
Computational limitations of affine automata and generalized affine
automata

Mika Hirvensalo1,2 • Etienne Moutot3 • Abuzer Yakaryılmaz1,4

Accepted: 12 October 2020 / Published online: 18 January 2021
� The Author(s) 2021, corrected publication 2020

Abstract
We present new results on the computational limitations of affine automata (AfAs). First, we show that using the

endmarker does not increase the computational power of AfAs. Second, we show that the computation of bounded-error

rational-valued AfAs can be simulated in logarithmic space. Third, we identify some logspace unary languages that are not

recognized by algebraic-valued AfAs. Fourth, we show that using arbitrary real-valued transition matrices and state vectors

does not increase the computational power of AfAs in the unbounded-error model. When focusing only the rational values,

we obtain the same result also for bounded error. As a consequence, we show that the class of bounded-error affine

languages remains the same when the AfAs are restricted to use rational numbers only.

Keywords Non-classical models of automata � Affine automata � Logarithmic space � Generalized automata �
Cutpoint languages � Bounded error

1 Introduction

Finite automata are interesting models to study since they

express a very natural limitation of finite memory. They are

also an interesting starting point for many computational

models, since they are simpler than many others like

pushdown automata or Turing machines. Due to this sim-

plicity, there exist many different models of finite auto-

mata, all trying to express different computational settings.

Deterministic (Sipser 2013), probabilistic (Paz 1971) and

quantum (Ambainis and Yakaryılmaz 2015) finite automata

(DFAs, PFAs, and QFAs, respectively) have been studied

to try to understand better the computational limitations

inherent to all these cases.

Recently, Dı́az-Caro and Yakaryılmaz introduced a new

computational concept, called affine computation (Dı́az-

Caro and Yakaryılmaz 2016). As a non-physical model, the

goal of affine computation is to investigate the power of

interference caused by negative amplitudes in the compu-

tation, like in the quantum case. But unlike QFAs, affine

finite automata (AfAs) have unbounded state set and the

final operation corresponding to quantum measurement

cannot be interpreted as linear. The final operation in AfAs

is analogous to renormalization in Kondacs-Watrous

(Kondacs and Watrous 1997) or Latvian (Ambainis et al.

2006) quantum automata models.

AfAs and their certain generalizations have been

investigated in a series of works by Dı́az-Caro and

Yakaryılmaz (2016), Villagra and Yakaryılmaz (2018),

Belovs et al. (2017), Hirvensalo et al. (2017), Nakanish

et al. (2017), Ibrahimov et al. (2018). In most of the cases,

affine models (e.g., bounded-error and unbouded-error

A preliminary version appeared as ‘‘Hirvensalo, M., Moutot,

E., Yakaryılmaz, A.: Computational Limitations of Affine

Automata. In: Unconventional Computation and Natural

Computations. LNCS, vol. 11493, pp. 108–121. Springer

(2019)’’ (Hirvensalo et al. 2019). The arXiv number is

1904.02428.

& Mika Hirvensalo

mikhirve@utu.fi

Etienne Moutot

etienne.moutot@ens-lyon.org

Abuzer Yakaryılmaz

abuzer@lu.lv

1 Department of Mathematics and Statistics, University of

Turku, FI-20014 Turku, Finland

2 Turku Centre for Computer Science (TUCS), Turku, Finland

3 Aix-Marseille Univ., Toulon Univ., CNRS, LIS, Marseille,

France

4 Center for Quantum Computer Science, Faculty of

Computing, University of Latvia, Rı̄ga, Latvia

123

Natural Computing (2021) 20:259–270
https://doi.org/10.1007/s11047-020-09815-1(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-7014-0258
http://orcid.org/0000-0003-2073-4709
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-020-09815-1&domain=pdf
https://doi.org/10.1007/s11047-020-09815-1

AfAs, zero-error affine OBDDs, zero-error affine counter

automata, etc.) have been shown more powerful than their

classical or quantum counterparts. On the other hand, we

still do not know too much regarding the computational

limitations of AfAs. Towards this direction, we present

new results. First, we show that using end-marker does not

increase the computational power of affine automata with

unbounded error or bounded error. Second, we show that

the computation of bounded-error rational-valued affine

automata is simulated in logarithmic space, and so we

answer positively one of the open problems in Dı́az-Caro

and Yakaryılmaz (2016). Third, we give an impossibility

result for algebraic-valued AfAs, and, as a result, we

identify some unary languages (in logarithmic space) that

are not recognized by algebraic-valued AfAs with cut-

points, improving a previous result showing that the same

languages cannot be recognized with bounded error (Hir-

vensalo et al. 2017).

Moreover, we give the formal definition of generalized

AfAs by allowing to use arbitrary real-valued transition

matrices and state vectors. Fourth, we show that such

generalization does not increase the computational power

of AfAs with cutpoint language recognition. If we restric-

ted these generalized AfAs to use only rational numbers,

we obtain the same result also for bounded error language

recognition. As a consequence, we show that the class of

bounded-error affine languages remains the same when the

AfAs are restricted to use rational numbers or only

integers.

We provide all definitions in the next section and our

results regarding using end-marker in Sect. 2.4. Our loga-

rithmic space simulation is given in Sect. 3. Our impossi-

bility result is given in Sect. 4. Our results related to

generalized AfAs are given in Sect. 5.

A preliminary version of this paper was presented in

UCNC2019 (Hirvensalo et al. 2019). In this version, Sects.

2.4 and 5 are completely new.

2 Preliminaries

Throughout the paper, R denotes the input alphabet – not

containing letter $ (we fix it as the right end-marker

wherever it is used) , and eR ¼ R [f$g. The empty word is

represented as e. The set of all words defined on the

alphabet R is denoted R�. For any given word w 2 R�, |w| is
the length of w, we define ~w ¼ w$, and, if w 6¼ e, wi rep-

resents its i-th letter, where 1� i� jwj.
For any given class C, CQ and CA denote the classes

defined by the machines restricted to have rational-valued

and algebraic-valued components, respectively. The loga-

rithmic and polynomial space classes are denoted as L and

PSPACE, respectively. We assume that the reader is

familiar with the basic notions of automata theory.

2.1 Models

As a probability distribution (also known as a stochastic

vector) we understand a (column) vector with nonnegative

entries summing up to one, and a stochastic matrix (also

known as a Markov matrix) here stands for a square matrix

whose all columns are probability distributions.

A k-state probabilistic finite automaton (PFA) P over

alphabet R is a triplet P ¼ ðx; fMi j i 2 Rg; yÞ where x 2
Rk is a stochastic vector called initial distribution, each

Mi 2 Rk�k is a stochastic matrix, and y 2 f0; 1gk is the

final vector (each 1 in y represents an accepting state).

