM. This includes the

Sierpiński carpet dssf. In this paper, we consider 2HAM

systems which “finitely” self-assemble dssf’s. Finite self-

assembly was defined in [3] to study 2HAM systems

that self-assemble infinite shapes (e.g. dssf’s). Intuitively,

a shape S, finitely self-assembles in a tile assembly sys-

tem if any finite producible assembly of the system can

always continue to self-assemble into the shape S and

the shape of any finite producible assembly is a sub-

shape of S. See [3, 5, 19] for results which use the defi-

nition of finite self-assembly.

While the aTAM models single tile attachment at a

time (or step in the self-assembly process), a more gen-

eralized model and another of the most studied models

of self-assembly called the 2-Handed Assembly Model

[6] (2HAM, a.k.a. Hierarchical Assembly Model) allows

pairs of large assemblies to bind together. Given the

hierarchical nature of the self-assembly process mod-

eled by the 2HAM, we consider employing this pro-

cess to finitely self-assemble dssf’s. In [5] it is shown

that the Sierpiński carpet finitely self-assembles in the

2HAM at temperature 2, but with scale factor 3. That

is, instead of finitely self-assembling a structure with

tiles corresponding to the points of the Sierpiński car-

pet, the structure that self-assembles contains a 3 by 3

block of tiles that corresponds to a single point of the

Sierpiński carpet. Here we show that not only does the

Sierpiński carpet finitely self-assemble with scale factor

1, but an infinite class of fractals, which we call the

4-sided fractals, finitely self-assembles at temperature

2 in the 2HAM with scale factor 1. Intuitively, 4-sided

fractals are fractals that have a generator (the set of

points in the first stage of the fractal) such that the

generator is connected and consists of a rectangle of

points “on the boundary” of the generator as well as

points “inside” this rectangle. In other words, a 4-sided

fractal is a fractal with a generator that contains all 4

sides and one can define 0, 1, 2, and 3-sided fractals

analogously. (Definitions are given in Section 2.) More-

over, we show that there exists a 3-sided fractal that

cannot be finitely self-assembled by any 2HAM system

at any temperature.

Theorem 1 implies that one of the most well-known

dssf’s (the Sierpiński carpet) finitely self-assembles in

one of the simplest and most studied models of self-

assembly, the 2HAM. It should be noted that in [20]

it is shown that any dssf can finitely self-assemble in

the Signal-passing Tile Assembly Model (STAM) where

tiles can change state and even disassociate from an ex-

isting assembly, “breaking” an assembly into two dis-

connected assemblies. That is, given any dssf, there is

a STAM system that finitely self-assembles this fractal.

Additionally, in [20] it is shown that a large class of

fractals finitely self-assembles in the STAM even with

temperature restricted to 1. In a model similar to the

STAM, the Active Tile Assembly Model [25], infinite,

self-similar substitution tiling patterns which fill the

plane have been shown to assemble [26]. This may be

considered a testament to the power of active tiles. Here

we show that it is still possible to finitely self-assemble

an infinite class of fractals in the 2HAM even though

tiles are not active and disassociation is not allowed.

2 Preliminaries

Here we provide informal descriptions of the 2HAM.

For more details see [3, 6, 36]. Definitions and notation

in Section 2.1 are based on definitions from [3–5]. Sim-

ilar definitions and notation for the 2HAM can also be

found in [10, 23, 31]. We restate the definitions in the

context of this paper for the sake of completeness and

convenience. Likewise, in Section 2.2, we also give the

definition of discrete self-similar fractals similar to the

definitions found in [2] and [20].

2.1 Informal description of the 2HAM

Let U2 = {(0, 1), (0,−1), (1, 0), (−1, 0)} be the set of all

unit vectors in Z2. A grid graph is a graph G = (V,E)

such that V ⊆ Z2, and for any edge {⇀a, ⇀b} ∈ E, ⇀a−⇀b ∈
U2.

2.1.1 Tile types, tiles, and supertiles

A tile type is a unit square with 4 well defined sides that

each correspond to a vector in U2 such that each side

of the square has an associated glue. A glue is defined

by a label and a strength. A glue label is a string of

symbols over some fixed alphabet, and a glue strength

is a non-negative integer. Moreover, a tile type has an

associated string of symbols over some fixed alphabet

called a label. A positioned tile is a pair consisting of a

tile type and a point in Z2 called a tile location. A tile is

the set of all translations in Z2 of a positioned tile. We
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refer to the side of a tile type (or tile) corresponding

to (0, 1), (0,−1), (1, 0), or (−1, 0) as the north, south,

east, or west edge of the tile type (or tile) respectively.

Let T be a finite set of tile types. A positioned su-

pertile over T is a set of positioned tiles with tile types

in T such that the positioned tiles have distinct tile lo-

cations. For a positioned supertile A over T , we let |A|
denote the cardinality of A. A supertile over T is the set

of all translations of a positioned supertile over T . For

a positioned supertile A, note that cardinality is invari-

ant under translation. Therefore, for a supertile α over

T , we let |α| denote the cardinality of any positioned

supertile in α and note that this is well-defined. When

T is clear from context, we will shorten the phrase “su-

pertile over T” to simply “supertile”. For two adjacent

tiles t1 and t2 in a positioned supertile over T and s in

N, we say that t1 and t2 interact with strength s if the

glues on their abutting sides are equal1 and these glues

have non-zero strengths equal to s.

Let A be a positioned supertile over T . The binding

graph of A is the weighted undirected grid graph G =

(V,E) such that 1) V is the set of all tile locations of

tiles in A, and 2) E is the set of all unordered pairs of

vertices v1 and v2 in V ×V with weight w ∈ N such that

the two tiles in A with tile locations equal to v1 and v2
interact with strength w. Note that a binding graph is

a grid graph. For a non-negative integer τ , A is τ -stable

if for every cut C of the binding graph of A, the sum of

the weights of the edges in the cut-set of C is greater

than or equal to τ . A supertile α over T is τ -stable if it

contains a positioned supertile over T that is τ -stable.

Note that if A is τ -stable, then any translation of A is

τ -stable. Therefore, the notion of τ -stable for supertiles

is well-defined.

Let A, B, and C be positioned supertiles over T

such that A and B are τ -stable. We say that A and B

are τ -combinable into C if C = A∪B and C is τ -stable.

Moreover, let α, β, and γ be supertiles over T such that

α and β are τ -stable. α and β are τ -combinable into γ

if there exists A in α, B in β, and C in γ such that

A and B are τ -combinable into C. Note that if α and

β are τ -combinable into γ, then γ is τ -stable. We also

define the subassembly relation between two supertiles

as follows. For supertiles α and β, α is a subassembly

of β provided that there exist positioned supertiles A

in α and B in β such that A ⊆ B.

2.1.2 Tile assembly systems and assembly sequences

A tile assembly system (TAS) in the 2HAM is defined

to be an ordered pair T = (T, τ) such that T is a finite

set of tile types, and τ is a positive integer which we

1 glue labels are equal and glue strengths are equal

call the temperature of T . Let T = (T, τ) be a TAS.

