
Molecular Computing for Markov Chains†

Chuan Zhang,∗,‡,¶,§ Ziyuan Shen,‡,¶,§ Wei Wei,‖,⊥ Jing Zhao,‖,⊥ Zaichen

Zhang,¶,§ and Xiaohu You§

‡Lab of Efficient Architectures for Digital-communication and Signal-processing (LEADS)

¶Quantum Information Center of Southeast University

§National Mobile Communications Research Laboratory, Southeast University, China

‖State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical

Engineering, Nanjing University, China

⊥State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing

University, China

E-mail: chzhang@seu.edu.cn

Abstract

In this paper, it is presented a methodology for implementing arbitrarily constructed

time-homogenous Markov chains with biochemical systems. Not only discrete but also

continuous-time Markov chains are allowed to be computed. By employing chemi-

cal reaction networks (CRNs) as a programmable language, molecular concentrations

serve to denote both input and output values. One reaction network is elaborately de-

signed for each chain. The evolution of species’ concentrations over time well matches

the transient solutions of the target continuous-time Markov chain, while equilibrium

concentrations can indicate the steady state probabilities. Additionally, second-order

Markov chains are considered for implementation, with bimolecular reactions rather

†Chuan Zhang and Ziyuan Shen contributed equally to this work.

1

ar
X

iv
:1

80
2.

05
17

0v
1 

 [
q-

bi
o.

M
N

] 
 1

4 
Fe

b 
20

18

chzhang@seu.edu.cn


that unary ones. An original scheme is put forward to compile unimolecular systems

to DNA strand displacement reactions for the sake of future physical implementations.

Deterministic, stochastic and DNA simulations are provided to enhance correctness,

validity and feasibility.

Keywords

molecular computing; DNA strand displacement; Markov chain; mass action kinetics; Gille-

spie algorithm

1 Introduction

By far, the exploitation and application of traditional computing equipment, such as silicon-

based devices, has reached its peak. This urges the need of new material for possibly better

computation performance or different application scenarios. Capable of exhibiting abundant

dynamic behaviors, chemical reaction networks (CRNs) turn out to be a programmable lan-

guage, prompting molecular scale material to become a highly promising candidate. As a

parallel system in nature, CRNs possess the potential to handle large-scale and sophisticated

computations. The past few decades have seen a groundswell of interest in molecular com-

puting no matter concerning academy or industry (1–4 ), with scientists trying to reveal the

natural programmability of CRNs. A wealth of research is of primary interest in exploring

the potential computational power of biological molecules by implementing digital logic, sig-

nal processing and functions (5–12 ). Some other researchers are inclined to biochemically

address computationally intractable and complex problems (13–16 ). Even more remarkable

works (17–22 ), strongly dig out and prove the Turing-universal quality of chemical reaction

networks.

Over the past five decades, these works (23–25 ) have been pursuing to building stochas-

tic models for chemical kinetics, among which Markov chains play an important role. In

2



the special field of DNA, Kannan(26 ) utilizes Markov chains to provide statistical analysis

of genome data. While stochastic processes that describe existing chemical systems have

been systematically established, the inverse problem of computing stochastic networks by

molecular reactions remains unsolved. Only a few people have considered this question in

spite of so many extraordinary studies on molecular computing.

Apart from application in chemistry, Markov chains have been successfully applied to

a wide range of areas such as digital communications, social networks, finance, and sports.

Thus, our work anticipates a main focus on Markov chain related molecular computation. In

fact, Cardon (16 ) and Salehi (15 ) have already challenged this topic: estimating the steady

state distribution of any discrete-time Markov chain (DTMC) by DNA computing. Exactly

belonging to the realm of molecular computing, such idea is greatly updated and innovative.

In Cardon’s paper (16 ), DNA strands are used to represent Markov chains’ vertexes and

edges directly, while in Salehi’s (15 ), hypothetical reactions are firstly designed. Besides

the stationary behavior, the transient behavior—n-step transition probabilities of DTMC,

is well synthesized(27 ). Unfortunately, none of the aforementioned approaches have made

allowance for continuous-time Markov chains (CTMC) or higher-order Markov chains, of

which our real life is a closer archetype.

Therefore, this paper attempts to tackle the issue from a more general standpoint. A

straightforward and elegant way is proposed for designing CRNs with the functionality of

computing not only DTMC but also CTMC and second-order Markov chains. Similar to

Salehi(15 ), each state is modeled by a unique molecular type. Instead of utilizing control

molecules to regulate transitions as in paper(15 ), we model state transitions by various rate

constants to reduce the number of needed molecular species and for convenience of DNA

implementation. Hence, unimolecular reactions are designed for first-order Markov chains

and bimolecular reactions serve to compute second-order ones. Different from electronic

systems, molecular systems are usually designed with desired results indicated by concen-

trations as opposed to voltage. And as such, in our methodology, input and output values,

3



which are a Markov chain’s initial distribution and steady state probabilities respectively, are

both represented by molecular concentrations. Besides, from simulation results, transient

solutions of continuous-time Markov chains can be creditably predicted by the evolution of

various species’ concentrations over time. Both deterministic and stochastic simulations are

provided to validate accuracy. Ordinary differential equations (ODEs) analysis is given for

CTMC to prove infallibility on the theoretical level.

It should be noted that any chemical network in this paper is hypothetically shaped. With

appropriate structure design, such an abstract set of reactions is said to be able to compute,

or namely, simulate Markov processes. Nevertheless, some kind of physical substrate, such as

DNAs or proteins, is required to emulate the system. In 2010, Soloveichik (28 ) constructed

systems of DNA molecules that could closely approximate the dynamic behavior of arbitrary

uni- or bimolecular chemical networks, which endowed this purely conjectural computing

method with meaningfulness. In this paper, an original DNA method is proposed, inspired

by Soloveichik, for implementing any unimolecular network with only one product in each

reaction. Bimolecular networks for second-order Markov chains are ought to be compiled to

DNA strand displacement reactions as designed in article (28 ).