For any input word w 2 R� with length n, P has a

probability distribution of states as follows: vf ¼ Mwx ¼
Mwn

� � �Mw1
x: The accepting probability corresponds to the

probability of P being in an accepting state after reading w,

which is given by

fPðwÞ ¼ yTMwx: ð1Þ

Affine finite automaton (AfA) is a generalization of PFA

allowing negative transition values. Only allowing negative

values in the transition matrices does not add any power

(generalized PFAs are equivalent to usual ones, see Tur-

akainen (1969)), but affine automata introduce also a non-

linear behaviour. The automaton acts like a usual gener-

alized probabilistic automaton until the last operation,

which is a non-linear operation called a weighting

operation.

A vector v 2 Rk is an affine vector if and only if its

coordinates sum up to 1. A matrix M is an affine matrix if

and only if all its columns are affine vectors. It is easy to

verify that the multiplication of an affine matrix with an

affine vector is also an affine vector, which ensures that

affine automata are well defined.

A k-state AfA A over alphabet R is a triplet

A ¼ ðx; fMiji 2 Rg;FÞ; where x is an initial affine vec-

tor, each Mi is an affine transition matrix, and

F ¼ diagðd1; . . .; dnÞ is the final projection matrix, where

each di 2 f0; 1g.
The value computed by an affine automaton can be

defined most conveniently via the following notation: jvj ¼
P

i jvij stands for the usual L1 norm. The final value of the

affine automaton A is

fAðwÞ ¼
jFMwxj
jMwxj

: ð2Þ

Clearly fAðwÞ 2 ½0; 1� for any input word w 2 R�.
Remark that the final value for PFAs (1) is defined as

matrix product vf 7!yTvf , which is a linear operation on vf .

260 M. Hirvensalo et al.

123

On the other hand, computing final value from vf as in (2)

involves nonlinear operations vf 7!
jFvf j
jvf j

such as L1-norm

and normalization (division).

2.2 Language recognition

Given a function f : R� ! ½0; 1� computed by an automa-

ton (stochastic or affine), there are different ways of

defining the language recognized by this automaton.

A language L � R� is recognized by an automaton A with

cutpoint k 2 ½0; 1Þ if and only if L ¼ fw 2 R� j fAðwÞ[kg:
These languages are called cutpoint languages.

A language L � R� is recognized by an automaton

A with exclusive cutpoint k 2 ½0; 1� if and only if

L ¼ fw 2 R� j fAðwÞ 6¼ kg: These languages are called

exclusive cutpoint languages.

A stronger condition is to impose that accepted and

rejected words are separated by a gap: the cutpoint is said

to be isolated. A language L is recognized by an automaton

A with isolated cutpoint k if and only if there exist d[0

such that 8w 2 L; fAðwÞ� kþ d and 8w 62 L; fAðwÞ� k	 d.
By fixing k ¼ 1

2
, we define language recognition with

bounded error: A language L is recognized by an

automaton A with bound error if and only if there exists an

error bound � 2 ½0; 1=2Þ such that 8w 2 L, fAðwÞ� 1	 �

and 8w 62 L, fAðwÞ� �.

It is known that if a language recognized by a AfA (or

PFA) with bounded error, then the error bound can be

arbitrarily close to 0 (Hirvensalo et al. 2017).

2.3 Language classes

In the case of probabilistic (resp., affine automata), the set

of cutpoint languages are called stochastic languages

(resp., affine languages) and denoted by SL (resp., AfL).

We remark that fixing the cutpoint in the interval (0, 1)

does not change the classes SL and AfL (Paz 1971; Dı́az-

Caro and Yakaryılmaz 2016).

In the case of probabilistic (resp., affine automata), the

set of exclusive cutpoint languages are called exclusive

stochastic languages (resp., exclusive affine languages) and

denoted by SL 6¼ (resp., AfL 6¼). The complements of the

languages in SL 6¼ (resp., AfL 6¼) form SL¼ (resp., AfL¼).
(Fixing the cutpoint in the interval (0, 1) does not change

the classes SL6¼, SL¼, AfL 6¼, and AfL¼ (Paz 1971; Yakar-

yılmaz and Say 2010; Dı́az-Caro and Yakaryılmaz 2016).

The set of languages recognized with bounded error (or

isolated cutpoint, which is the same) by affine automata is

denoted by BAfL.

A classical result by Rabin (1963) shows that isolated

cutpoint stochastic languages are regular. Rabin’s proof

essentially relies on two facts: 1) the function mapping the

final vector into [0, 1] is a contraction, and 2) the state

vector set is bounded. By modifying Rabin’s proof, it is

possible to show that also many quantum variants of

stochastic automata obey the same principle (Ambainis and

Yakaryılmaz 2015): bounded-error property implies the

regularity of the accepted languages. In fact, E. Jeandel

generalized Rabin’s proof by demonstrating that the com-

pactness of the state vector set together with the continuity

of the final function are sufficient to guarantee the regu-

larity of the accepted language if the cutpoint is isolated

(Jeandel 2007). Affine automata do not have these prop-

erties, and in fact, they can recognize more than regular

languages with bounded error (Dı́az-Caro and Yakaryılmaz

2016).

2.4 Models using the right end-marker

A PFA or AfA can be defined by reading an extra letter (M$)

for post-processing after reading the whole input. That is, the

automaton reads ~w ¼ w$ for a given input wordw 2 R�. Any
such AfA (the definition of any such PFA is similar) can be

formally defined as A ¼ ðx; fMi j i 2 eRg;FÞ, and the

accepting probability of the input w is calculated as fAðwÞ ¼
jFM ~wxj
jM ~wxj :Moreover, vf ¼ M ~wx ¼ M$Mwx.

It is known that, for any k-state PFA using the right end-

marker, there is an equivalent k2-state PFAwithout using the

right end-marker such that, for any input word, both auto-

mata have the same accepting probabilities (Turakainen

1969). Even though we do not know whether this result is

valid for AfAs or not, we can still show that post-processing

does not increase the computational power of AfAs in the

case of recognition with cutpoint or bounded error.

Theorem 1 For a given k-state AfA A ¼ ðx; fMi j i 2
eRg;FÞ using the end-marker and for a given cutpoint

k 2 ½0; 1�, there is a 4k-state AfA A0 ¼ ðx0; fM0
i j i 2 Rg;F0Þ

not using the end-marker such that, for any w 2 R�, both of

fAðwÞ and fA0 ðwÞ are greater thank or equal tok or less thank.

Proof Let w 2 R� be the given input of length n� 0. Let

v0 ¼ x and u0 ¼ M$v0, and similarly, whenever n[0, let

vl ¼ Mwl
Mwl	1

� � �Mw1
x and ul ¼ M$vl, where 1� l� n.

Remark that vf ¼ un.