A state S is a multiset of τ -stable supertiles over T

such that the multiplicity of any supertile in S is in

N∪ {∞}. Let S0 and S1 be states. S0 transitions to S1

at temperature τ if 1) there exists a supertile γ such

that S1 = S0 ∪ {γ}, and 2) there exists α and β in S0

such that α and β are τ -combinable into γ.

Let k be in N ∪ {∞}. A state sequence of T is a

sequence of states S = 〈Si〉ki=0 such that for all i, Si

transitions to Si+1. A state sequence is called nascent if

S0 is the multiset consisting of infinitely copies of tiles,

one tile for each tile type in T . For a producible supertile

α, an assembly sequence for α is a sequence of supertiles

α = 〈αi〉ki=0 such that there exists a state sequence

S = 〈Si〉ki=0 such that for all i < k, αi ∈ Si and there

exists a supertile βi ∈ Si such that αi and βi are τ -

combinable into αi+1. Such an assembly sequence is

called nascent if S is nascent. The result of an assembly

sequence α = 〈αi〉ki=0 is the unique supertile ρ such

that there exists R ∈ ρ and Ai ∈ αi such that R =

∪0≤i<kAi, and for each i such that 0 ≤ i < k, αi is a

subassembly of ρ.

2.1.3 Producible supertiles and shapes

Given a TAS T = (T, τ), a supertile is producible if it is

the result of a nascent assembly sequence. A producible

supertile α is terminal if for any producible supertile β

there does not exist a τ -stable supertile γ such that

α and β are τ -combinable into γ. We refer to the set

of producible supertiles for T as A[T ] and the set of

terminal supertiles for T as A�[T ].

We refer to a set of points in Z2 as a shape. For

a shape X, a supertile α has shape X if there exists

a positioned supertile A in α such that the set of tile

locations of positioned tiles in A is equal to X. Given

a TAS T = (T, τ), for an infinite shape X ⊆ Z2, we

say that T finitely self-assembles X if for every finite

producible supertile α of T , α has the shape of a subset

of points in X, and there exist an assembly sequence

α = 〈αi〉∞i=0 such that α0 = α and the result of α has

shape X. In this paper we consider finite self-assembly

of dssf’s.

2.2 Discrete Self-Similar Fractals

In order to state the main theorem, we need to provide

a few definitions. The definition of a discrete self-similar

fractals and some of the notation used here also appears

in [2, 20,38]. First we introduce some notation.

Given V ⊆ Z2, the full grid graph of V is the undi-

rected graph Gf
V = (V,E), such that for all x,y ∈ V ,

{x,y} ∈ E iff ||x− y|| = 1.
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Let Ng denote the subset {0, . . . , g − 1} of N, and

let N2
g = Ng × Ng. For g ∈ N and G ⊆ N2

g, let lG, rG,

bG, and tG denote the integers: lG = min(x,y)∈G x, rG =

max(x,y)∈G x, bG = min(x,y)∈G y, and tG = max(x,y)∈G y.

Moreover, let wG = rG − lG + 1 and hG = tG − bG + 1

denote the width and height of G respectively. Finally,

let LG = {(lG, y) | bG ≤ y ≤ tG}, RG = {(rG, y) |
bG ≤ y ≤ tG}, TG = {(x, tG) | lG ≤ x ≤ rG}, and

BG = {(x, bG) | lG ≤ x ≤ rG}. In other words, LG, RG,

TG, and BG are the sets of points belonging to left,

right, top, and bottom line segments of a “bounding

box” of G. Finally, if A and B are subsets of N2 and

(x, y) ∈ N2, then A+(x, y)B = {(xa, ya)+(x·xb, y ·yb) |
(xa, ya) ∈ A and (xb, yb) ∈ B}. First we give the defi-

nition of a discrete self-similar fractal.

Definition 1 LetX ⊂ N2. We say thatX is a discrete

self-similar fractal (or dssf for short), if there is a set

{(0, 0)} ⊂ G ⊂ N2
g with at least one point in every row

and column, such that

1. the full grid-graph of G is connected,

2. wG > 1 and hG > 1,

3. G ( NwG
× NhG

, and

4. X = ∪∞i=1Xi, where Xi, the ith stage of X, is de-

fined by X1 = G and Xi+1 = Xi + (wi
G, h

i
G)G.

Moreover, we say that G is the generator of X.

A connected discrete self-similar fractal is one in

which every component is connected in every stage, i.e.

there is only one connected component in the grid graph

formed by the points of the shape.

Definition 2 Let n ∈ {0, 1, 2, 3, 4}, 1 < g ∈ N and
X ⊂ N2. We say that X is a n-sided fractal if X is a

discrete self-similar fractal with generator G such that:

1. the full grid graph of G is connected,

2. S ∩G = S for at least n distinct sets S in

{LG, RG, TG, BG}.

Intuitively, the second condition in Definition 2 is

saying that the fractal generator contains all points

of at least n of the left, right, top, and bottom line

segments of a “bounding box” of G. In particular, the

generator of a 4-sided fractal contains all of the points

along the left, right, top, and bottom “sides” of the

fractal generator. Finally, for a fractal X with gener-

ator G, an enumeration of the points in a generator

G = {vi}|G|i=1, and j ∈ N, the stages of X are X1 = G

and Xj+1 = Xj + (wj
G, h

j
G)G. For i ∈ N such that

1 ≤ i ≤ |G|, we call the points of the j + 1 stage given

by Xj + (wj
G, h

j
G)vi the jth stage at position i. For dssf

X and i ∈ N such that i ≥ 1, we let Xi denote the ith

stage of X.

3 Self-assembly of Four Sided Fractals

In this section we show how to finitely self-assemble

the class of 4-sided discrete self-similar fractals in the

2HAM with scale factor of 1 (i.e. no scaling is required).

The most well-known example of a 4-sided fractal is the

Sierpiński carpet.

Theorem 1 Let X be a 4-sided fractal. Then, there ex-

ists a 2HAM TAS TX = (T, 2) that finitely self-assembles

X. Moreover, if G is the generator for X and |G| = g,

|T | is O(g3).

We build intuition for a construction showing The-

orem 1 by showing that the Sierpiński carpet finitely

self-assembles in the 2HAM at scale factor 1. We then

describe the modifications needed to extend the con-

struction for the Sierpiński carpet to all 4-sided frac-

tals.

3.1 The Sierpiński carpet construction overview

The Sierpiński carpet dssf is the dssf with generator

G = {(0, 2), (1, 2), (2, 2), (0, 1), (1, 2), (0, 0), (1, 0),

(2, 0)}. Figure 1a depicts this generator, while Figures 1b

and 1c depict the second and third stages of the dssf

respectively. We denote the carpet dssf by S and for

i ∈ N, we denote the ith stage of S as Si. We enu-

merate the points of S1 as depicted in Figure 1a and

use this enumeration to reference the positions of some

substage within a subsequent stage of the carpet.