Notations in this paper are listed below for clearer reference.

Table 1: Notations in This Paper.

Symbol Definition Symbol Definition
XSj

(0) number of molecules of molecular species Sj , k reaction rate constant,
XSj

(t) number of molecules of molecular species Sj ki reaction rate constant of the ith reaction,
at time t, c reaction parameter,

X(0) numbers of molecules of each species, ci reaction parameter of the ith reaction,
X(t) numbers of molecules of each species at time t, υi the vector whose jth component is υji,
xSj

(0) initial concentration of molecular species Sj , υ′i the vector whose jth component is υ′ji,
xSj

(t) concentration of molecular species Sj at time t, υji, υ
′
ji nonnegative integers,

x(0) initial concentration of each molecular species, Pr(A) the probability of event A occurring,
x(t) concentration of each molecular species at time t Ft the information about the system that is
V volume of the system, available at time t.

4



2 Preliminaries

Stochastic and deterministic models are two most common models for describing chemical

reaction networks. Preliminaries are given below for preparing simulations and explaining

the novelty of our work.

2.1 Deterministic Model Versus Stochastic Model

According to deterministic mass action kinetics (25 , 29 , 30 ), a set of ODEs are derived to

determine the concentration of each molecular type at transient time t in the system. Species

concentrations are solutions to ODEs, thus are continuous, single-valued functions of time.

This model is also named as ordinary differential equation model. Generally, consider a

network of r0 reactions involving s0 chemical species, S1, . . . , Ss0 in Eq. (1), where υji, υ′ji

are nonnegative integers.

s0∑
j=1

υjiSj →
s0∑
j=1

υ′jiSj, i = 1, . . . , r0. (1)

ODEs in Eq. (2) are used to give the time evolution of the system. ki is the reaction

rate constant of the ith reaction. xSj
(t) is the concentration of molecular species Sj at time

t. xυi in Eq. (2) is defined in Eq. (3). As soon as the ODEs are solved, the output of the

chemical reaction system can be uniquely determined.

dx(t)

dt
=

∑
i

kix
υi(υ′i − υi). (2)

xυi
def
= xS1(t)

υ1i · xS2(t)
υ2i · · ·xSs0

(t)υs0i

=

s0∏
j=1

xSj
(t)υji .

(3)

When it comes to stochastic models (25 , 31 ), consider a very simple reaction: A+B
k−→ C.

Gillespie (31 ) points out the probability that it will occur somewhere inside V in the next

5



infinitesimal time interval ∆t is given by: cXA(t)XB(t)∆t, where c is reaction parameter and

ki = V ci. XA(t) stands for the molecule number of A at time t and XB(t) stands for that of

B. Similarly, Anderson (25 ) assumes the same probability, taking no account of the volume

of the system V , as in Eq. (4). Ft is the condition of the available system information

at time t. In Anderson’s work, he also models the concentrations of a reaction network as

complex random processes composed of Poisson processes.

Pr{reaction occurs in (t, t+ ∆t]|Ft} ≈ kXA(t)XB(t)∆t. (4)

With this inherent random property of chemical reaction system, Gillespie puts forward a

simulation algorithm based on Monte Carlo techniques. Note that for the Gillespie algorithm

to be applicable, the number of reactant species for each reaction cannot exceed three.

2.2 Comparison

According to Gillespie(31 ), the mathematical relationship between Xsi and xSi
is that xsi =

Xsi/V , which is self-evident. Kurtz (32 ) points out the relationship between the two models

that in certain special cases and more complex systems, the deterministic model is the infinite

volume limit of the stochastic one. This implies that the deterministic model is less accurate

than the stochastic model when reactions occur in small compartments. The stochastic one

takes account of fluctuations and correlations, providing better simulation for reality.

If expressed as a stochastic model as mentioned above, a chemical reaction network

itself is a random process. When randomness is inherent to chemical reactions, the differ-

ence between building stochastic models for CRNs and molecular computation for stochastic

problems needs illustrating in case of confusion. When building stochastic models, mathe-

matical theories are utilized to analyze natural networks. In detail, the random variables are

concentrations of each molecular type and there may be a multi-dimensional state space of

different concentration values. When we solve stochastic problems using molecular reactions,

6



these reactions are expected to express solutions in some way. For instance, in this paper,

probability distributions are conveyed by concentrations. The random variables and state

space depend on the particular case to be considered. The motivation as well as the Markov

structure is entirely different. The comparison is summarized in Table 2.

Table 2: Comparison between Building Stochastic Models for CRNs and Molecular Compu-
tation for Stochastic Problems.

Aspects Stochastic Models for
CRNs

Molecular Computation
for Stochastic Problems

Random Variables quantity of each molecule type events
State Space different molecule numbers different possible events

Simulation Model stochastic stochastic or deterministic

3 Methodology

3.1 Discrete-Time Markov Chains

Several essential concepts regarding Markov chains (33 ) need to be specified in the first place

as follows.

Definition 1 A given stochastic process {X0, X1, . . . , Xn+1, . . . } at the consecutive points

of observation 0, 1, . . . , n + 1, . . . constitutes a DTMC if the following relation, that is, the

Markov property, holds for all n ∈ N0 and all si ∈ S:

P (Xn+1 = sn+1|Xn = sn, Xn−1 = sn−1, ..., X0 = s0)

= P (Xn+1 = sn+1|Xn = sn).

(5)

In the homogeneous case, the transition probability from state i to j is independent

of time n and is defined as: pij = P (Xn+1 = j|Xn = i), ∀n ∈ T .The transition matrix

P = [pij]. Vector υ(n) = (υ0(n), υ1(n), υ2(n), ...) stands for the state probabilities at time n.