We define

v00 ¼ x00 ¼

kv0
ð1	 kÞv0

u0
	u0

0

B

B

@

1

C

C

A

:

It is clear that the summation of entries are 1 and so v00 is
an affine state. For any i 2 R, M0

i is defined as

Computational limitations of affine automata and generalized affine automata 261

123

Mi 0 I I

0 Mi 0 0

M$Mi M$Mi 0 0

	M$Mi 	M$Mi 0 0

0

B

B

B

@

1

C

C

C

A

:

It is easy to see that the entry summation of each column of

M0
i is equal to 1, and so M0

i is an affine transition matrix.

The multiplication of transition matrices with state vectors

is trivial, and so we can easily obtain that

v0f ¼ v0n ¼

kvn
ð1	 kÞvn

un

	un

0

B

B

B

@

1

C

C

C

A

¼

kvn
ð1	 kÞvn

vf

	vf

0

B

B

B

@

1

C

C

C

A

:

Let fAðwÞ ¼ jFvf j
jvf j ¼ kþ d for some real number d. We can

derive that jFvf j ¼ jvf jðkþ dÞ. We define F0 as

I 0 0 0

0 0 0 0

0 0 F 0

0 0 0 F

0

B

B

@

1

C

C

A

:

Then, we can calculate fA0 ðwÞ as follows:

fA0 ðwÞ ¼ jkvnj þ jFvf j þ j 	 Fvf j
jkvnj þ jð1	 kÞvnj þ 2jvf j

¼ kjvnj þ 2kjvf j þ 2djvf j
jvnj þ 2jvf j

¼kþ d
2jvf j

jvnj þ 2jvf j

� �

¼ kþ d0;

where either d ¼ d0 ¼ 0 or both d and d0 have the same

sign. h

Corollary 1 Any language recognized by an AfA using the

right end-marker with a cutpoint (or an exclusive cutpoint)

can be recognized by another AfA not using the right end-

marker with the same cutpoint.

Theorem 2 Any language L recognized by a k-state AfA

A ¼ ðx; fMi j i 2 eRg;FÞ using the right end-marker with

error bound 1
10

can be recognized by a 3k-state AfA A0 ¼
ðx0; fMi j i 2 Rg;F0Þ not using the right end-marker with

error bound 2
10
.

Proof We use the same terminology in the previous proof.

Let m0 ¼ jxj and let m[1 be a real number satisfying

jMivj\mjvj for any i 2 R and for any affine vector v.

Let w 2 R� be an input of length n� 0. We define x0 ¼

x
5mm0M$x
	5mm0M$x

0

@

1

A and for any

i 2 R. Then, we obtain v0f ¼
mnvn

5m0mnvf
	5m0mnvf

0

@

1

A. We define

F0 ¼
0 0 0

0 F 0

0 0 F

0

@

1

A. We know that jvnj\m0mn. The

accepting probability of A0 on w is

fA0 ðwÞ ¼ jF0v0f j
jv0f j

¼ 10m0mnjFvf j
jvnj þ 10m0mnjvf j

:

If w 2 L, then 10jFvf j � 9jvf j and

fA0 ðwÞ� 9m0mnjvf j
jvnj þ 10m0mnjvf j

[
9m0mnjvf j
11m0mnjvf j

[0:8181:

If w 62 L, then 10jFvf j � jvf j and

fA0 ðwÞ� m0mnjvf j
jvnj þ 10m0mnjvf j

\
m0mnjvf j

10m0mnjvf j
¼ 0:1

Therefore, L is recognized by A0 with error bound 2
10
. h

3 Logarithmic simulation

Macarie (1998) proved that SL¼Q � L and SLQ � L. That

is, the computation of any rational-valued probabilistic

automaton can be simulated by an algorithm using only

logarithmic space. However, this logarithmic simulation

cannot be directly generalized for rational-valued affine

automata due to the non-linearity of their last operation. In

order to understand why, we will first reproduce the proof.

Before that, let us introduce the most important space-

saving technique:

Definition 1 Notation ðb mod cÞ stands for the least

nonnegative integer a satisfying a
 b ðmodcÞ. If x ¼
ðx1; . . .; xrÞ and n ¼ ðn1; . . .; nrÞ 2 Zr, we define

x ðmod nÞ ¼ ððx1 mod n1Þ; . . .; ðxr mod nrÞÞ. Analogously,

for any matrix A 2 Zk�k, we define

ðAðmod nÞÞij ¼ ðAij mod nÞ.

The problem of recovering x from the residue repre-

sentation ððxmod n1Þ; . . .; ðxmod nrÞÞ is practically

resolved by the following well-known theorem.

Theorem 3 (The Chinese Remainder Theorem) Let

n1; . . .; nr be pairwise coprime integers, a1; . . .; ar arbitrary

integers, and N ¼ n1 � � � nr. Then there exists an integer x

such that

x
 a1ðmod n1Þ; . . .; x
 arðmod nrÞ; ð3Þ

and any two integers x1 and x2 satisfying (3) satisfy also

x1
 x2ðmod NÞ.

Remark 1 The Chinese Remainder Theorem implies that

the integer ring operations ðþ; �Þ can be implemented using

the residue representation, and that the integers can be

uncovered from the residue representations provided that

262 M. Hirvensalo et al.

123

1) n ¼ ðn1; . . .; nrÞ consists of pairwise coprime integers

and 2) the integers stay in interval of length N 	 1, where

N ¼ n1 � � � � � nr.

Remark 2 In order to ensure that n ¼ ðn1; . . .; nrÞ consists
of pairwise coprime integers, we select numbers ni from

the set of prime numbers. For the reasons that will become

obvious later, we will however omit the first prime 2.

Definition 2 pr is an r-tuple pr ¼ ð3; 5; 7; . . .; prÞ con-

sisting of r first primes by excluding 2. For this selection, a

consequence of the prime number theorem is that,

asymptotically, Pr ¼ 3 � 5 � 7 � � � � � pr ¼ 1
2
eð1þoð1ÞÞr ln r.

Definition 3 Let pr be as before. Then for any integer x,

the residual representation Respr ðxÞ stands for an integer

vector of the residues:

ðxðmod 3Þ; xðmod 5Þ; xðmod 7Þ; . . .; xðmod prÞÞ.