(a) Stage 1 (b) Stage 2

(c) Stage 3

Fig. 1: Three stages of the Sierpiński carpet
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Fig. 2: The tiles that self-assemble a stage 2 supertile C2
i . The unlabelled strength 1 and 2 black and yellow glues shown on

edges of two adjacent tiles in each of the 8 supertiles are defined to have matching type. Moreover, these glues do not match
any other glues of other tile types in T . In other words, tiles types have been “hard-coded” so that each of these 8 supertiles
self-assembles.

We now describe the tile set, T , that is used to

finitely self-assemble S in the 2HAM at temperature

τ = 2 at scale factor 1.

3.1.1 The Sierpiński carpet tile set

To define the tile set T , we begin by distinguishing be-

tween two classes of tile types called grout tile types

and initializer tile types. We say grout (respectively

initializer) tiles or supertiles when referring to tiles

or supertiles consisting only of tiles with grout (respec-

tively initializer) tile types. At a high-level, initi-

alizer tiles self-assemble into supertiles corresponding

to S at stage 2, and grout tile types self-assemble into

supertiles which facilitate the self-assembly of each con-

secutive stage of S starting from the stage 2 supertiles

self-assembled by initializer tile types. We first de-

scribe initializer tile types.

3.1.1.1 Self-assembly of stage 2 by initializer tile

types

The initializer tiles self-assemble to form 8 dif-

ferent supertiles, the domains of which are contained in

a portion of S2. See Figure 2 for a depiction of these

8 supertiles. We denote these 8 supertiles by C2
i for

1 ≤ i ≤ 8. For each i, we define 32 unique tile types of

T that self-assemble the supertile C2
i corresponding to

a portion of S2 that will be in the ith position of a su-

pertile corresponding to a portion of S3 (this portion is

depicted in Figure 10). The main idea is that tiles that

self-assemble C2
i have been “hard-coded” (i.e. for any

glue on the edge of some tile, there exists a single match-

ing glue on another tile) to ensure that for each i, C2
i

self-assembles. Moreover, tile types are defined so that

all tiles of C2
i self-assemble before C2

i can be contained

in a strictly larger supertile. In other words, referring

to Figure 9, the gray and green tiles self-assemble su-

pertiles consisting C2
i before any of the the aqua tiles

can attach. To see this, note the presence of the yellow

glues in the supertiles shown in Figure 2. These yellow

glues restrict the assembly sequences for each supertile

at temperature 2. In particular, the final step in the

assembly sequence of C2
1 is the binding event between

a supertile of size 3 and a supertile of size 29 via two

yellow glues. Therefore, C2
1 is completely self-assembled

exactly when glues g1 and gs are exposed by edges of

tiles of C2
1 , and only after these glues are present can a

supertile (called a start-gadget and described in more

detail in Section 3.1.1.2) shown in Figure 3a bind, lead-

ing to a supertile strictly containing C2
1 as a subassem-

bly.

Referring to Figure 2, note that for each i, C2
i super-

tiles may expose glues of type gd or ĝd for d either n, s,

e, or w, as well as possibly gk or ĝk for 1 ≤ k ≤ 8. These

glues allow grout supertiles to cooperatively bind and

the glues labeled gk and ĝk indicate where special grout

supertiles should bind, hence they are called indicator

glues. Tiles containing an edge with an indicator glue

are depicted in green in Figure 2.

The self-assembly of supertiles corresponding to stage

3 of the Sierpiński carpet will require grout tile types.

These tile types are described in the next section. We

first describe how grout tile types facilitate the self-

5



assembly of supertiles corresponding to stage 3 of the

carpet and then describe how these same grout tile

types facilitate the self-assembly of supertiles correspond-

ing to any stage, s say, by binding to supertiles corre-

sponding to stage s− 1.

3.1.1.2 grout tile types and stage 3 carpet assembly

Figures 3-8 describe grout supertiles that bind to

C2
1 or C2

2 . For a depiction of the grout supertiles that

bind to C2
i for 3 ≤ i ≤ 8, see Section A. We describe

the grout supertiles that attach to C2
1 and C2

2 , and

note that the grout supertiles that attach to C2
i for

3 ≤ i ≤ 8 are similar.

For each i, there are 8 different classes of grout tile

types which we enumerate with 1 through 8 that can

bind to supertile C2
i . In other words, for each supertile

Figures 3-8, tile types for grout tiles are defined so

that eight different versions of each of grout supertiles,

corresponding to eight grout classes, self-assemble. In

each figure, j ∈ N is such that 1 ≤ j ≤ 8, and tiles

of supertiles belong to grout class j. Depending on the

value of j, for k ∈ N such that 1 ≤ k ≤ 8, the glues hk,j ,

ĥk,j , h
∗
1,j , and ĥ∗1,j are defined to either have strength

1 or 0. Table 1 describes glue strengths for these glues

for each j. In addition, for p ∈ {2, 4, 5, 7}, glues with

labels ĝp,j and ḡp,j are defined in Table 2.

The grout tiles are hard-coded to self-assemble gro-

ut supertiles such that only grout tiles belonging to

the same class can bind. Moreover, two distinct grout

supertiles have matching glues iff the tiles of these su-

pertiles have types belonging to the same grout class.

That is, for each i, grout supertiles with tiles of any

one, and only one, of the 8 grout classes can bind to
some C2

i . For example, the grout supertiles that bind

to some C2
i before any other grout supertiles are called

start-gadget supertiles. See Figure 3 for examples of

start-gadget supertiles.

j glues with strength 0

1 h5,j , ĥ7,j
2 h5,j , ĥ7,j
3 ĥ4,j , ĥ6,j
4 h2,j , ĥ3,j
5 h1,j , ĥ∗1,j
6 h2,j , ĥ3,j
7 h2,j , ĥ3,j
8 h1,j , ĥ∗1,j

Table 1: For j ∈ N such that 1 ≤ j ≤ 8, this table lists those
glues defined to have strength 0. For all k ∈ N such that
1 ≤ k ≤ 8, hk,j , ĥk,j , h∗1,j , and ĥ∗1,j not listed in a row for a
fixed value j are defined to have strength 1.

j ĝ2,j ḡ2,j ĝ4,j ḡ4,j ĝ5,j ḡ5,j ĝ7,j ḡ7,j
1 ĝn gn ĝw gw ĝ1 g1 g1 ĝ1
2 ĝn gn ĝ2 g2 g2 ĝ2 gs ĝs

3 ĝn gn ĝ3 g3 ge ĝe g3 ĝ3
4 ĝ4 g4 ĝw gw ge ĝe g4 ĝ4
5 ĝ5 g5 ĝw gw ge ĝe g5 ĝ5
6 ĝ6 g6 ĝw gw g6 ĝ6 gs ĝs

7 ĝn gn ĝ7 g7 g7 ĝ7 gs ĝs

8 ĝ8 g8 ĝ8 g8 ge ĝe gs ĝs

Table 2: For j ∈ N such that 1 ≤ j ≤ 8, this table gives glue
definitions. For example, when j = 1, ĝ2,j = ĝn. All glues in
this table are also defined to have strength 1.