The initial probability vector is υ(0) = (υ0(0), υ1(0), υ2(0), ...). As n→∞, the probability

7



vector υ(n) that converges is called steady state probability vector.

3.1.1 Example

Consider such a gambler’s ruin problem (34 ) referred as the probability of winning in an

unfavorable game. Suppose that the probability that gambler A will win one dollar on any

given play is 0.4. Suppose also that the initial fortune of gambler A is 9 dollars and the

initial fortune of gambler B is just one dollar. We need to determine the probability ai that

gambler A wins one dollar from gambler B before gambler B wins 9 dollars from gambler A.

The required probability ai is given by Eq. (6) through mathematical analysis:

ai =
(3

2
)9 − 1

(3
2
)10 − 1

≈ 2

3
= 0.66. (6)

This problem is considered as a DTMC illustrated in Fig. 1. There are 10 states

υ1, υ2, . . . , υ10, with υi indicating that gambler A holds i dollars. From the state transi-

tion diagram, states υ2, υ3, . . . , υ9 may jump to the previous or next state, while states υ1

and υ10 are absorbing. Transition probabilities are given by the probabilities of winning and

losing. Utilizing this transition property, we try to model it by a chemical reaction network,

with each molecular species υi representing each state υi as firstly proposed by Salehi (15 ).

In that each reaction has a rate constant k and this k influences the probability of reaction

occurring to some degree as in Eq. (4), we endeavour to harness this attribute and map

Markov chain’s transition probabilities to reaction rate constants. Then the one-to-one cor-

respondence between state transitions and reactions is established. The finished network is

shown in Eq. (7).

1 2 3 ...

0.4 0.4

9

0.4 0.4

0.6 0.6 0.6 0.6

10

RUIN

WIN

Figure 1: The probability of winning in an unfavorable game.

8




υ2

0.6−→ υ1, υ3

0.6


0.4
υ2,

. . .

υ9

0.6


0.4
υ8, υ9

0.4−→ υ10.

(7)

To obtain the steady state distribution, the Markov chain needs to be assigned an initial

distribution. As molecular concentrations are desired to be the system’s indicators, the

concentration of each molecular species is initialized with the corresponding state’s initial

probability. In this problem, gambler A holds 9 dollars in the beginning, therefore υ(0) =

(0, 0, 0, 0, 0, 0, 0, 0, 1, 0). Accordingly, x(0) = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0). When well prepared,

the system begins to react and all required to be done is waiting until it reaches an equilibrium

state, helping processing the computation with the chemical potential energy. Then the final

concentrations are the outputs: steady state probabilities. Simulations will be given.

Remark 1 As is known, any chemical reaction network itself is a Markov chain, thus it is

easily misunderstood that the mapping is a self-existed conclusion. Nevertheless, constructing

Markov chain model for a chemical system, the state space is usually determined by concen-

trations or molecule numbers instead of molecule species. For example, consider the reaction

A 
 B and suppose that initially there are two molecules in total and they can be either

A or B. The transition is mutual but the overall molecule number remains two. Obviously,

XA(t) or XB(t) is a Markov chain with state space {0, 1, 2}. {XA(t), XB(t)} can also be a

Markov chain with state space {{0, 2}, {1, 1}, {2, 0}}. In real DNA reactions, the concentra-

tion is always scaled to nM or M , which means the molecular number is much larger than

two. Therefore, the Markov chain model for Eq. (7) is apparently not that in Fig. 1. The

delicately designed structure of this network, happens to be capable of modeling this chain’s

computation when on a large molecular scale and giving a relatively deterministic result.

9



3.1.2 Design Concept

As the gambler’s ruin problem is explained in detail, the entire design approach gradually

becomes clear and easy to understand. The conclusive framework for the design concept

is depicted in Fig. 2. Given a target Markov chain, each state is modeled by a unique

molecular type. Unimolecular reactions are constructed to implement state transitions, with

one type of molecule changing into another. Input concentrations are initialized to activate

the system and output concentrations provide expected stationary distribution.

ReactionsInput Concentrations

(Initial Distribution)

Output Concentrations

(Steady State)

Reaction

Compartment

(Test Tube)

Target

Markov Chain

Design Concept

S1 S2

S3

S1

States MoleculesS2

S3

Figure 2: Framework for the design concept.

The fact that jumps between two states may exist at the same time causes the derived

reactions to be reversible. Given that there are k states in all, the reactions to implement

this target DTMC are shown in Eq. (8).

υi
kij


kji
υj, i = 1, 2, ..., k, j = 1, 2, ..., k, i 6= j. (8)

In summary, the complete method includes 6 steps: Step 1) Model each state υi by

a molecular type υi. Step 2) Model each transition probability pij by rate constant kij.

Step 3) Model all state transitions by reactions υi
kij


kji

υj. Step 4) Set the values of rate

constants kij proportional to the corresponding transition probabilities pij. Step 5) Set the

10



initial concentrations of molecular types υi according to probability υi(0). Step 6) If the

steady state solution exists, compute the steady state solution of the DTMC by the final

concentration of species υi.

Complexity Analysis: In our approach, control molecules are not required compared

to Salehi’s (11 ), thus the cost of molecular types is saved. Since each state is represented

by one unique molecular type, the number of molecular types equals the number of states

k. The number of reactions depends on the particular case. Specifically, if the transitions

between two states exist at the same time, one reversible reaction functions to realize them.

As one reaction can compute either one transition or two transitions, the number of reactions

equals or is smaller than the number of all transitions m. If there are no mutual transitions,

all reactions are not reversible and the reaction number meets its maximum value m.