Theorem 4 (Macarie 1998) SL¼Q � L:

Proof For a given alphabet R, let L � R� be a language in
SL¼Q and P ¼ ðx; fMi j i 2 Rg; yÞ be a k-state rational-

valued PFA over R such that

L ¼ w 2 R� j fPðwÞ ¼
1

2

� �

:

We remind that, for any input word w ¼ w1 � � �wn 2 R�,
we have

fPðwÞ ¼ yTMwn
� � �Mw1

x: ð4Þ

Since each Mi 2 Qk�k, there exists an integer D such that

all entries of each matrix M0
i ¼ DMi are integers, and (4)

can be rewritten as

fPðwÞ ¼
1

Dn
yTM0

wn
� � �M0

w1
x

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

fP0 ðwÞ

;

and the language L can be characterized as

L ¼ fw 2 R� j 2fP0 ðwÞ ¼ Dng: ð5Þ

Since the original matrices Mi are stochastic, meaning that

their entries are in [0, 1], it follows that each matrix M0
i ¼

DMi has integer entries in [0, D]. Moreover, fPðwÞ 2 ½0; 1�
implies that fP0 ðwÞ 2 ½0;Dn� for every input word w 2 Rn.

As now fP0 ðwÞ can be computed by multiplying k � k

integer matrices, the residue representation will serve as a

space-saving technique.

We will fix r later, but the description of the algorithm is

as follows: For each entry p of pr ¼ ð3; 5; 7; . . .; prÞ, we let
M

ðpÞ
i ¼ M0

i mod p, and compute

ð2fP0 ðwÞ mod pÞ ¼ yTMðpÞ
wn

� � �MðpÞ
w1
x: ð6Þ

As all the products are computed modulo p, k2 log p bits are

needed to compute (6). Likewise, ðDn mod pÞ can be

computed in space Oðlog pÞ for each coordinate p of pr.

The comparison 2fP0 ðwÞ
 Dn ðmod pÞ can be hence done

in Oðlog pÞ space.
Reusing the space, the comparison can be made

sequentially for each coordinate of pr, and if any compar-

ison gives a negative outcome, we can conclude that

2P0ðwÞ 6¼ Dn.

To conclude the proof, it remains to fix r so that both

2fP0 ðwÞ and Dn are smaller than Pr ¼ 3 � 5 � 7 � � � � � pr. If no
congruence test is negative, then the Chinese remainder

theorem ensures that 2fP0 ðwÞ ¼ Dn. Since fP0 ðwÞ�Dn, we

need to select r so that Pr [2Dn; which is equivalent to

log
1

2
þ ð1þ oð1ÞÞr ln r[log 2þ n logD:

This inequality is clearly satisfied with r ¼ n for large

enough n, and for each n� 1 by choosing r ¼ c � n, where
c is a positive constant (depending on D).

As a final remark let us note that pbcnc, the bcnc-th prime,

can be generated in logarithmic space and the prime

number theorem implies that Oðlog nÞ bits are enough to

present pbcnc, since c is a constant. h

To extend the above theorem to cover SLQ as well,

auxiliary results are used.

Lemma 1 (Macarie 1998) If N is an odd integer and x,

y 2 ½0;N 	 1� are also integers, then x� y iff x	 y has the

same parity as ððx	 yÞ mod NÞ.

Proof As x, y 2 ½0;N 	 1�, it follows that

ðx	 ymod NÞ ¼
x	 y if x� y

N þ x	 y if x\y;

�

which shows that the parity changes in the latter case since

N is odd. h

The problem of using the above lemma is that, in

modular computing, numbers x and y are usually known

only by their residue representations ResprðxÞ and ResprðyÞ,
and it is not straightforward how to compute the parity

from the modular representation in logarithmic space.

Macarie solved this problem not only for parity but also for

a more general modulus (not necessarily equal to 2).

Lemma 2 (Claim modified from Macarie (1998)) For any

integer x and modulus pr ¼ ð3; 5; 7; . . .; prÞ, there is a

deterministic algorithm that given ResprðxÞ and M 2 Z as

input, produces the output xðmod MÞ in space

Oðlog pr þ logMÞ.

Computational limitations of affine automata and generalized affine automata 263

123

As a corollary of the previous lemmata, Macarie pre-

sented a conclusion which implies the logarithmic space

simulation of rational stochastic automata.

Lemma 3 (Claim modified from Macarie (1998)) Let

pr ¼ ð3; 5; 7; . . .; prÞ and Pr ¼ 3 � 5 � 7 � � � � � pr. Given the

residue representations of integers x, y 2 ½0;Pr 	 1�, the
decisions x[y, x ¼ y or x\y can be made in Oðlog prÞ
space.

Proof The equality test can be done as in the proof of

Theorem 4, testing the congruence sequentially for each

prime. Testing x� y is possible by Lemmata 1 and 2: First

compute Respr ðzÞ ¼ ResprðxÞ 	 Respr ðyÞðmod prÞ, then

compute the parities of x, y, z using Lemma 2 with M ¼ 2.

h

The following theorem is a straightforward corollary

from the above:

Theorem 5 SLQ � L.

When attempting to prove an analogous result to affine

automata, there is at least one obstacle: computing the final

value includes the absolute values, but the absolute value is

not even a well-defined operation in the modular arith-

metic. For example, 2
 	3ðmod 5Þ, but

2j j 6
 	3j jðmod 5Þ. This is actually another way to point

out that, in the finite fields, there is no order relation

compatible with the algebraic structure.

Hence for affine automata with matrix entries of both

signs, another approach must be adopted. One obvious

approach is to present an integer n as a pair ð nj j; sgnðnÞÞ,
and apply modular arithmetic to nj j. The signum function

and the absolute value indeed behave smoothly with

respect to the product, but not with the sum, which is a

major problem with this approach, since to decide the sign

of the sum requires a comparison of the absolute values,

which seems impossible without having the whole residue

representation. The latter, in its turn seems to cost too much

space resources to fit the simulation in logarithmic space.

Hence the logspace simulation for automata with

matrices having both positive and negative entries seems to

need another approach. It turns out that we can use that

introduced by Turakainen already in 1969 (Turakainen

1968, 1969).

Theorem 6 AfLQ � L.

Proof For a given alphabet R, let L 2 R� be a language in
AfLQ and A ¼ ðx; fMi j i 2 Rg;FÞ be a k-state rational-

valued AfA over R such that

L ¼ w 2 R� j fAðwÞ[
1

2

� �

:

For each Mi 2 Qk�k, we define a new matrix as

Bi ¼
0 0T 0

ci Mi 0
ei dTi 0

0

@

1

A;

where ci, di, and ei are chosen so that the column and row

sums of Bi are zero. We define x0 ¼
0

x
0

0

@

1

A as the new

initial state. For the projection matrix F, we define an

extension

F0 ¼
0 0 0

0 F 0

0 0 0

0

@

1

A:

It is straightforward to see that Bwx
0j j ¼ Mwxj j as well as

F0Bwx
0j j ¼ FMwxj j.

