Skip to main content

Advertisement

Log in

A survey on traffic optimization problem using biologically inspired techniques

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Nature is a great source of inspirations for solving complex computational problems. The inspirations can come from any source like some theory of physics or chemistry, a mathematical concept or from the biological world. Several biologically inspired techniques are implemented in various areas of research and development. These technologies can be grouped into two broad segments: Evolutionary and Swarm based depending on the nature of inspiration. This paper presents an overview of these biologically inspired techniques and its various implementations for traffic optimization with an objective to optimize congestion, minimize wait time, improve safety and reduce pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdulaal M, LeBlanc L (1979) Continuous equilibrium network design models. Transp Res Part B 13:19–32

    MATH  Google Scholar 

  • Allsop RE, Charlesworth JA (1977) Traffic in a signal-controlled road network: an example of different signal timings including different routings. Traffic Eng Control 18(5):262–264

    Google Scholar 

  • Alves D, Jelmer V, Zhe C, De Schutter B, Babushka R (2010) Ant colony optimization for traffic dispersion routing. In: 13th international IEEE, annual conference on intelligent transportation systems 2013, pp 683–688

  • Babazadeh A, Poorzahedy H, Nikoosokhan S (2011) ‘Application of particle swarm optimization to transportation network design problem. J King Saud Univ—Sci 23:293–300

    Google Scholar 

  • Barra1 A, Carvalho L, Teypaz N, Cung VD, Balassiano R (2007) Solving the transit network design problem with constraint programming. In: 11th world conference in transport research-WCTR. University of California, Berkeley, USA

  • Baskan O (2014a) An evaluation of heuristic methods for determining optimal link capacity expansions on road network. Int J Transp 2:77–94

    Google Scholar 

  • Baskan O (2014b) ‘Harmony search algorithm for continuous network design problem with link capacity expansions. KSCE J Civ Eng 18(1):273–283. https://doi.org/10.1007/s12205-013-0122-6

    Article  Google Scholar 

  • Baskan O, Ceylan H (2014) Modified differential evaluation algorithm for the continuous network design problem. Procedia—Soc Behav Sci 111:48–57

    Google Scholar 

  • Baskan O, Dell’Orco M (2012) Artificial bee colony algorithm for continuous network design problem with link capacity expansions. In: 10th international congress on advances in civil engineering, Middle East Technical University, Ankara, Turkey, pp17–19

  • Baskan O, Haldenbilen S (2011) Ant colony optimization approach for optimizing traffic signal timings. In: Ant colony optimization-methods and application, InTech, pp 205–220, ISBN 978-953-307-157-2

  • Baskan O, Haldenbilen S, Ceylan H, Ceylan H (2009) A new solution algorithm for improving performance of ant colony optimization. Appl Math Comput 211(1):75–84. https://doi.org/10.1016/j.amc.2009.01.025

    Article  MathSciNet  MATH  Google Scholar 

  • Bedi P et al. (2007) Avoiding traffic jam using ant colony optimization—a novel approach. In: International conference on computational intelligence and multimedia applications, 2007, vol 1, pp 61–67, ISBN:0-7695-3050-8

  • Bhattacharjee K, Naskar N, Roy S, Das S (2018) A survey of cellular automata: types, dynamics, non-uniformity and applications’ natural computing. Springer, Netherlands. https://doi.org/10.1007/s11047-018-9696-8

    Book  Google Scholar 

  • Cantarella GE, Pavone G, Vitetta A (2006) Heuristics for urban road network design: lane layout and signal settings. Eur J Oper Res 175(3):1682–1695

    MATH  Google Scholar 

  • Ceylan H (2006) Developing combined genetic algorithm–hill-climbing optimization method for area traffic control. J Trans Eng 132(8):663–671

    Google Scholar 

  • Ceylan H (2013) Optimal design of signal controlled road networks using differential evaluation optimization algorithm. Math Probl Eng 2013:1–11

    MathSciNet  MATH  Google Scholar 

  • Ceylan H, Bell MGH (2004) Traffic signal timing optimisation based on genetic algorithm approach, including drivers’ routing. Trans Res Part B 38(4):329–342

    Google Scholar 

  • Ceylan H, Ceylan H (2012) A hybrid harmony search and TRANSYT hill climbing algorithm for signalized stochastic equilibrium transportation networks. Transp Res Part C 25:152–167

    Google Scholar 

  • Chen S, Chen R, Gao J (2017) ‘A monarch butterfly optimization for the dynamic vehicle routing problem. Algorithms 10(3):107

    MathSciNet  MATH  Google Scholar 

  • Creel ND, Maker MJ, Paechter B (1998) ‘The continuous equilibrium optimal network design problem: a genetic approach’ transportation network: recent methodological advances. In: Proceedings of the 4th Euro Transportation Meeting, ISBN:0 08 043052 X