3.2 Continuous-Time Markov Chains

After the DTMC is well synthesized, it is excitingly found that the approach can also be

extended to implement CTMC. Some detailed mathematical descriptions are provided here

for further formal analysis.

Definition 2 A given stochastic process {Xt : t ∈ T} constitutes a continuous-time Markov

chain if for arbitrary ti ∈ R+
0 , with 0 = t0 < t1 < · · · < tn < tn+1, ∀n ∈ N, and ∀si ∈ S

(state space of this chain), the following relation holds:

P (Xtn+1 = sn+1|Xtn = sn, Xtn−1 = sn−1, ..., Xt0 = s0)

= P (Xtn+1 = sn+1|Xtn = sn).

(9)

πi(u) stands for the probability of state i at any instant of time u. Vector π(u) =

(π0(u), π1(u), π2(u), ...) stands for the state probabilities at any instant of time u. Unlike

the discrete-time case, the state probabilities of a CTMC cannot be computed easily by

transition probabilities. Therefore, we define the instantaneous transition rates qij (i 6= j)

11



of the CTMC traveling from state i to state j. For all states with i 6= j, we define qij(t) =

lim∆t→0
pij(t,t+∆t)

∆t
(i 6= j), qii(t) = lim∆t→0

pii(t,t+∆t−1)
∆t

. If the limits do exist, it is clear that

at any instant of time t, the following reaction holds:

∑
j∈S

qij(t) = 0,∀i ∈ S. (10)

Eq. (10) can be modified as:

qii(t) = −
∑

j,j 6=i
qij(t). (11)

In the time-homogeneous case, with time-independent transition rates qij = qij(t),∀i, j ∈

S and the system of differential Eq. (12), we describe a CTMC:

dπj(t)

dt
=

∑
i∈S

qijπi(t),∀j ∈ S. (12)

The infinitesimal generator matrix Q = [qij], ∀i, j ∈ S. If existing for a given CTMC, the

steady state probabilities are independent of time and we immediately get: limt→∞
dπ(t)
dt

= 0.

As specified by the mathematical definition, the only difference between CTMC and

DTMC is that for any instant of time, CTMC has a probability distribution π(u), which is

called the transient solution. The state space is still discrete here. The proposed method

will be able to compute not only the steady state distribution but also the transient solution

of an arbitrary CTMC.

3.2.1 Example

Two common cases in queueing theory (33 ) are used to exemplify the computation of tran-

sient solution and steady state solution, respectively.

A Pure Birth Process: Consider the infinite state CTMC depicted in Fig. 3 repre-

senting a pure birth process with constant birth rate λ. The only possible transitions are

12



from state k to state k + 1 with rate λ. Note that this is a nonirreducible Markov chain for

any finite value of λ, so the steady state solution does not exist.

0 1 2 ...

  

Figure 3: A pure birth process.

According to the transition graph, the only difference from DTMC is that the transition

rate is no longer a value of probability, while the structure is analogous. Hence, the tech-

nique can continue to be used, with rate constants modeling transition rates as opposed to

transition probabilities. Given that only finite states are feasible in CRNs, we implement

this CTMC with a 6-state one, the first 5 transient solutions of which are exactly the same

as the pure birth process. The reactions are presented in Eq. (13). The setting of initial con-

centrations follows the same principle as DTMC. Here, the time evolution of concentrations

ideally resembles the transient solutions. Please refer to simulation for details.

π0
λ−→ π1, π1

λ−→ π2, . . . π4
λ−→ π5. (13)

A Birth and Death Process: When it comes to steady state probabilities, another

example serves better to verify our approach. A birth and death process is a Markov chain

where transitions are allowed only between neighboring states. A one-dimensional birth-

death process is shown in Fig. 4. In particular, a birth-death process with a constant birth

rate λ (arrival rate) and a constant death rate µ (service rate) is called an M\M\1 Queue.

This case is used to illustrate how to compute both transient and stationary solutions.

... ...

0

0 1 2 1 n

0 1 2 n

1 2 1 n n

n

Figure 4: A birth-death process.

13



Similarly, only finite states are realizable in CRNs thus we could only get the approximate

solutions. To implement such a CTMC, we have the reactions designed in Eq. (14).

π0

λ


µ
π1, π1

λ


µ
π2, . . . π4

λ


µ
π5. (14)

3.2.2 Design Concept

As clarified by the two cases, it is only slightly different to implement a CTMC. The transition

rates instead of probabilities are modeled by the rate constants. The designed reactions for

implementing an arbitrary CTMC are shown in Eq. (15)

πi
kij


kji
πj, i = 1, 2, ..., k, j = 1, 2, ..., k, i 6= j. (15)

Such mapping can, to a great extent, model and implement the CTMC, computing not

only the steady state probabilities but also the transient solutions. More specifically, the

concentrations of the molecules πi at any instant time of t are the same as the probability

distribution of the CTMC at time t. In addition, the final concentrations of πi are the steady

state probabilities of the target CTMC. To sum up, the entire procedure contains 7 steps:

Step 1) Model each state πi by a molecular type πi. Step 2) Model each transition rate qij

by reaction rate constant kij. Step 3) Model all state transitions by reactions πi
kij


kji
πj when

qij > 0. Step 4) Set the values of rate constants kij proportional to the transition rates

qij. Step 5) Set the initial concentrations of molecular types πi according to probability

πi(0). Step 6) Compute the transient solution of the CTMC by the concentrations of πi at

any instant of time t. Step 7) If the steady state solution exists, compute the steady state

solution of the CTMC by the equilibrium concentrations of πi. The complexity is the same

as DTMC thus omitted here.

14



3.2.3 ODE Analysis

The correctness of our methodology could be predicted to a great extent by simulation

results. However, beyond simulation, the congruence between the ODEmodel of our designed

network and that of the corresponding CTMC can prove the validity in a mathematical way.