For the next step, we introduce an ðk þ 2Þ � ðk þ 2Þ
matrix E, whose each element is 1. It is then clear that

En ¼ ðk þ 2Þn	1
E and BiE ¼ EBi ¼ 0. Now we define

Ci ¼ Bi þ mE;

where m 2 Z is selected large enough to ensure the non-

negativity of the matrix entries of each Ci. It follows that

Cw ¼ Bw þ m wj jðk þ 2Þ wj j	1
E;

and

Cwx
0 ¼ Bwx

0 þ m wj jðk þ 2Þ wj j	1
Ex0:

Similarly,

F0Cwx
0 ¼ F0Bwx

0 þ m wj jðk þ 2Þ wj j	1F0Ex0:

Now

FMwxj j
Mwxj j ¼ F0Bwxj j

Bwxj j ¼
F0Cwx

0 	 m wj jðk þ 2Þ wj j	1F0Ex0
�

�

�

�

�

�

Cwx0 	 m wj jðk þ 2Þ wj j	1
Ex0

�

�

�

�

�

�

which can further be modified by expanding the denomi-

nators away: For an integer g large enough all matrices

Di ¼ gCi will be integer matrices and the former equation

becomes

FMwxj j
Mwxj j ¼ F0Bwxj j

Bwxj j ¼
F0Dwx

0 	 m wj jðk þ 2Þ wj j	1g wj jF0Ex0
�

�

�

�

�

�

Dwx0 	 m wj jðk þ 2Þ wj j	1g wj jEx0
�

�

�

�

�

�

:

ð7Þ

Hence the inequality

264 M. Hirvensalo et al.

123

FMwxj j
Mwxj j � 1

2

is equivalent to

2 F0Dwx
0 	 m wj jðk þ 2Þ wj j	1g wj jF0Ex0

�

�

�

�

�

�

� Dwx
0 	 m wj jðk þ 2Þ wj j	1g wj jEx0

�

�

�

�

�

�:
ð8Þ

In order to verify inequality (8) in logarithmic space, it is

sufficient to demonstrate that the residue representations of

both sides can be obtained in logarithmic space.

For that end, the residue representation of vector a ¼
F0Dwx

0 2 Rkþ2 can be obtained in logarithmic space as in

the proof of Theorem 4.

Trivially, the residue representation of b ¼ m wj jðk þ
2Þ wj j	1g wj jþ1F0Ex0 2 Rkþ2 can be found in logarithmic

space, as well. In order to compute the residue represen-

tation of

a	 bj j ¼ a1 	 b1j j þ � � � þ ak 	 bkj j;

it is sufficient to decide whether ai � bi holds. As the

residue representations for each ai and bi is known, all the

decisions can be made in logspace, according to Lemma 3.

The same conclusion can be made for the right hand side of

(8). h

4 A Non-affine Language

As we saw in the previous section, AfLQ � L, and hence

languages beyond L, are good candidates for non-affine

languages.1 In this section, we will however demonstrate

that the border of non-affinity may lie considerably lower:

There are languages in L which are not affine.

In an earlier work (Hirvensalo et al. 2017), we applied

the method of Turakainen (1981) to show that there are

languages in L which however are not contained in BAfL.

Here we will extend the previous result to show that those

languages are not contained even in AfLA.

Definition 4 (Lower density) Let L � a� be a unary lan-

guage. We call lower density of L the limit

densðLÞ ¼ lim inf
n!1

fak 2 Ljk� ng
�

�

�

�

nþ 1
:

Definition 5 (Uniformly distributed sequence) Let ðxnÞ
be a sequence of vectors in Rk and I ¼ ½a1; b1Þ � � � � �
½ak; bkÞ be an interval in Rk. We define C(I, n) as

CðI; nÞ ¼ fxi mod 1 2 Ij1� i� ngj j.

We say that ðxnÞ is uniformly distributed mod 1 if and

only if for any I of such type,

lim
n!1

CðI; nÞ
n

¼ ðb1 	 a1Þ � � � ðbk 	 akÞ:

Theorem 7 If L � a� satisfies the following conditions:

1. densðLÞ ¼ 0.

2. For all N 2 N, there exists r 2 N and an ascending

sequence ðmiÞ 2 N such that arþmiN � L and for any

irrational number a, the sequence ðr þ miNÞað Þ is
uniformly distributed mod 1.

Then L is not in AfLA.

Proof Let’s assume for contradiction that L 2 AfLA. Then

there exists an AfA A with s states, matrix M and initial

vector v such that the acceptance value of A is

fAðanÞ ¼
FMnvj j
Mnvj j : ð9Þ

Without loss of generality, we can assume that the cutpoint

equals to 1
2
, and hence w 2 L , fAðwÞ[1

2
:

Using the Jordan decomposition M ¼ PJP	1, one has

Mn ¼ PJnP	1. So the coordinates of Mnv have the form

ðMnvÞj ¼
X

s

k¼1

pjkðnÞknk ; ð10Þ

where kk are the eigenvalues of M and pjk are polynomials

of degree less than the degree of the corresponding

eigenvalue. For short, we denote FðnÞ ¼ fAðanÞ, and let

kk ¼ kkj je2iphk .
When studying expression (9), we can assume without

loss of generality, that all numbers hk are irrational. In fact,

replacing matrix M with aM, where a 6¼ 0 does not change

(9), since

FðaMÞnvj j
ðaMÞnvj j ¼ anFMnvj j

anMnvj j ¼ FMnvj j
Mnvj j :

Selecting now a ¼ e2pih (where h 2 R) implies that the

eigenvalues of M are kke2ipðhkþhÞ. The field extension

Qðh1; . . .; hsÞ is finite, and hence there is always an irra-

tional number h 62 Qðh1; . . .; hsÞ. It follows directly that all

numbers hk þ h are irrational. Hence we can assume that

all the numbers hk are irrational in the first place.2

1 It is known that L(PSPACE, so it is clear that PSPACE-complete

languages are not in AfLQ.

2 Note that the new matrix obtained may not be affine, so it would be

wrong to assume that all AfAs have admit an equivalent one with only

irrational eigenvalues. However, this does not affect this proof, since

we do not require the new matrix to be affine, we only study the

values that the fraction
PðaMÞnvj j
ðaMÞnvj j ¼

PMnvj j
Mnvj j take.

Computational limitations of affine automata and generalized affine automata 265

123

By restricting to an arithmetic progression n ¼ r þ mN

(m 2 N) we can also assume that no ki=kj is a root of unity
for i 6¼ j. In fact, selecting

N ¼ lcmfordðki=kjÞ j i 6¼ j and ki=kj is a root of unityg;
ð11Þ

equation (10) becomes

ðMrþmNvÞj ¼
X

s

k¼1

pjkðr þ mNÞkrkðkkÞ
Nm ¼

X

s0

k¼1

qjkðmÞlmk ;

ð12Þ

where fl1; . . .; ls0 g are the distinct elements of set

fkN1 ; . . .; k
N
s g Now for i 6¼ j li=lj cannot be a root of unity,

since ðli=ljÞt ¼ 1 would imply ðki0=kj0 ÞNt ¼ 1, which in

turn implies ðki0=kj0 ÞN ¼ 1 and hence li ¼ kNi0 ¼ kNj0 ¼ lj,

which contradicts the assumption li 6¼ lj.