  • Daganzo CF, Sheffi Y (1977) On stochastic models of traffic assignment. Transp Sci 11(3):253–274

    Google Scholar 

  • Dantzig GB, Harvey RP, Lansdowne ZF, Robinson DW, Maier SF (1979) Formulating and solving the network design problem by decomposition. Transp Res Part B 13(1):5–17

    Google Scholar 

  • Dell’Orco M, Baskan Ö, Marinel M (2014) ‘Artificial bee colony-based algorithm for optimising traffic signal timings. Adv Intell Syst Comput, pp 327–337. https://doi.org/10.1007/978-3-319-00930-8_29

  • Dimitriou L, Tsekeris T, Stathopoulos A (2008) ‘Genetic computation of road network design and pricing Stackelberg games with multi-class users. Applications of evolutionary computing of the series. Lecture Notes in Computer Science, vol 4974, pp 669–678

  • Dinu S, Bordea G (2011) A new genetic approach for transport network design and optimization. Bull Pol Acad Sci Tech Sci 59(3):263–272. https://doi.org/10.2478/v10175-011-0032-z

    Article  MATH  Google Scholar 

  • Divsalar M, Hassanzadeh R, Mahdavi I, Shirazi B (2016) A stochastic user equilibrium assignment problem in discrete network design problem. Int J Oper Res 26(4):422–442

    MathSciNet  MATH  Google Scholar 

  • Dorigo M (1992) Optimization, learning and natural algorithms’, Ph.D. Thesis, Politecnico DI Milano, Italy

  • Dorigo M, Stutzle T (2004) ‘Ant colony optimization-a bradford book’. The MIT Press, Cambridge, ISBN 0-262-04219-3

  • Dorigo M, Maniezzo V, Colorni A (1996) The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern- Part B 26(1):1–13

    Google Scholar 

  • Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on, vol. 4, ISBN: 0-7803-2768-3

  • Elbeltagia E, Hegazyb T, Griersonb D (2004) Comparison among five evolutionary -based optimization algorithms. Adv Eng Inform 19(2005):43–53

    Google Scholar 

  • Farahani RZ, Miandoabchi E, Szeto WY, Rashidi H (2013) A review of urban transportation network design problems. Eur J Oper Res 229(2):281–302

    MathSciNet  MATH  Google Scholar 

  • Feng Y, Wang G-G, Deb S, Mei L, Zhao X-J (2017) Solving 0–1 knapsack problem by a novel binary monarch butterfly optimization. Neural Comput Appl 28(7):1619–1634

    Google Scholar 

  • Fisk CS (1988) On combining maximum entropy trip matrix estimation with user assignment. Transp Res 22B:69–73

    MathSciNet  Google Scholar 

  • Friesz TL (1985) Transportation network equilibrium, design and aggregation: key developments and research opportunities. Transp Res Part A 19(5–6):413–427

    Google Scholar 

  • Friesz TL, Cho HJ, Mehta NJ, Tobin RL, Anandalingam G (1992) A simulated annealing approach to the network design problem with variational inequality constraints. Transp Sci 26(1):18–26

    MATH  Google Scholar 

  • Garcia Nieto J, Alba E, Olivera AC (2010) Swarm intelligence for traffic light scheduling: application to real urban area. Eng Appl Artif Intell 25:274–283

    Google Scholar 

  • Goldberg DE (2006) Genetic algorithms. Pearson Education India, Delhi, ISBN 817758829X, 9788177588293

  • Hirulkar P, Deshpande R, Bajaj P (2013) Optimization of traffic flow through signalized intersections using PSO. Int J Comput Sci Appl 3:434–437

    Google Scholar 

  • Hu H (2009) A particle swarm optimization algorithm for bi-level programming models in urban traffic equilibrium network design. ICCTP 2009:1–7

    Google Scholar 

  • Hu W, Wang H, Yan L, B Du (2016) A swarm intelligent method for traffic light scheduling: application to real urban traffic networks. Appl Intell 44:208–231. https://doi.org/10.1007/s10489-015-0701-y

    Article  Google Scholar 

  • Jintamuttha K, Watanapa B, Charoenkitkarn N (2016) ‘Dynamic traffic light timing optimization model using bat algorithm. In: 2nd international conference on control science and systems engineering, pp 181–185

  • Kanoh H, Hara K (2008) Hybrid genetic algorithm for dynamic multi-objective route planning with predicted traffic in a real-world road network’. In: GECCO’08, Atlanta, Georgia, USA, pp 657–664

  • Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8:687–697

    Google Scholar 

  • Koh A (2007) Solving transportation Bi-level problem with differential evaluation. In: IEEE congress on evolutionary computing, pp 2243–2250, ISBN-978-1-4244-1340-9

  • Koza JR (1992) Genetic programming- on the programming of computers by means of natural selection. MIT Press Edition, Cambridge. ISBN 0-262-11170-5

    MATH  Google Scholar 

  • LeBlanc LJ (1975) An algorithm for the discrete network design problem. Transp Sci 9:183–199

    Google Scholar 

  • Liangzhi Z, Minai H (2010) Study on road network Bi-level programming under the traffic flow guidance. In: International conference on measuring technology and mechatronics automation. pp 631–634. https://doi.org/10.1109/icmtma.2010.362

  • Liangzhi Z, Lutao B, Liangzhi Z (2010) Model for road network equilibrium Bi-level programming based on rough genetic algorithm. Adv Comput Control (ICACC), pp 83–85, ISSN978-1-4244-5848-6/10

  • Liu Q, Xu J (2012) ‘Traffic signal timing optimization for isolated intersections based on differential evaluation bacteria foraging algorithm’. In: Proceeding—social and behavioural sciences, 8th international conference on traffic and transportation studies, vol 43, pp 210–215

  • Magnanti TL, Wong RT (1984) Network design and transportation planning: models and algorithms. Transp Sci 18(1):1–55

    Google Scholar 

  • Mathew TV, Shrama S (2009) Capacity expansion problem for large urban transportation networks. J Transp Eng 135(7):406–415

    Google Scholar 

  • Miandoabchi E, Farahani RZ (2010) Optimizing reserve capacity of urban road networks in a discrete network design problem. Adv Eng Softw 42(12):1041–1050

    MATH  Google Scholar 

  • Migdalas A (1995) Bilevel programming in traffic planning: models, methods and challenge. J Glob Optim 7:381–405

    MathSciNet  MATH  Google Scholar 

  • Montana DJ, Czerwinski S (1996) Evolving control laws for a network of traffic signals. In: Proceedings of the 1st annual conference on genetic programming. pp 333–338, ISBN:0-262-61127-9

  • Poorzahedy H, Abulghasemi F (2005a) Application of ant system to network design problem. Transportation 32(3):251–273. https://doi.org/10.1007/s11116-004-8246-7

    Article  Google Scholar 

  • Poorzahedy H, Abulghasemi F (2005b) Application of ant system to network design problem. Transportation 32:251–273

    Google Scholar 

  • Poorzahedy H, Rouhani OM (2007a) Hybrid meta-heuristic algorithms for solving network design problem. Eur J Oper Res 182(2):578–596

    MathSciNet  MATH  Google Scholar 

  • Poorzahedy H, Rouhani OM (2007b) Hybrid meta-heuristic algorithms for solving network design problems. Eur J Oper Res 182:578–596

    MathSciNet  MATH  Google Scholar 

  • Sahana SK, Kumar K (2014) ‘Hybrid synchronous discrete distance time model for traffic signal optimization’, In: Series smart innovation, systems and technologies, book computational intelligence in data mining, Springer India, vol 31, pp 23–33. Print: ISBN- 978-81-322-2204-0, Online: ISBN- 978-81-322-2205-7, https://doi.org/10.1007/978-81-322-2205-7_3

  • Shefi Y (1985) ‘Urban transportation network: equilibrium analysis with mathematical programming method. Traffic engineering control, Prentice-Hall, ISBN 0-13-93-9729

  • Shen-Pei Z, Xin-Ping Y (2009) ‘The fusion algorithm of genetic and ant colony and its application. In: Fifth international conference on natural computation, pp 76–80, 978-0-7695-3736

  • Simaan M, Cruz JB Jr (1973) On the Stackelberg strategy in nonzero-sum games. J Optim Theory Appl 11:533–555

    MathSciNet  MATH  Google Scholar 

  • Sivanandam SN, Deepa SN (2008) Introduction to genetic algorithms. Springer, Berlin, ISBN10:354073189X, online ISBN 978-3-540-73190-0

  • Srivastava S, Sahana SK (2015) ‘ACONN—a multicast routing implementation. Comput Intell Data Min 2:133–141

    Google Scholar 

  • Srivastava S, Sahana S (2016) Nested hybrid evolutionary model for traffic signal optimization. Applied intelligence. Springer, Berlin, pp 1–11

    Google Scholar 

  • Srivastava Sweta, Sahana Sudip, Pant Durgesh, Mahanti Prabhat (2015) Hybrid synchronous discrete distance, time model for traffic signal optimization. J Next Gener Inf Technol 6:1–8