Proof 1 According to deterministic mass action, the ODEs of Eq. (15)’s network can be

simply derived in Eq. (16).

dxπi(t)

dt
=

∑
j,j 6=i

kjixπj(t)− xπi(t)
∑

j,j 6=i
kij, i = 1, 2, ..., k. (16)

According to Eq. (12), the differential system to describe the target Markov chain is:

dπi(t)

dt
=

k∑
j=1

πi(t)qji

=
∑

j,j 6=i
πi(t)qji + πi(t)qii, i = 1, 2, ..., k.

(17)

Bringing Eq. (10) into Eq. (17), we have:

dπi(t)

dt
=

∑
j,j 6=i

qjiπi(t)− πi(t)
∑

j,j 6=i
qij, i = 1, 2, ..., k. (18)

It can be found that the form of Eq. (16) and Eq. (18) mirrors each other, thus proving

that the solutions of the designed CRN are the same as the transient solutions of the CTMC.

Therefore, the time evolution of concentrations can well reflect the transient probabilities at

any instant of time. In addition, we define the final concentration of a given molecular type

as the concentration of it when t verges to ∞. And as such, the final concentrations of πi

are the steady state probabilities of the target CTMC.

15



3.3 Two-Order Markov Chains

In the previous sections, the Markov processes’ transition probabilities depend only on the

current state. Such chains are called first-order Markov chains. For the higher-order Markov

chains, the transition probabilities depend on the current state and some previous states(35 ).

In point of fact, any n-order Markov chain can be expressed as a first-order chain with state

space Sn, where S is the state space of the original chain. Consequently, higher-order

Markov chains can be implemented by the approach specified above. Unfortunately, this

would exponentially increase the complexity. This problem may be resolved by increasing

the dimension of CRNs instead of state space. However, there would exist a trade off between

complexity and accuracy. Here we make use of bimolecular reactions to implement second-

order Markov chains, where the transition probabilities depend on the latest two states—the

current state and the previous state as shown in Eq. (19).

P (Xn+1 = sn+1|Xn = sn, Xn−1 = sn−1, ..., X0 = s0)

= P (Xn+1 = sn+1|Xn = sn, Xn−1 = sn−1).

(19)

3.3.1 Example

Higher-order Markov chains are usually used to predict weather because the future weather

trend considerably depends on the previous records. Make allowance for such a simple model:

tomorrow’s weather depends on today and yesterday. Transition probabilities are given in

Eq. (20), where d1, d2, d3 represent day1, day2, day3 and S,R represent sunny and rainy.

The state space is {S,R}, clearly. As shown, if the first day and the second day are both

sunny, there is a 90% chance that the third day is continuously sunny. If expressed as a

first-order Markov chain, the state space will become {{S, S}, {S,R}, {R, S}, {R,R}} and

the state transition diagram can be derived as in Fig. 5.

16



p(d3|d2, d1) =



0.9, if d3 = S, d2 = S and d1 = S

0.1, if d3 = R, d2 = S and d1 = S

0.7, if d3 = S, d2 = S and d1 = R

0.3, if d3 = R, d2 = S and d1 = R

0.6, if d3 = S, d2 = R and d1 = S

0.4, if d3 = R, d2 = R and d1 = S

0.4, if d3 = S, d2 = R and d1 = R

0.6, if d3 = R, d2 = R and d1 = R

(20)

S Sunny

R Rainy

S S

R R

S R R S

0.9

0.7

0.6

0.3

0.1

0.4 0.4

0.6

simplify

0.1
S + S S + R

0.4
S + R R + R

0.4
R + R R + S

0.7
R + S S + S

0.1

0.7
S + S S + R

0.4

0.4
S + R R + R

Figure 5: Model for weather prediction.

Instead of modeling each node by one molecular type, we model each state by one molec-

ular type just as we do previously, so only two types of molecule are needed in all. To map

each transition into one chemical reaction, it is found from the diagram that either node be-

fore or after the transition contains two states, resulting in the reactions’ being bimolecular

as shown in the right part of Fig. 5. For each reaction, reactants reflect the two previous

states before transition and the two products are states after transition. Four transitions are

drawn in dashed lines because the composition of states does not change, unable to form a

new reaction. Finally, four irreversible reactions are derived and then simplified into two re-

17



versible reactions. The value assignment of rate constants and initial concentrations follows

the same principle as in first-order chains. The equilibrium concentrations are expected to

compute the stationary distribution and help predict the weather in the long run.

3.3.2 Design Concept

Utilizing a 3-state diagram, the framework for our design concept is summarized in Fig.

6. Each transition produces one corresponding reaction, which has two reactants and two

products. The reactants and products share one common molecule. Such implementation

encourages the transition into a new state based on the two previous states, with the justified

probability. Invalid transitions are unable to add reactions to the network.

S1 S1

S1 S2 S1 S3

S2 S1

S2 S2

S2 S3

S3 S1

S3 S2

S3 S3

+

M1

M1

M1

M2

M2

M2 M3

M3

M3

2

2 2

Reaction Network

State Transition of Target 2-order

Markov Chain

S1

States
Molecules

S2

S3
Invalid 

Transition

Figure 6: Framework for design concept of second-order Markov chains.

The final approach for second-order Markov chains is concluded by 7 steps: Step 1)

Model each state by a molecular type. Step 2) Model each transition probability by one

rate constant. Step 3) Model each state transition by one bimolecular reaction. Step 4)

Exclude invalid transitions. Step 5) Set the values of rate constants proportional to the

transition probabilities. Step 6) Set the initial concentrations of molecular types according

to initial probabilities. Step 7) If the steady state solution exists, compute the steady

18



state solution of the second-order Markov chain by the equilibrium concentrations of the

corresponding molecules.