We can now write the acceptance condition fAðanÞ[1
2

equivalently as

fAðanÞ[
1

2
, 2 PMnvj j[Mnvj j

, 2
X

j2Ea

ðMnvÞj
�

�

�

�

�

�[
X

j2E
ðMnvÞj
�

�

�

�

�

�

,
X

j2Ea

ðMnvÞj
�

�

�

�

�

�	
X

j2Ea

ðMnvÞj
�

�

�

�

�

�

|ffl{zffl}

gðnÞ

[0;

Where E is the set of states of A, Ea � E its set of accepting

states, and Ea the complement of Ea. According to (10),

gðnÞ :¼
P

j2Ea
ðMnvÞj
�

�

�

�

�

�	
P

j2Ea
ðMnvÞj
�

�

�

�

�

� consists of com-

binations of absolute values of linear combination of

functions of type ndkn.
We say that nd1kn1 is of larger order than nd2kn2, if

k1j j[k2j j; and in the case k1j j ¼ k2j j, if d1 [d2. If

k1j j ¼ k2j j, we say that ndkn1 and ndkn2 and of the same

order. It is clear that if term t1ðnÞ is of larger order than

t2ðnÞ, then lim
n!1

t2ðnÞ
t1ðnÞ

¼ 0.

We can organize the terms in expression (10) as

ðMnvÞj ¼
X

s

k¼1

pjkðnÞknk ¼ KðNÞ
j ðnÞ þ KðN	1Þ

j ðnÞ

þ � � � þ Kð0Þ
j ðnÞ;

ð13Þ

where each KðmÞ
j ðnÞ consists of terms with equal order

multiplier:

KðmÞ
j ðnÞ ¼

X

mj

k¼1

cmkn
dmkmk

n ¼ ndmknm
X

mj

k¼1

cmke
2pinhmk ð14Þ

(for notational simplicity, we mostly omit the dependency

on j in the right hand side of (14)). Here km 2 Rþ is the

common absolute value of all eigenvalues kmk ¼ kme2pihmk ,

and expression (13) is organized in descending order: KðNÞ
j

is the sum of terms of the highest order multiplier, KðN	1Þ
j

contains the terms of the second highest order multiplier,

etc. We say that Kðk2Þ
j is lower than Kðk1Þ

j if k2\k1:

We will then fix a representation

gðnÞ ¼
X

j2Ea

X

s

k¼1

pjkðnÞknk

�

�

�

�

�

�

�

�

�

�

	
X

j2Ea

X

s

k¼1

pjkðnÞknk

�

�

�

�

�

�

�

�

�

�

¼
X

j2Ea

AjðnÞ þ BjðnÞ þ CjðnÞ
�

�

�

�

	
X

j2Ea

AjðnÞ þ BjðnÞ þ CjðnÞ
�

�

�

�;

ð15Þ

where AjðnÞ þ BjðnÞ þ CjðnÞ is a grouping of all K-terms in

(13) defined as follows:

1. AjðnÞ ¼
X

m

k¼0

KðN	kÞ
j ðnÞ, where m 2 ½	1;N� \ Z is cho-

sen as the maximal number so that

A ¼
X

j2Ea

AjðnÞ
�

�

�

�	
X

j2Ea

AjðnÞ
�

�

�

�

ð16Þ

is a constant function N ! R. Such an m exists, since

for m ¼ 	1, the sum is regarded empty and AjðnÞ ¼ 0,

but for m ¼ N, all K-terms are included, and then (16)

becomes fAðanÞ, which is not constant (otherwise

condition 1 or 2 of the theorem would be false).

2. BjðnÞ consists a single K-term immediately lower than

those in AjðnÞ, and
3. CjðnÞ contains the rest of the K-terms, lower than BjðnÞ

h

Lemma 4 If A 6¼ 0, then 8z 2 C; Aþ zj j ¼

Aj j þ Re
Aj j
A
zþ Oðz

2

A
Þ:

Proof Denote z ¼ xþ iy. Because Rezj j � zj j, we have

1þzj j¼ 1þxþ iyj j¼
ffi

ð1þxÞ2þy2
q

¼
ffi

1þ2Rezþ zj j2
q

¼1þRezþOðz2Þ:

Now

Aþ zj j ¼ Aj j 1þ z

A

�

�

�

�

�

� ¼ Aj j
	

1þ Re
z

A
þ Oð

	 z

A

2Þ

¼ Aj j þ Re
Aj j
A

zþ Oðz
2

A
Þ:

/

266 M. Hirvensalo et al.

123

We choose k 2 Rþ and d so that the highest K-term in

B(n) is of order ndkn and define A0
jðnÞ ¼ n	dk	nAjðnÞ,

B0
jðnÞ ¼ n	dk	nBjðnÞ, g0ðnÞ ¼ gðnÞn	dk	n. Then clearly

g0ðnÞ[0 if and only if gðnÞ[0 and each BjðnÞ remains

bounded as n ! 1. To simplify the notations, we omit the

primes and recycle the notations to have a new version of

g(n) of (15) where Aj-terms may tend to infinity but Bj-

terms remain bounded.

Recall that we may assume (by restricting to a

arithmetic progression) that no ki=kj is a root of unity.

By Skolem-Mahler-Lech theorem (Hansel 1986), this

implies that functions Aj can have only a finite number

of zeros, and in the continuation we assume that n is

chosen so large that no function Aj becomes zero.

Furthermore, by the main theorem of Evertse (1984), then

AjðnÞ
�

�

�

� ¼ Xðndkn	�Þ for each �[0.3 As each Bj remains

bounded, we find that B2
j =Aj tend to zero as n ! 1, and

hence by Lemma 4, defining

g1ðnÞ ¼
X

j2Ea

�

AjðnÞ
�

�

�

�þ Reð
AjðnÞ
�

�

�

�

AjðnÞ
BjðnÞÞ

�

	
X

j2Ea

�

AjðnÞ
�

�

�

�þ Reð
AjðnÞ
�

�

�

�

AjðnÞ
BjðnÞÞ

�

¼
X

j2Ea

AjðnÞ
�

�

�

�	
X

j2Ea

AjðnÞ
�

�

�

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

hðnÞ

þ
X

j2Ea

Reð
AjðnÞ
�

�

�

�

AjðnÞ
BjðnÞÞ

þ
X

j2Ea

Reð
AjðnÞ
�

�

�

�

AjðnÞ
BjðnÞÞ

we have a function g1ðnÞ with the property g1ðnÞ 	 gðnÞ !
0 (C-terms are lower than B-terms, so they can be dropped

without violating this property), when n ! 1. Also by the

construction it is clear that hðnÞ ¼ C � ndkn, where C is a

constant, and by the conditions of the theorem, this is

possible only if C ¼ 0.