For i between 1 and 8 (inclusive), after supertiles

C2
i self-assemble, grout tiles attach to these supertiles

to form supertiles which expose glues that allow them

to bind to each other to self-assemble a supertile corre-

sponding to stage 3 of the Sierpiński carpet. Figure 9

shows each supertile C2
i for 1 ≤ i ≤ 8 along with grout

supertiles with grout class j attached. Figure 10 gives a

depiction of the portion of S3 that self-assembles; grout

supertiles in this figure are depicted in aqua.

Starting from some supertile C2
i , initial growth of

grout tiles begins when a start-gadget cooperatively

binds to some C2
i via pairs of glues exposed by each su-

pertile C2
i . Figure 3a depicts such a supertile that binds

to a C2
1 supertile when the glues g1 and gs cooperatively

bind to the matching glues of C2
1 . One can observe that

the glues of grout supertiles have been defined so that

binding of grout supertiles to C2
i for 1 ≤ i ≤ 8 al-

ways begins with the attachment of a start-gadget

supertile.

Glues of grout tiles have also been defined so that

after a start-gadget binds to C2
i for some i, grout

supertiles cooperatively bind one at a time and partially

surround the supertile C2
i as in Figure 9. We refer to the

grout supertiles other than start-gadget supertiles

that cooperatively bind to C2
i as crawler supertiles.

Figures 4 and 5. depict crawler supertiles that bind to

C2
1 , and Figures 6, 7, and 8 depict crawler supertiles

that bind to C2
2 .

A grout tile that binds to an indicator glue (for

1 ≤ k ≤ 8, glues with label gk or ĝk in Figure 2) of a

south edge of a tile belonging to C2
i (respectively north,

east, or west) will have a glue on its south (respectively

north, east, or west) edge. The strength of such a glue

is either 0 or 1 as given in Table 1. The type of glue

and whether or not a grout tile exposes such a glue

depends on the class of the grout supertiles that at-

tach to some C2
i . We call these glues exposed on an

edge of a grout tile stage-binding glues. In Figures 3

through 8 and 9, stage-binding glues are h∗1,j , ĥ
∗
1,j ,

or hk,j , ĥk,j for 1 ≤ k ≤ 8. Strength-1 stage-binding

6



(a) (b)

Fig. 3: start-gadget supertiles. Tiles depicted in this figure have grout class j for some j between 1 and 8 (inclusive). (a) Left:
The supertile that starts the growth of grout for C2

1 . Right: The supertile that starts the growth of grout for Cs
1 for s > 2.

Note that for each s ≥ 2, only one of these supertiles can bind to tiles of Cs
1. Moreover, the supertile depicted on the left can

bind to some Cs
1 iff s = 2, and the supertile depicted on the right can bind to some Cs

1 iff s > 2. (b) The supertiles that start
the growth of grout for Cs

2 for s ≥ 2.

Fig. 4: A depiction of grout tiles that bind to the easternmost
tiles of a Cs

1 supertile. Labels for unlabelled glues are “hard-
coded” to enforce the self-assembly of each supertile shown
here.

Fig. 5: These grout supertiles will self-assemble a row of tiles
that bind to the southernmost tiles of Cs

1 for some stage s ≥ 1.
Labels for unlabelled glues are “hard-coded” to enforce the
self-assembly of each supertile shown here.

Fig. 6: These grout supertiles will self-assemble a row of tiles
that bind to the southernmost tiles of Cs

2 for some stage s ≥ 1.

Fig. 7: These grout supertiles bind to the easternmost tiles of
Cs

2. Note the presence of the glue ḡ2,i. This glue will either
be gn or gi depending on i.

Fig. 8: These tiles and supertiles are analogous to those in
Figure 7 only they bind to the westernmost tiles of some Cs

2

for s ≥ 2. Note the presence of the glue ĝ2,i. This glue will
either be ĝn or ĝi depending on i.

7



Fig. 9: Supertiles C2
(i,j)

for 1 ≤ i ≤ 8 and some j such that 1 ≤ j ≤ 8. Depending on j, certain glues will have strength of 0 as

described in Table 1 though they are shown here as strength-1 glues.

Fig. 10: A depiction of C3
j . Note that for p ∈ {2, 4, 5, 7} the

glues ĝp,j and ḡp,j shown here are defined in Table 2.

glues exposed by grout supertiles bound to C2
i super-

tiles bind to allow for the self-assembly of a supertile

that corresponds to the third stage of the carpet.

Now let C2
(i,j) denote any supertile consisting only

of tiles of C2
i and grout tiles of class j. Figure 9 depicts

such supertiles. The supertiles depicted in Figure 9 are

such that no other grout supertiles can bind to a given

C2
i and have been depicted this way to show all of the

glues exposed after grout supertiles bind to each C2
i .

We note that grout tile types have been defined such

that for i, j, i′ and j′ between 1 and 8 (inclusive), su-

pertiles C2
(i,j) and C2

(i′,j′) can bind only after exposing

sufficient stage-binding glues. Moreover, such super-

tiles can bind iff j = j′. That is the grout tiles of C2
(i,j)

and C2
(i′,j′) belong to the same class.

For a fixed grout class j between 1 and 8, the 8

supertiles C2
(i,j) (where i ranges from 1 to 8) with suf-

ficient grout supertiles attached bind to self-assemble

a supertile, which we denote by C3
j , corresponding to

stage 3 of the carpet. Figure 10 depicts such a super-

tile C3
j . Just as i corresponds to the position that C2

i

is located in C3
j , the grout class j determines the posi-

tion that C3
j will be located as a substage of a supertile

corresponding to stage 4 of the carpet. Moreover, with

glues strengths given Table 1, we note that grout tiles

have been defined so that such C2
(i,j) supertiles bind be-

fore the “next iteration” of grout tiles can attach. In

other words, C2
(i,j) supertiles bind for all i between 1

and 8 before a start-gadget can bind to the resulting

supertile C3
j . For example, when j = 1, stage-binding

glues are defined such that h5,j and ĥ7,j have strength 0.

Therefore, any assembly sequence of C3
1 ends with C2

(8,1)

binding to a supertile consisting of C2
(k,1) for 1 ≤ k ≤ 7.

Hence, only after C2
(8,1) binds can a start-gadget bind

to the resulting supertile. The cases where j is such that

2 ≤ j ≤ 8 are similar.

Then, for i′ such that 1 ≤ i′ ≤ 8, the glues that

might allow (depending on i and i′) some supertile C2
(i,j)
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to bind to another supertile C2
(i′,j) are stage-binding

glues separated by a distance of 2 = 32−1 − 1.2 This

distance is ensured by the locations of the indica-

tor glues. As we will see, stage-binding glues will

be reused as each consecutive stage of the carpet self-

assembles. The distance between stage-binding glues

will prevent supertiles corresponding to different fractal

stages from binding.

Finally, the class of grout tiles that bind to some

C2
i determines the presence and locations of indicator

glues exposed by edges belonging to tiles of some C3
j .