Complexity Analysis: If there are k states in all, k molecular types are needed. The

number of reactions equals or is smaller than the number of valid transitions m. When all

transitions are possible, m reaches its maximal value k3 − k2. If the second-order chain is

implemented by the approach of first-order chain, k2 molecular types are required and m’s

maximal value becomes k3 − k. Hence, this approach is increasingly efficient as k rises.

4 Simulation Results

In order to ensure the DNA implementation is applicable (28 ), two constraints should be

satisfied: maximal second-order rate constants are about 106/M/s; maximum concentrations

are on the order of 10−5M.

4.1 Deterministic Simulation

Since dynamics of a CRN endowed with mass action kinetics can be well demonstrated by

ODEs, ODE-based simulation is usually a good solution to synthesize a CRN, offering a

smooth output graph.

Gambler’s Ruin Problem: As designed above, the unscaled rate constants are 0.4 and

0.6 and the unscaled initial concentration is 1. To add feasibility, the scaled rates are chosen

to be 0.4/s and 0.6/s here and the scaled concentration is 10−9M. The simulation result is

shown in Fig. 7.

From the graph, the concentrations approximate the accurate result 0.66 and 0.34 along

the time line, meaning the probability of gambler A winning one dollar ends up 0.66. After

0.05 hours, the error is less than 0.34%.

Pure Birth Process: If initial probabilities π0(0) = 1 and πk(0) = 0 for k ≥ 1, we can

get a closed-form solution for each transient state probability πk(t) = (λt)k

k!
e−λt, k ≥ 0. If the

19



Figure 7: ODE simulation result for gambler’s ruin problem.

parameter λ is considered to be 0.5, the graph is easily obtained by means of MATLAB as

depicted in Fig. 8.

0 5 10 15 20

time

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
il
it
ie

s

π
0
(t)

π
1
(t)

π
2
(t)

π
3
(t)

π
4
(t)

Figure 8: Selected transient solutions for a pure birth process with λ = 0.5.

The initial concentration of π0 is unscaled 1 and those of other molecules are 0. All the

rate constants are unscaled 0.5 when λ = 0.5. The scaled concentration and rate are 10−9M

and 0.5/s. Simulation result is illustrated in Fig. 9. Comparing the transient solution graphs

of CTMC and the simulation graphs of CRNs, they resemble each other perfectly, realizing

the desired functionality smoothly.

Birth and Death Process: With the initial state probabilities π0(0) = 1 and πk(0) =

0, k ≥ 1, the steady state probabilities of the system being empty can be obtained that

πk = (1− λ
µ
)(λ
µ
)
k
, k ≥ 0. We specify this solution for λ

µ
= 1

2
in Table 3. Clearly from Table

3, the steady state probability of π0 is 0.5, the steady state probability of π1 is 0.25 and the

20



Figure 9: ODE simulation result for a pure birth process with λ = 0.5.

same is true of the rest of the states.

Table 3: The solution for πk in an M\M\1 Queue.

k 0 1 2 3 4
πk 0.5 0.25 0.125 0.0625 0.03125

k 5 6 7 8 9
πk 0.0156 0.0078 0.0039 0.00195 0.00098

The initial concentration of π0 is unscaled 1. The rate constants are unscaled 1 and 2.

The scaled concentration and rates should be 10−9M, 0.1/s and 0.2/s. The simulation result

is shown in Fig. 10. Compared with Table 3, the steady state probabilities are computed

correctly by observing the final molecular concentrations. The maximal error gradually

becomes less along with time as shown in Table 4.

Figure 10: ODE simulation result for a birth-death process.

Weather Prediction: If sunny is selected as the initial state, the initial concentration

of S is unscaled 1. According to Fig. 5, the unscaled rate constants are 0.1, 0.4, 0.4, 0.7 as

21



Table 4: Error for π0 in an M\M\1 Queue.

t(hrs) 0.02 0.04 0.06 0.08
error(%) 2.163 1.598 1.588 1.587

defined by transition probabilities. For simulations, the scaled concentration becomes 10−8M

and the scaled rates are 0.05 × 106/M/s, 0.2 × 106/M/s, 0.2 × 106/M/s, 0.35 × 106/M/s.

The simulation graph Fig. 11 shows that the steady state distribution is (0.8, 0.2) as the

equilibrium concentrations divided by the initial concentration are 0.8 and 0.2. The error is

0.45% at hour 0.6 and 0.07% at hour 0.8.

Figure 11: ODE simulation result for weather prediction.

4.2 Stochastic Simulation

Gillespie algorithm (31 ) is used for stochastic simulation in this paper. Different from ODE

simulation, gillespie simulation gives fluctuating curves as opposed to smooth ones. The

result is indeterminate thus may deviate from the expected value. Nevertheless, the error

can be reduced as the concentration increases. All initial numbers of molecules are selected

to be 1000 here for relatively accurate outputs. According to the simulation results in Fig.

12,13,14,15, concentrations vary above or below precise values in a limited range, effectively

estimating the required outputs.

22



Figure 12: Gillespie simulation result for gambler’s ruin problem.

Figure 13: Gillespie simulation result for a pure birth process.

Figure 14: Gillespie simulation result for a birth-death process.

Figure 15: Gillespie simulation result for weather prediction.

23



5 DNA Implementation

The methodology for an abstract set of molecular reactions is designed above. The engi-

neered biochemical systems need to be mapped to specific DNA reactions to obtain real

meaningfulness. In 2010, Soloveichik (28 ) managed to contrive a DNA strategy for arbi-

trary hypothetical CRNs with satisfactory performance. In his method, each unimolecular

reaction is compiled to two DNA strand displacement reactions and each bimolecular one is

compiled to three. Buffering modules are additionally needed for bimolecular systems.