Notice tat g1ðnÞ is not a constant function by construc-

tion. Also, each Bj is a linear combination of functions of

form e2pihkn, each hk can be assumed irrational, and

jjAjðnÞjjAjðnÞ ¼ 1, so we can conclude that g1ðnÞ is a

continuous function formed of terms of form ceihkn and of

ratios Aj

�

�

�

�=Aj. In these terms, however the behaviour is

asymptotically determined by the highest K-terms, so the

conclusion remains even if we drop the lower terms.

By assumption, for all k, the sequence ðr þ mNÞhk is

uniformly distributed modulo 1. It follows that the values

e2ipðrþmNÞhk are dense in the unit circle. If for some m,

g1ðr þ mNÞ\0, then g1ðr þ NmÞ� 	 e for some �[0.

Then, because of the density argument, there are arbitrarily

large values of i for which g1ðr þ miNÞ� 0 contradicting

condition 2 of the statement. Hence g1ðr þ mNÞ� 0 for

each m large enough. As g1 is not a constant, there must be

some m0 so that g1ðm0Þ� �[0.

Next, let Rðx1; . . .; xsÞ be a function obtained from g1 by

replacing each occurrence of eihkn by a variable xk, hence

each xk will assume its value in the unit circle. Moreover,

by the assumptions of the theorem, the values of xk will be

uniformly distributed in the unit circle.

Note that g1ðnÞ ¼ Rððe2ipðrþmiNÞhkÞk2AÞ. Then, because

the sequences ððr þ miNÞhkÞi are uniformly distributed

modulo 1, it follows that any value obtained by the

function Rððe2ipykÞk2AÞ can be approximated by some

g1ðr þ miMÞ with arbitrary precision. The function R is

continuous, therefore there exists an interval I ¼
ðx1; y1; :::Þ ¼ ððxk; ykÞÞk2A on which RððxkÞÞ[e

2
. So, if mi

is large enough and satisfies

ðr þ miNÞh1 mod 1; . . .ð Þ ¼ ðr þ miMÞhk mod 1ð Þk2A2 I;

then g1ðr þ miNÞ[e
2
, which implies fAðr þ miNÞ[0 and

hence arþmiN 2 L. Now we just have to prove that the

sequence ðr þ miNÞ is ‘‘dense enough’’ to have

densðLÞ[0, contradicting again condition 1.

Then, because of uniform distribution imposed by

condition 2, one has

d ¼ lim
i!1

CðI; r þ mNÞ
r þ mN

¼
Y

k2A
ðyk 	 xkÞ

And so for i large enough,
CðI;rþmiNÞ

rþmiN
� d

2
, with ahþniQ 2 L,

implying densðLÞ[0, a contradiction. h

Corollary 2 Let P be any polynomial with nonnegative

coefficients and deg ðPÞ[2. The language faPðnÞjn 2 Ng
is not in AfLA.

Corollary 3 The language fapjp is primeg is not in AfLA.

Proof of Corollary 2 and Corollary 3 Turakainen proved

that these two languages satisfies the two conditions of

Theorem 7 (Turakainen 1981). Therefore, these two lan-

guages not in AfLA. h

5 Generalized affine automata

In this section, we show that using arbitrary real state

vector and transition matrices does not increase the com-

putational power of AfAs. A generalized affine finite

automaton (GAfA) is a 3-tuple G ¼ ðx; fMiji 2 eRg;FÞ;
where, different from an AfA, fMiji 2 eRg is the set of real-

valued transition matrices without any restriction on the
3 This is the only point we need the assumption that the matrix entries

are algebraic

Computational limitations of affine automata and generalized affine automata 267

123

column summations and x is the real-valued initial state

vector. The final affine state of G on the given input w 2 R�

for some n� 0 is

vf ¼ M$Mwx ¼ M$Mwn
� � �Mw1

x;

where Me ¼ I. It must be guaranteed that at least one entry

of vf is non-zero for any possible input. The accepting

probability of G on w is calculated in the same way of an

AfA: fGðwÞ ¼ jFvf j
jvf j .

We start with proving that GAfAs with cutpoint define

the same class of languages as AfAs with cutpoint.

Theorem 8 Any language L recognized by a k-state GAfA

G ¼ ðx; fMiji 2 eRg;FÞ with cutpoint k 2 ½0; 1Þ is recog-

nized by a ðk þ 2Þ-state AfA A ¼ ðx0; fMiji 2 eRg;F0Þ with
cutpoint k.

Proof Let t0 ¼ 1	
Pk

i¼1xi. We define x0 ¼
x
kt0

ð1	kÞt0

0

@

1

A.

For letter i 2 R, let cj be the j-th column summation of

Mi and dj ¼ 1	 cj. We define M0
i based on Mi:

where each column summation is 1. Then, we can calculate

v0f , for a given input w 2 R�, as

vf
ktf

ð1	 kÞtf

0

@

1

A, where

tf ¼ 1	
Pk

i¼1ðvf Þi. We define

F0 ¼
F 0 0

0 1 0

0 0 0

0

@

1

A:

Let t ¼ jtf j. We have fGðwÞ ¼ jFvf j
jvf j ¼ kþ d for some

real number d. Then the accepting probability of w by A is

fAðwÞ ¼
jF0v0f j
jv0f j

¼ jFvf j þ kt
jvf j þ t

¼ ðkþ dÞjvf j þ kt
jvf j þ t

¼ kþ d

jvf j þ t
:

Thus, both of fGðwÞ and fAðwÞ are greater than k or equal to

k or less than k. h

Remark that when the cutpoint is 0, then the constructed

AfA can indeed use one state less in the above proof.

We can obtain the same result for bounded error case

when focusing on the rational numbers. First we show that

there is no difference between using rational numbers and

integers.

Lemma 5 For any given GAfA G1 ¼ ðx; fMiji 2 eRg;FÞ
with rational number components, there is a GAfA G2 with

integer number components such that they have the same

accepting probability on any input string.

Proof Let z be sufficiently big integer such that zMi for

each i 2 R and zx contains only integers. Then, G2 is

defined as ðzx; fzMiji 2 eRg;FÞ. Due to linearity, if the final
vector of G1 on a given input w 2 R� is vf , then, the final

vector of G2 on a any given input is zj ~wjþ1vf . Thus,

fG1
ðwÞ ¼ fG2

ðwÞ. h

Theorem 9 Any language L recognized by a k-state GAfA

G ¼ ðx; fMiji 2 eRg;FÞ with bounded error can be recog-

nized by a ð2k þ 1Þ-state AfA A ¼ ðx0; fM0
i ji 2 eRg;F0Þ with

bounded error, where both automata have only integer

components.