These indicator glues belonging to grout tiles are de-

fined according to Table 2. The locations of indicator

glues exposed by C3
j are analogous to the locations of

these glues exposed by C2
j as shown in Figure 2, only

the indicator glues of C3
j are at distance 8 = 33−1− 1

apart. For example, referring to Figure 10, when j = 1,

we note the presence of four indicator glues (two be-

longing to easternmost tiles and two belonging to south-

ernmost tiles according to Table 2) exposed by C3
1 that

are distance 8 apart. Note the similarity between the

locations of indicator glues in C3
1 and in C2

1 . grout

tile types have been defined so that the same similar-

ity is drawn between C3
j and C2

j for j between 1 and 8

(inclusive).

Fig. 11: A depiction of the portion of S4 that is self-assembled
by supertiles denoted by C3

i for i between 1 and 8 (inclusive)
and some class j for j between 1 and 8 of grout tiles.

3.1.1.3 Self-assembly of stage s carpet for s ≥ 2

2 We are including glues with strength 0 here.

Repurposing i, we now let C3
j be denoted by C3

i .

Now, for each i and j with 1 ≤ i, j ≤ 8, the 8 different

classes of grout tile types can attach to each C3
i super-

tile to give supertiles C3
(i,j). The class grout class deter-

mines where the supertiles C3
(i,j) attach to self-assemble

a supertile, C4
j , corresponding to a portion of S4. Such

a C4
j is depicted in Figure 11. Moreover, the glues that

allow some supertile C3
(i,j) to bind to another supertile

C3
(i′,j), for some i′ say, are strength 1 or 0 glues, accord-

ing to Table 1, separated by a distance of 8 apart. Note

that the definitions of glues in Table 1 ensure that a C4
j

supertile contains a supertile C3
(i,j) for each 1 ≤ i ≤ 8

before a start-gadget supertile can attach to such a

C4
j .

It is important to note that two stage-binding

glues may be exposed on some strict subassembly of

C3
(i,j), and therefore for some i and i′, two subassemblies

of C3
(i,j) and C3

(i′,j) may bind to form a subassembly of

C4
j where some C3

(i,j) has only partially assembled. This

can lead to cases of nondeterminism like the case de-

picted in Figure 12. We define glues belonging to grout

tiles so that this does not prevent tiles from binding in

locations corresponding to points of stage 2 at positions

i and i′ from completing assembly as a subassembly of

C4
j . One such glue is shown in Figure 12 with label

g2,j . We also note that these glues do not permit tiles

to bind in locations outside of locations in of tiles in

positioned supertiles of C4
j . It is important to note that

before such cases of nondeterminism can occur, all st-

age-binding glues of C4
j must be bound. Glues such as

g2,j also ensure correct assembly of higher stage analogs

of C4
j where analogous nondeterminism can also occur

in the self-assembly of Ss for any higher stage s > 3.

Recursively repeating this process, we see that for

any i, j, s ∈ N such that 1 ≤ i, j ≤ 8 and s > 2, super-

tiles Cs−1
i corresponding to a portion of Ss−1 (again,

we are leaving room for grout tiles) self-assemble, and

supertiles Cs−1
(i,j) corresponding to Cs−1

i with the attach-

ment of grout tiles all belonging to the jth class of

grout tile types self-assemble. Moreover, the supertiles

Cs−1
(i,j) with sufficient grout supertiles attached expose

stage-binding glues that are at a distance of 3s−2− 1

apart (including glues with strength 0) that allow for

the stable binding of these supertiles to form a supertile

Cs
j corresponding to Ss. For i′ ∈ N such that 1 ≤ i′ ≤ 8,

since the distance between the 2 glues that allow for

two supertiles Cs−1
(i,j) and Cs−1

(i′,j) to bind is 3s−2 − 1, one

can observe that for p, q ∈ N such that p, q ≥ 2, Cp
(i,j)

can bind to some Cq
(i′,j′) for some i′ and j′ iff p = q

and j = j′. Moreover, by definition of the grout tile

types, specific edges of tiles of Cs
j will expose indica-
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Fig. 12: An example where grout tiles have “turned a corner too early”. The grout tiles are shown in aqua, fuchsia, yellow,
and orange. Note that C3

8 and C3
7 only have partial grout, though both have grout supertiles with stage-binding glues as is

required for C4
1 to be stable. In this case, when a grout supertile shown in orange binds, a g2,j is exposed that will eventually

allow for grout tiles to continue to bind to the southernmost tiles of C4
1 , but only after a sufficient number of grout supertiles

bind to C3
7 .

tor glues which are analogous to the indicating glues

of Cs−1
j , only at distance 3s−1 − 1 apart.

3.1.1.4 Correctness for the Sierpiński carpet construc-

tion

To prove that the tile set, T , gives a 2HAM TAS

T = (T, 2) that finitely self-assembles S, we note that

by construction, for any finite producible supertile α of

T and for any s ∈ N, there exists positive integers k,

and j, and an assembly sequence α = 〈αi〉ki=0 such that

α0 = α and αk is a Cs
j supertile. Therefore, any finite

producible supertile α of T has the shape of a subset

of points in S. Moreover, for any finite producible su-

pertile α of T , there exists an assembly sequence which

starts with α and results in a supertile that has shape

of S. Therefore, we see that T finitely self-assembles S.

3.2 Self-assembly of 4-sided fractals

The construction that shows that any 4-sided fractal

finitely self-assembles in the 2HAM at scale factor 1

(Theorem 1) is a generalization of the construction given

in Section 3.1. Let G be the generator for a 4-sided

fractal and recall the notation of LG, RG, BG, and TG
defined in Section 2.2. We will describe a tile set T

such that X finitely self-assembles in the 2HAM sys-

tem T = (T, 2). As an example, consider the generator

in Figure 13a. Stage 2 of this fractal is depicted in Fig-

ure 13b.

Lemma 1 will be helpful for showing Theorem 1.

This lemma states that if X is a fractal with a gen-

erator G such that G only contains points along its

(a) Stage 1

(b) Stage 2

Fig. 13: Two stages of a 4-side fractal.

perimeter, then X finitely self-assembles in the 2HAM

at temperature 2.

Lemma 1 Let X be a 4-sided fractal with generator G

such that G\(LG∪LG∪TG∪BG) = ∅. Then, there exists

a 2HAM TAS TX = (T, 2) that finitely self-assembles

X.

Proof (Sketch) For s ∈ N, let Xs denote the sth stage

of X, and let r = |G|. We note that the construction

given in Section 3.1 generalizes in a straightforward way

to give a tile set T satisfying Lemma 1. For example,

10



given the generator in Figure 14a, the modifications

to the construction given in Section 3.1 are as follows.

Once again, we consider two types of tiles in T which

we call initializer tiles and grout tiles.

3.2.1 The initializer tile types for Lemma 1.

Let X ′2 denote the set of points in X2 that are not

on the perimeter of X2. Figure 14b depicts the points

of an example X ′2. initializer tiles of T now hard-

code r different versions of X ′2. For i between 1 and r

(inclusive), we call these hard-coded supertiles Γ 2
i . We

note that as there is a Hamiltonian path in the full grid-

graph of X ′2, the glues of the initializer tiles can be

specified so that Γ 2
i completely assembles prior to being

a subassembly of any other producible supertile.