5.1 Unimolecular Networks

By carefully observing the network we design for first-order Markov chains, each reaction has

one reactant and one product and the entire system contains only unimolecular reactions.

Therefore, if Soloveichik’s method is directly used here, it will be wasteful of DNA resources.

Borrowing some clever ideas employed by Soloveichik, we devise a new DNA method for

this typical unimolecular system as in Fig. 16. Each formal species is modeled by a kind of

DNA strand named signal species, with the species identifier defined by one toehold and one

domain. Each reaction is implemented by one DNA strand displacement reaction, with one

signal species reacting with the auxiliary species Gi to produce another signal species. The

initial concentration of auxiliary species is Cmax and it is required thatmax{xXj
(0)} � Cmax.

qi is the rate constant of the DNA reaction and it is controlled by the binding energy of

domains 1∗qi and 1, as 1∗qi is not a full complement of 1. To ideally approximate the ODE

kinetics, it should be satisfied that qiCmax = ki.

Utilizing a reaction network with three molecular species, a more specific mapping is

shown in Fig. 17. Given that different reactions may produce the same hypothetical species,

the history domain “?” of each signal species is indeterminate. However, each signal species

can be uniquely identified by the species identifier.

Remark 2 By changing the length and sequence composition of a toehold domain 1∗qi, which

24



? 1 2
+

2*

2 3 4 ? 1 2
+

2*

2 3 4

X1

Gi waste

X2

qi

reaction i : 
1 2X Xik


1 2X +G Xi
iq



1 2

maxX Xiq C


implement

simplifysignal species auxiliary species signal species

species identifier species identifier

*

q1
i

*

q1
i

Figure 16: DNA module for unimolecular networks.

Reaction 

Network

M1

M2 M3

? 3 4
+

4*

4 5 6 ? 3 4
+

4*

4 5 6

k1 k4

k2

k3

M2 G2 waste M3

q2

? 5 6
+

6*

6 3 4 ? 5 6
+

6*

6 3 4

M3 G3 waste M2

q3

? 1 2
+

2

2 3 4 ? 1 2
+

2*

2 3 4

M1 G1 waste M2

q1

? 5 6
+

6*

6 1 2 ? 5 6
+

6*

6 1 2

M3 G4 waste M1

q4

?=6 ?=6

?=4 ?=4

?=4 ?=4

?=2 or 6 ?=2 or 6

1

*1q 1

*1q

2

*3q 2

*3q

3

*5q 3

*5q

4

*5q 4

*5q

R1

R2

R3

R4

DNA Implementation

Figure 17: DNA implementation of first-order Markov chains.

is not a full complement of 1, the binding strength and in turn the rate constant can be varied.

The rate constants can then be controlled over 6 orders of magnitude (36, 37). However,

toeholds are short and have limited sequences. Although distributed over a wide range, not

all exact rate constants can be achieved this way. To tackle this problem, concentrations of

auxiliary species can be adjusted to fine-tune rate constants (28).

DNA simulations for the three examples with first-order chains are illustrated in Fig.

18,19,20. Note that Cmax is set as 10−5M. DNA kinetics are drawn in dashed lines in

contrast with ideal ODE kinetics. Compared to the ideal kinetic behaviors, those presented

by DNAs are highly adequate.

25



Figure 18: DNA simulation result for gambler’s ruin problem.

Figure 19: DNA simulation result for a pure birth process.

Figure 20: DNA simulation result for a birth-death process.

26



5.2 Bimolecular Networks

Reactions employed to realize second-order Markov chains have two reactants, thus the DNA

approach proposed above is no longer effective. Technique proposed by Soloveichik (28 ) is

directly used here for simulation, where the species identifier is composed of one domain and

two toeholds. The result of weather prediction is displayed in Fig. 21. Notice that the initial

concentration in the DNA system is 5
3
× 10−8M in that the buffering-scaling factor γ−1 = 5

3
.

Figure 21: DNA simulation result for weather prediction.

6 Conclusions

In this paper, conjectural chemical reaction networks are shaped for computation of arbi-

trary time-homogeneous Markov chains, including DTMC, CTMC and second-order Markov

chains. Not only steady state probabilities but also transient solutions are well synthesized.

An original DNA method is proposed for implementing any unimolecular network with only

one product in each reaction. Deterministic, stochastic and DNA simulations are provided

to enhance correctness, validity and feasibility.

References

1. Bennett, C. H. (1982) The thermodynamics of computationąła review. International

Journal of Theoretical Physics 21, 905–940.

27



2. Stemmer, W. P. (1995) The evolution of molecular computation. Science 270, 1510–1511.

3. Păun, G., and Rozenberg, G. (2002) A guide to membrane computing. Theoretical Com-

puter Science 287, 73–100.

4. Lund, K., Manzo, A. J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J.,

Taylor, S., Pei, R., Stojanovic, M. N., Walter, N. G., Winfree, E., and Yan, H. (2010)

Molecular robots guided by prescriptive landscapes. Nature 465, 206–210.

5. Chen, H.-L., Doty, D., and Soloveichik, D. (2014) Deterministic function computation

with chemical reaction networks. Natural Computing 13, 517–534.

6. Jiang, H., Riedel, M. D., and Parhi, K. K. Digital logic with molecular reactions. Proc.

IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 2013; pp

721–727.

7. Jiang, H., Riedel, M., and Parhi, K. Synchronous sequential computation with molecular

reactions. Proceedings of the Design Automation Conference. 2011; pp 836–841.

8. Kharam, A. P., Jiang, H., Riedel, M. D., and Parhi, K. Binary counting with chemical

reactions. Proc. Pacific Symposium on Biocomputing. 2011; pp 302–313.