    Google Scholar 

  • Storn and Price (1995) ‘Differential evaluation—a simple and efficient adaptive scheme for global optimization over continuous spaces’. J Glob Optim 23(1)

  • Sun Z (2016) Continuous transportation network design problem based on bilevel programming model. Procedia Eng 137:277–282

    Google Scholar 

  • Suwansirikul C, Friesz TL, Tobin RL (1987) Equilibrium decomposed optimisation: a heuristic for the continuous equilibrium network design problem. Transp Sci 21(4):254–263

    MATH  Google Scholar 

  • Tianze X, Wei H, Wang Z-D (2009) Study on continuous network design problem using simulated annealing and genetic algorithm’. Expert Syst Appl 36:2735–2741

    Google Scholar 

  • Ukkusuri S, Kien Doan HM, Aziz A (2013) A Bi-level formulation for the combined dynamic equilibrium based traffic signal control. Procedia—Soc Behav Sci 80:729–752

    Google Scholar 

  • Wang G-G (2016a) Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memet Comput 10(2):151–164

    Google Scholar 

  • Wang G-G (2016b) ‘A new metaheuristic optimisation algorithm motivated by elephant herding behaviour. Int J Bio-Inspir Comput 8:394–409

    Google Scholar 

  • Wang J, Deng W (2018) Optimizing capacity of signalized road network with reversible lanes. Transport 33(1):1–11

    Google Scholar 

  • Wang G-G, Guo L, Wang H, Duan H, Liu L, Li J (2012) ‘Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871

    Google Scholar 

  • Wang G-G, Guo L, Gandomi AH, Alavi AH, Duan H (2013a) Simulated annealing-based krill herd algorithm for global optimization. Hindawi Publ Corp Abstr Appl Anal 2013:1–11

    MATH  Google Scholar 

  • Wang G-G, Gandomi AH, Alavi AH (2013b) An effective krill herd algorithm with migration operator in biogeography-based optimization. Appl Math Model 38:2454–2462

    MathSciNet  MATH  Google Scholar 

  • Wang G, Guo L, Gandomi AH, Cao L, Alavi AH, Duan H, Li J (2013c) ‘Lévy-flight krill herd algorithm. Math Probl Eng 2013:1–14

    Google Scholar 

  • Wang G-G, Gandomi AH, Yang X-S, Alavi AH (2014) A novel improved accelerated particle swarm optimization algorithm for global numerical optimization. Eng Comput Int J Comput-Aided Eng Softw 31(7):1198–1220

    Google Scholar 

  • Wang G-G, Deb S, Cui Z (2015) ‘Monarch butterfly optimization Neural Comput Appl, 1–20

  • Wang G-G, Gandomi AH, Zhao X, Chu HCE (2016a) ‘Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft Comput 20(1):273–285

    Google Scholar 

  • Wang G-G, Gandomi AH, Alavi AH, Deb S (2016b) A hybrid method based on krill herd and quantum-behaved particle swarm optimization. Neural Comput Appl 27(4):989–1006

    Google Scholar 

  • Wang G-G, Gandomi AH, Yang X-S, Alavi AH (2016c) A new hybrid method based on krill herd and cuckoo search for global optimisation tasks. Int J Bio-Inspir Comput 8(5):286–299

    Google Scholar 

  • Wang G-G, Deb S, Zhao X, Cui Z (2016d) A new monarch butterfly optimization with an improved crossover operator. Oper Res 18:1–25

    Google Scholar 

  • Wang G-G, Deb S, dos Coelho LS (2018) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio-Inspir Comput 12(1):1–22

    Google Scholar 

  • Yu X, Gen M (2010) ‘Introduction to evolutionary algorithms’. Springer, London, ISBN 978-1-84996-128-8

  • Xu T, Wei H, Hu G (2009) Study on continuous network design problem using simulated annealing and genetic algorithm. Expert Syst Appl 36(2, Part 1):1322–1328

    Google Scholar 

  • Yang XS (2010) ‘A new metaheuristic bat-inspired algorithm. In: Gonzalez JR et al (eds) Nature inspired cooperative strategies for optimization’ (NISCO 2010), studies in computational intelligence, vol 284. Springer, Berlin, pp 65–74

    Google Scholar 

  • Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483

    Google Scholar 

  • Zhang H, Gao Z (2007) Two-way road network design problem with variable lanes. J Syst Sci Syst Eng 16(1):50–61

    Google Scholar 

  • Zhang J, Wang G (2012) Image matching using a bat algorithm with mutation. Appl Mech Mater 203:88–93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sweta Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S., Sahana, S.K. A survey on traffic optimization problem using biologically inspired techniques. Nat Comput 19, 647–661 (2020). https://doi.org/10.1007/s11047-019-09731-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-019-09731-z

Keywords

Navigation