In addition to hard-coding the shape of X ′2, ini-

tializer tiles are specified so that once Γ 2
i has com-

pletely self-assembled:

1. the north edges of northernmost tiles expose a gn or

ĝn such that the westernmost tile and every other

tile from west to east exposes gn and the remaining

northernmost tiles expose a ĝn,

2. the east edges of easternmost tiles expose a ge or ĝe

such that the northernmost tile and every other tile

from north to south exposes ge and the remaining

easternmost tiles expose a ĝe,

3. the south edges of southernmost tiles expose a gs

or ĝs such that the easternmost tile and every other

tile from east to west exposes gs and the remaining

southernmost tiles expose a ĝs, and finally,

4. the west edges of westernmost tiles expose a gw or

ĝw such that the southernmost tile and every other
tile from south to north exposes gw and the remain-

ing westernmost tiles expose a ĝw.

Edges of tiles in Γ 2
i in “key locations” expose special

glues ĝi and gi which we call indicator glues. At these

key locations, gi is exposed instead of a gn, gs, ge, or gw

and ĝi is exposed instead of a ĝn, ĝs, ĝe, or ĝw. These

key locations of the tiles in Γ 2
i that expose these glues

are shown as red squares in Figure 14b. In general, these

key locations will be the second to westernmost (resp.

northernmost) and second to easternmost (resp. south-

ernmost) tile locations of the northernmost (resp. east-

ernmost) and southernmost (resp. westernmost) tile lo-

cations. Whether or not Γ 2
i exposes indicator glues

at these key locations depend on i. In particular, if the

ith location in G is adjacent to some other point that

is north (resp. south, east, or west) of it, then, Γ 2
i will

expose indicator glues on the north (resp. south, east,

or west) edges of tiles in northernmost (resp. southern-

most, easternmost, or westernmost) key locations. ind-

icator glues in these key locations serve the same pur-

pose to the indicator glues described in Section 3.1.1.

(a)

(b)

Fig. 14: (a) An example generator for the 4-sided fractals
considered in Lemma 1. (b) A depiction of X′2. Red squares
indicate possible locations of indicator glues ĝi and gi.

3.2.2 The grout tile types for Lemma 1.

With the “base case” hard-coded to give Γ 2
i , we are

now ready to describe grout tiles. grout tiles will be

almost identical to the grout tiles described in Sec-

tion 3.1 with the exception that now the grout tiles

must hard-code analogous though elongated versions of

grout supertiles from Section 3.1. For example, elon-

gated version of start-gadget supertiles that initiate

the binding of grout tiles to Γ 2
1 is shown on the left in

Figure 15. grout tiles of T are hard-coded to form sim-

ilar “elongated” versions of grout supertiles to those

described in Section 3.1. The only difference being that

now these supertiles must span a distance of wG be-

tween easternmost or westernmost tiles of Γ 2
i and must

span a distance of hG between northernmost or south-

ernmost tiles of Γ 2
i in order to cooperatively bind.

Now, grout tiles fall into r different classes where

each class corresponds to a position in G. For some

class j between 1 and r (inclusive), grout tiles of class

j bind to Γ 2
i for each i such that 1 ≤ i ≤ r. Then, gro-

ut tiles bind to the indicator glues of edges of tiles of

Γ 2
i in the key locations described above, the resulting
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Fig. 15: “Elongated” versions of the supertiles that initiates
the attachment of grout tiles to a supertile Γ s

1 (left), where
s ≥ 3, or Γ2

1 (right). These are elongated versions of the sta-

rt-gadget supertiles shown in Figure 3a.

supertiles, which we call Γ 2
(i,j), further expose stag-

e-binding glues on edges of tiles adjacent to tiles in

key locations such that the presence of these glues en-

ables the supertiles Γ 2
(i,j) to bind and form a supertile

that corresponds to the subsequent stage X3. Moreover,

once all Γ 2
(i,j) supertiles bind, a start-gadget super-

tile (like the one depicted on the left in Figure 15) can

then initiate the binding of more grout tiles. Further-

more, by defining certain stage-binding glues to have

strength 0, analogous to Table 1, we can enforce that

such a supertile that initiates the binding of grout tiles

(start-gadget supertiles) can bind only after all Γ 2
(i,j)

supertiles are subassemblies of the same supertile. We

call this latter supertile, that corresponds to X3, Γ 3
j .

For a stage s > 3, the self-assembly of supertiles, Γ s
j ,

which correspond to Xs is similar to the self-assembly

of supertiles Cs
j for the Sierpiński carpet given in Sec-

tion 3.1.1. Finally, glue definition similar to Table 2 can

be given for grout tiles so that appropriate indicator

glues are exposed by tiles belonging to Γ 3
j to ensure

that Γ 3
j exposes indicator glues so that the next itera-

tion of grout supertiles to bind expose stage-binding

glues in specific locations. These specific locations are

chosen so that for s ≥ 2, the distance between the ind-

icator glues of some Γ s
j is a strictly increasing function

of s, which ensures that two such supertiles can bind iff

they correspond to the same stage of the fractal X.

Similar to the Sierpiński carpet construction, we can

see that the initializer tiles self-assemble supertiles

that correspond to X2 and that grout tiles can attach

to supertiles that correspond to Xs for some stage s ≥ 2

to form supertiles that bind to yield a supertile corre-

sponding to Xs+1. Therefore, with tiles T , the 2HAM

system T = (T, 2) finitely self-assembles X. Therefore,

Lemma 1 holds. Now we are ready to prove Theorem 1.

3.3 Proof of Theorem 1 (Sketch)

Let X be a 4-sided dssf with generator G and let r =

|G|. In this section, we give a sketch of the proof of

Theorem 1 by describing how to modify the tile set

give in the proof of Lemma 1 to obtain a tile set T such

that the 2HAM TAS T = (T, 2) finitely self-assembles

X. Figure 13a gives an example of a generator G where

we enumerate the points of G from left to right, from

top to bottom. Now let Gint = G\(LG∪RG∪TG∪BG)

(i.e. the points of G that are not on the perimeter of

G), and let Gbdry be G \Gint.

(a)

(b)

Fig. 16: (a) A depiction of G−1 for the generator in Figure 13a.
(b) A depiction of G− for the generator in Figure 13a.

By Lemma 1 there is a 2HAM system T ′ which

finitely self-assembles the dssf with generator Gbdry. Let

T ′ be the tile set for T ′ as described in the construction

for Lemma 1. We will show how to modify the tile set

T ′ to obtain T .

3.3.1 Self-assembly of stage 2 for 4-sided fractals

Let G1 denote the full grid-graph of G and let G−1 denote

the full grid-graph of Gint. Note that it is not neces-

sary for G−1 to be connected. Also note that G−1 may be
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Fig. 17: A depiction of Γ2
i . This is the portion of the second

stage of the fractal with generator in Figure 13a that is hard-
coded to self-assemble. It is analogous to the second stages
that assemble shown in Figure 14b for the construction for
Lemma 1.