9. Salehi, S. A., Riedel, M. D., and Parhi, K. K. Asynchronous discrete-time signal pro-

cessing with molecular reactions. Proc. IEEE Asilomar Conference on Signals, Systems

and Computers. 2014; pp 1767–1772.

10. Jiang, H., Salehi, S. A., Riedel, M. D., and Parhi, K. K. (2013) Discrete-time signal

processing with DNA. ACS Synthetic Biology 2, 245–254.

11. Salehi, S. A., Jiang, H., Riedel, M. D., and Parhi, K. K. (2015) Molecular Sensing

and Computing Systems. IEEE Transactions on Molecular, Biological and Multi-Scale

Communications 1, 249–264.

28



12. Salehi, S. A., Parhi, K. K., and Riedel, M. D. (2016) Chemical reaction networks for

computing polynomials. ACS Synthetic Biology 6, 76–83.

13. Adleman, L. M. (1994) Molecular computation of solutions to combinatorial problems.

Science 266, 1021.

14. Ouyang, Q., Kaplan, P. D., Liu, S., and Libchaber, A. (1997) DNA solution of the

maximal clique problem. Science 278, 446–449.

15. Salehi, S. A., Riedel, M. D., and Parhi, K. K. Markov chain computations using molecular

reactions. Proc. IEEE International Conference on Digital Signal Processing (DSP).

2015; pp 689–693.

16. Cardona, M., Colomer, M., Conde, J., Miret, J., Miró, J., and Zaragoza, A. (2005)

Markov chains: Computing limit existence and approximations with DNA. Biosystems

81, 261–266.

17. Berry, G., and Boudol, G. (1992) The chemical abstract machine. Theoretical Computer

Science 96, 217–248.

18. Rothemund, P. W. K. (1995) A DNA and restriction enzyme implementation of turing

machines. DNA Based Computers 27, 75–119.

19. Magnasco, M. O. (1997) Chemical kinetics is Turing universal. Physical Review Letters

78, 1190.

20. Liekens, A., and Fernando, C. (2007) Turing complete catalytic particle computers.

Advances in Artificial life 1202–1211.

21. Soloveichik, D., Cook, M., Winfree, E., and Bruck, J. (2008) Computation with finite

stochastic chemical reaction networks. Natural Computing 7, 615–633.

29



22. Hjelmfelt, A., Weinberger, E. D., and Ross, J. (1991) Chemical implementation of neural

networks and Turing machines. Proceedings of the National Academy of Sciences 88,

10983–10987.

23. McQuarrie, D. A. (1967) Stochastic approach to chemical kinetics. Journal of applied

probability 4, 413–478.

24. Van Kampen, N. G. Stochastic Processes in Physics and Chemistry ; Elsevier, 1995.

25. Anderson, D. F., and Kurtz, T. G. In Design and Analysis of Biomolecular Cir-

cuits: Engineering Approaches to Systems and Synthetic Biology ; Koeppl, H., Setti, G.,

di Bernardo, M., and Densmore, D., Eds.; Springer New York: New York, NY, 2011; pp

3–42.

26. Kannan, K. S., Vallinayagam, V., and Venkatesan, P. (2007) Markov Chain Monte Carlo

Methods in Molecular Computing. IJISE

27. Shen, Z., Zhang, C., Ge, L., Zhuang, Y., Yuan, B., and You, X. Synthesis of Probability

Theory Based on Molecular Computation. Proc. IEEE International Workshop on Signal

Processing Systems (SiPS). 2016; pp 27–32.

28. Soloveichik, D., Seelig, G., and Winfree, E. (2010) DNA as a universal substrate for

chemical kinetics. Proceedings of the National Academy of Sciences (PNAS) 107, 5393–

5398.

29. Érdi, P., and Tóth, J. Mathematical models of chemical reactions: Theory and applica-

tions of deterministic and stochastic models ; Manchester University Press, 1989.

30. Horn, F., and Jackson, R. (1972) General mass action kinetics. Archive for rational

mechanics and analysis 47, 81–116.

31. Gillespie, D. T. (1976) A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions. Journal of computational physics 22, 403–434.

30



32. Kurtz, T. G. (1972) The relationship between stochastic and deterministic models for

chemical reactions. The Journal of Chemical Physics 57, 2976–2978.

33. Bolch, G., Greiner, S., de Meer, H., and Trivedi, K. S. Queueing networks and Markov

chains: Modeling and performance evaluation with computer science applications ; John

Wiley & Sons, 2006.

34. DeGroot, M. H., and Schervish, M. J. Probability and Statistics ; Addison-Wesley, 2012.

35. Ching, W.-K., Huang, X., Ng, M. K., and Siu, T.-K. Markov Chains ; Springer, 2013; pp

141–176.

36. Yurke, B., and Mills, A. P. (2003) Using DNA to power nanostructures. Genetic Pro-

gramming and Evolvable Machines 4, 111–122.

37. Zhang, D. Y., and Winfree, E. (2009) Control of DNA strand displacement kinetics using

toehold exchange. Journal of the American Chemical Society 131, 17303–17314.

31


	Keywords
	1 Introduction
	2 Preliminaries
	2.1 Deterministic Model Versus Stochastic Model
	2.2 Comparison

	3 Methodology
	3.1 Discrete-Time Markov Chains
	3.1.1 Example
	3.1.2 Design Concept

	3.2 Continuous-Time Markov Chains
	3.2.1 Example
	3.2.2 Design Concept
	3.2.3 ODE Analysis

	3.3 Two-Order Markov Chains
	3.3.1 Example
	3.3.2 Design Concept


	4 Simulation Results
	4.1 Deterministic Simulation
	4.2 Stochastic Simulation

	5 DNA Implementation
	5.1 Unimolecular Networks
	5.2 Bimolecular Networks

	6 Conclusions
	References