Fig. 18: A depiction of Γ2
(12,j)

for some j ∈ N corresponding to

the j class of grout. Note the glues that are exposed on tiles
adjacent to tiles with indicator glues (red tiles). In this case,
as position 12 in the generator G is in Gint, grout supertiles
bind to on all four sides of Γ2

12. grout supertiles that bind
to indicator glues expose stage-binding glues which allow
Γ2
(12,j)

to bind in position 12 during the self-assembly of a Γ3
j

supertile.

empty if G = LG ∪RG ∪TG ∪BG as in the case for the

Sierpiński carpet dssf. An example of G−1 for the gener-

ator shown in Figure 13a is shown in Figure 16a where

vertices correspond to squares and there is assumed to

be an edge between two vertices iff these squares abut.

Now let G denote the full grid-graph of X2. Let G− be

the (not necessarily connected) graph obtained by re-

moving the northernmost, southernmost, easternmost,

and westernmost points from G. For the generator given

in Figure 13a, G− is shown in Figure 16b. Finally, let

Gc be the connected component of G− that is not equal

to a connected component of G−1 up to translation. See

Figure 17 for an example of Gc for the generator shown

in Figure 13a.

Then, the initializer tiles of T are hard-coded

to self-assemble r different versions of Gc which we call

Γ 2
i for 1 ≤ i ≤ r. Similar to the initializer tiles de-

scribed in the proof of Lemma 1, each Γ 2
i contains tiles

in key locations (defined as in Lemma 1) that expose

indicator glues that depend on the value of i. These

initializer tiles can be thought of as being equivalent

to the initializer tiles of T ′, appropriately modified

with additional glues and additional tiles that hard-

code the stage 1 subassemblies of initializer super-

tiles whose positions in the Γ 2
i correspond to the points

of Gint. In the example in Figure 17, these additional

tiles self-assemble at locations 9, 12, 13, 14, 17, and 18

within stage-1 subassemblies at locations 8 through 28,

as well as self-assemble entire stage-1 subassemblies at

locations 9, 12, 13, 14, 17, and 18. Figure 17 depicts

the locations of tiles of Γ 2
i for the generator in Fig-

ure 13a, where red tiles may contain edges with ind-

icator glues.

3.3.2 Tile types for grout tiles.

The grout tile types of T consist of tile types that are

equivalent to the grout tile types of T ′ with additional

glues along with additional tile types that hard-code

the appropriate stage 1 growth that complete any sub-

assembles that represent X1. Figure 18 gives an exam-

ple of Γ 2
12 with complete grout. In this particular exam-

ple, grout tiles have been hard-coded to place tiles in

locations corresponding to X1 as the grout tiles bind

to the northernmost tiles of Γ 2
12. grout tiles are added

for each i between 1 and r (inclusive) and as in Fig-

ure 18, grout tiles may bind to some Γ 2
i where i cor-

responds to a point in Gint. In this case, grout tiles

can be defined to completely surround Γ 2
i (or Γ s

i for

s > 2) and expose appropriate stage-binding glues

at key locations. stage-binding glues ensure that for

all i and j both between 1 and 8 (inclusive), once a

sufficient number of grout tiles bind to each Γ 2
i , the

resulting supertiles, which we again call Γ 2
(i,j) (or Γ s

(i,j)

for s > 2) can bind to yield a supertile corresponding

to X3 (or Xs for s > 2). We call this latter supertile

Γ 3
j (or Γ s+1

j for s > 2). Figure 19 depicts Γ 3
j .

As T is based on T ′, the assembly sequences of each

system share similarities that are important to note. For

a stage s ∈ N, and j such that 1 ≤ j ≤ 8, let Γ ′sj be the

supertile producible in T ′ corresponding to X ′s. Note

that as the tile types in T are based on tile types in

T ′, in an assembly sequence for Γ s
j , the tiles in Γ s

j with

locations (up to some fixed positioning of the supertile)

corresponding to points of Gbdry (at any stage) must

bind in an order corresponding to some assembly se-

quence of Γ ′sj . In other words, the portion of the fractal
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Fig. 19: A schematic picture of Γ3
j . Note the red tile locations where tiles with indicator glues (red tiles) will be present. Also

note that grout supertiles that bind to the northernmost tiles of the supertile depicted here hard-code the placement of tiles
in locations corresponding to X1.

X equal to X ′ must self-assemble following an assem-

bly sequence in T analogous to an assembly sequence in

T ′. The analogous assembly sequence can be obtained

by ignoring any supertile combinations that involve a

supertile corresponding to points of Gint at any stage.

Therefore, X ′ finitely self-assembles in T . The addi-

tional initializer and grout tiles are defined to “fill

in” tile locations in X that are not in X ′ by nonde-

terministically binding, following one of many possible

assembly sequences.

Finally, the initializer tiles assemble a supertile

that corresponds to X2, and grout supertiles tiles can

attach to supertiles that correspond to Xs for some

stage s ≥ 2 to form supertiles that bind to yield a

supertile corresponding to Xs+1. Therefore, with tiles

T , the 2HAM system T = (T, 2) finitely self-assembles

X. Therefore, Theorem 1 holds.

4 A 3-sided Fractal That Does Not Finitely

Self-assemble

In this section we prove that there exist 3-sided fractals

that do not finitely self-assemble in the 2HAM.

Theorem 2 There exists a 3-sided fractal X for which

there is no 2HAM TAS TX = (T, τ) that finitely self-

assembles X for any temperature τ ∈ N.

To prove Theorem 2, we consider the fractal with

generator G = {(0, 4), (1, 4), (2, 4), (3, 4), (0, 3), (2, 3),

(0, 2), (2, 2), (0, 1), (0, 0), (1, 0), (2, 0), (3, 0)}. Stages 1

and 2 of this fractal are shown in Figure 20. We refer to

this fractal as X. For a stage s ∈ N, we refer to the ith

position of Xs as Xs
i where 1 ≤ i ≤ 13 (Figure 20a).

We call a supertile with shape Xs γs, and when such a

supertile is a subassembly of some γs+1 and corresponds

to points location i, we denote such assemblies by γsi .

(a) Stage 1 (b) Stage 2

Fig. 20: X1 and X2

(a) (b)

Fig. 21: Strength τ cuts in γ1 and γ2

For the sake of contradiction, assume that TX =

(T, τ) is a 2HAM TAS such thatX finitely self-assembles

in TX . Consider any 2HAM TAS TX = (T, τ). We show

that TX does not finitely self-assemble X by showing

14



Fig. 22: There are at least s strength τ cuts within each su-
pertile γs. Here γ3 with 3 strength τ cuts is shown. The sub-
assembly to the south of the rightmost cut is referred to as
β1, the subassembly to the south of the next rightmost cut
as β2, and the subassembly to the south of the leftmost cut
as β3.

that there is a producible supertile α ∈ A�[TX ] that

does not have the shape of of any subset of X.

Then, for any s ∈ N, and for every supertile α such
that α contains a γs subassembly, there is a stage 1 sub-

assembly γ1 of γs9 such that this stage 1 subassembly

contains a strength τ cut between γ19 and γ110 that sep-

arates some γs10, γs11, γs12, and γs13 subassemblies, along

with a sequence of subassemblies γi10, γi11, γi12, and γi13,

i < s, from the rest of γs. For an example of such a

cut, see the bottom left cuts shown in Figure 21b for

s = 2 and in Figure 22 for s = 3. Then note that for

any s > 2, γs8 has a γs−1 subassembly which contains a

similar strength τ cut between two tiles γ19 and γ110 in

the γ1 subassembly directly above γs−110 .

Then γs8 has a subassembly γ1 which contains a sin-

gle strength τ cut between γ19 and γ110 (shown as the

cut on the right in Figure 21b). We also note that when

s = 1 there is one strength τ cut between γs9 and γs10.

Therefore every supertile α such that there exists A ∈ α
with Xs ⊆ A contains a sequence of s strength τ cuts

between positions 9 and 10 of s distinct stage 1 sub-

assemblies. An example of this for s = 3 is shown in

Figure 22.

Fig. 23: An example of erroneous binding within γ5. Because
of the large number of tiles some of the γ3 subassemblies are
shown as rectangles. In this example, a τ strength cut is shown
in the bottom right circle. The subassembly of γ5 containing
the tile to the north of this cut is α2 and the subassembly
containing the tile to the south of this cut is βs′ .

Let g be the number of tiles in T . Consider a pro-

ducible supertile α such that there exists A ∈ α with

Xg+2 ⊆ A. Within α there is a γg+2 subassembly with

some γg+1
6 as a subassembly. As we have shown, this

γg+1
6 contains a sequence of g+ 1 strength τ cuts, each

consisting of a single glue. By the pigeonhole princi-

ple, there are at least two such cuts that consist of the

same single τ strength glue. Let the subassembly to the

south of the cut within γ1 be called β1, the subassem-

bly to the south of the cut within γ29 be called β2, etc.,

with the subassembly to the south of the cut within

γg+1
9 called βg+1 (see Figure 22 for an example of β1,

β2, and β3). Consider two cuts directly above βs and

βs′ with s′ > s that contain the same glue. Let α2 be α

with subassemlies of βs, βs+1, . . . , βs′ removed. We will

show that α2 and βs′ are producible assemblies. Addi-

tionally, we notice that between Xg+2
8 and Xg+2

12 there

is enough room to fit an entire stage Xg+1, and since

s′ ≤ g + 1, erroneous binding of α2 and βs′ cannot be

prevented. Figure 23 depicts an example of such erro-

neous binding within a γ5 supertile. Hence α2 and βs′

are τ -combinable into some supertile χ ∈ A[TX ]. Then,

note that for all A ∈ χ, the set of all tile locations of

tiles in A is not contained in ⊆X. Therefore, TX does

not finitely self-assembly X.
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To complete the proof, we now show that the sub-

assemblies α2 and βs′ are producible. If one of α2 or

βs′ is not producible, then the binding graph of that

one must contain a cut with strength less than τ . How-

ever, since every βi, 1 ≤ i ≤ g + 1, is connected to α

by a singe strength-τ glue between two single tiles, if

the the binding graph of α2 or βs′ contains a cut with

strength less than τ , then α would contain the same

cut with strength less than τ . This contradicts the as-

sumption that α is producible. Hence α2, βs′ ∈ A[TX ].

Thus, Theorem 2 holds.

5 Conclusion

Theorem 1 shows that any 4-sided dssf finitely self-

assembles in the 2HAM at temperature 2 and with

scale factor 1. Theorem 2 shows that there exists a 3-

sided fractal that does not finitely self-assemble in any

2HAM system at any temperature. For a 4-sided frac-

tal generator G, the presence of a Hamiltonian cycle in

the full grid graph of the points on the perimeter of G

proved helpful in our construction. Similar techniques

to those described in Section 3 might be used to show

that a much more general class of fractals finitely self-

assembles in the 2HAM at temperature 2 with scale

factor 1. In particular, a fractal belonging to this class

can be described as having a generator such that 1)

the full grid-graph of the generator contains a Hamil-

tonian cycle through each point in the generator and

2) the northernmost, southernmost, easternmost, and

westernmost points of the generator each contain 2 dis-

tinct points. An example of such a fractal is shown in

Figure 24

Fig. 24: Do fractals with generators like the one depicted in
this figure finitely self-assemble in the 2HAM?
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A Tiles for Sierpinski’s Carpet Construction

We describe the supertiles that consist of grout tiles for the Sierpinski’s carpet construction. Tile types are defined

so that eight different versions of each of the supertiles in each figure self-assemble, corresponding to the eight

grout classes. In each figure, j ∈ N is such that 1 ≤ j ≤ 8, and tiles of supertiles belong to grout class j.

Depending on the value of j, for k ∈ N such that 1 ≤ k ≤ 8, the glues hk,j , ĥk,j , h
∗
1,j , and ĥ∗1,j are defined to

either have strength 1 or 0. Table 1 describes glue strengths for these glues for each j. In addition, depending on

the value of j, for p ∈ {2, 4, 5, 7}, glues with labels ĝp,j and ḡp,j are defined in Table 2.

A.1 start-gadget tile types

Figures 25 and 26 depict start-gadget tile types.

(a) The supertiles that start the
growth of grout for Cs

3 for s ≥ 2.
(b) The supertiles that start the
growth of grout for Cs

4 for s ≥ 2.

(c) The supertiles that start the
growth of grout for Cs

5 for s ≥ 2.

Fig. 25: start-gadget tile types

(a) The supertiles that start the
growth of grout for Cs

6 for s ≥ 2.
(b) The supertiles that start the
growth of grout for Cs

7 for s ≥ 2. (c) The supertiles that start the
growth of grout for Cs

8 for s ≥ 2.

Fig. 26: More start-gadget tile types

A.2 crawler tile types
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Fig. 27: The tiles and supertiles that bind to the south side of Cs
3 for s ≥ 2.

Fig. 28: The tiles and supertiles that bind to the west side of Cs
3 for s ≥ 2.

Fig. 29: The tiles and supertiles that bind to the north side of Cs
4 for s ≥ 2.

Fig. 30: The tiles and supertiles that bind to the east side of Cs
4 for s ≥ 2.
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Fig. 31: The tiles and supertiles that bind to the south side of Cs
4 for s ≥ 2.

Fig. 32: The tiles and supertiles that bind to the north side of Cs
5 for s ≥ 2.

Fig. 33: The tiles and supertiles that bind to the south side of Cs
5 for s ≥ 2.

Fig. 34: The tiles and supertiles that bind to the west side of Cs
5 for s ≥ 2.
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Fig. 35: The tiles and supertiles that bind to the north side of Cs
6 for s ≥ 2.

Fig. 36: The tiles and supertiles that bind to the east side of Cs
6 for s ≥ 2.

Fig. 37: The tiles and supertiles that bind to the north side of Cs
7 for s ≥ 2.

Fig. 38: The tiles and supertiles that bind to the east side of Cs
7 for s ≥ 2.
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Fig. 39: The tiles and supertiles that bind to the west side of Cs
7 for s ≥ 2.

Fig. 40: The tiles and supertiles that bind to the north side of Cs
8 for s ≥ 2.

Fig. 41: The tiles and supertiles that bind to the west side of Cs
8 for s ≥ 2.
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