Proof Let 1
2
	 1

m for m� 2 be the error bound and w 2 R�

be the given input.

We define x0 ¼
x
	x
1

0

@

1

A. For each i 2 R, we define

M0
i ¼

Mi 0 0
0 Mi 0
r1 r1 1

0

@

1

A, and for letter $, we define

M0
$ ¼

m2M$ 0 0
0 m2M$ 0
r$ r$ 1

0

@

1

A, where ri and r$ are row

vectors guaranteeing that the entry summation of each

corresponding column is 1. The final state vector of A on w

can be easily obtained as v0f ¼
m2vf
	m2vf

1

0

@

1

A, where vf is the

final state vector of G on w.

We define F0 ¼
F 0 0

0 F 0

0 0 0

0

@

1

A. Let a ¼ jFvf j and

r ¼ jvf j 	 a. Remark that a and r can be only non-negative

integers. The accepting probability of A on w is

fAðwÞ ¼
2m2a

2m2aþ 2m2r þ 1
ð17Þ

since we have two copies of vf where one is multiplied by

m2 and the other is multiplied by 	m2. For any w 62 L, it is

straightforward that

fAðwÞ ¼
2m2a

2m2aþ 2m2r þ 1
� 2m2a

2m2aþ 2m2r
¼ a

aþ r
¼ fGðwÞ:

In the remaining part, we focus on only the members: w 2

268 M. Hirvensalo et al.

123

L and a
aþr ¼ 1

2
þ c for some 1

2
� c� 1

m. From the equation of

fGðwÞ; we can obtain aþ r ¼ 2a
1þ2c and we can substitute

aþ r with 2a
1þ2c in equation (17):

fAðwÞ ¼
2m2a

4m2a
1þ2c þ 1

¼ ð1þ 2cÞ2m2a

4m2aþ 2cþ 1

¼
ð1þ 2cÞð2m2aþ cþ 1

2
	 c	 1

2
Þ

4m2aþ 2cþ 1
:

After simplification, we have

fAðwÞ ¼
1

2
þ c	

ð2cþ 1Þðcþ 1
2
Þ

4m2aþ 2cþ 1
¼ 1

2
þ c	 ð2cþ 1Þ2

8m2aþ 4cþ 2
:

We know that a� 1 (a 6¼ 0 for w 2 L) and c� 1
2
. Thus, we

can easily follow that

ð2cþ 1Þ2

8m2aþ 4cþ 2
\

4

8m2
¼ 1

2m2
:

Hence, we can bound the accepting probability of any

member from below as

fAðwÞ[
1

2
þ 1

m
	 1

2m2
¼ 1

2
þ 2m	 1

2m2
:

Since there is a constant gap for every member, we con-

clude that A recognizes L with bounded error. h

Villagra and Yakaryılmaz (2016), showed that one-sided

error (either all members are accepted with probability 1 or

all non-members are accepted with probability 0) versions

of BAfL are the identical if they are defined by AfAs with

rational number components or by AfAs with integer

components. By using the above results, we can follow that

the same result is valid also for (two-sided error class)

BAfL.

Corollary 4 BAfLQ ¼ BAfLZ.

Acknowledgements Open access funding provided by University of

Turku (UTU) including Turku University Central Hospital. We thank

to the anonymous reviewers for their helpful corrections and com-

ments. M. Hirvensalo was partially supported by the Väisälä Foun-

dation. E. Moutot was partially supported by ANR project CoCoGro

(ANR-16-CE40-0005). A. Yakaryılmaz was partially supported by

the ERDF project 1.1.1.5/18/A/020, Akadēmiskā personāla atjaunotne

un kompetenču pilnveide Latvijas Universitātē lı̄g Nr. 8.2.2.0/18/A/

010 LU reǵistrcijas Nr. ESS2018/289, and ERDF project Nr. 1.1.1.5/

19/A/005 ‘‘Quantum computers with constant memory’’.

Funding Open access funding provided by University of Turku

(UTU) including Turku University Central Hospital..

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Ambainis A, Beaudry M, Golovkins M, Ķikusts A, Mercer M,

Thérien D (2006) Algebraic results on quantum automata.

Theory Comput Syst 39(1):165–188

Ambainis A, Yakaryılmaz A (2015) Automata: from mathematics to

applications, chap. Automata and Quantum Computing (To

appear). (arXiv:1507.01988)

Belovs A, Montoya JA, Yakaryılmaz A (2017) On a conjecture by

Christian Choffrut. Int J Found Comput Sci 28(5):483–502

Dı́az-Caro A, Yakaryılmaz A (2016) Affine computation and affine

automaton. In: Computer science — Theory and applications,

LNCS, vol 9691. Springer, pp 1–15. arXiv:1602.04732

Evertse JH (1984) On sums of S-units and linear recurrences. Compos

Math 53(2):225–244

Hansel G (1986) Une démonstration simple du théorème de Skolem-

Mahler-Lech. Theor Comput Sci 43:91–98

Hirvensalo M, Moutot E, Yakaryılmaz A (2017) On the computa-

tional power of affine automata. Language Autom Theory Appl

LNCS 10168:405–417

Hirvensalo M, Moutot E, Yakaryılmaz A (2019) On the computa-

tional power of affine automata. Unconvent Comput Nat

Comput, LNCS 11493:108–121

Ibrahimov R, Khadiev K, Prūsis K, Yakaryılmaz A (2018) Error-free

affine, unitary, and probabilistic OBDDs. In: Descriptional

complexity of formal systems, LNCS, vol 10952. Springer,

pp 175–187

Jeandel E (2007) Topological automata. Theory Comput Syst

40(4):397–407

Kondacs A, Watrous J (1997) On the power of quantum finite state

automata. In: FOCS’97, pp 66–75

Macarie II (1998) Space-efficient deterministic simulation of prob-

abilistic automata. SIAM J Comput 27(2):448–465

Nakanish M, Khadiev K, Prūsis K, Vihrovs J, Yakaryılmaz A (2017)

Exact affine counter automata. Electron Proc Theor Comp Sci

EPTCS 252:205–218

Paz A (1971) Introduction to probabilistic automata. Academic Press,

New York

Rabin MO (1963) Probabilistic automata. Inf Control 6:230–243

Sipser M (2013) Introduction to the Theory of Computation, 3rd edn.

Cengage Learning, United States of America

Turakainen P (1968) On probabilistic automata and their generaliza-

tions. Annales Academiae Scientiarum Fennicae, Ser. A 429(1)

Turakainen P (1969) Generalized automata and stochastic languages.

Proc Am Math Soc 21:303–309

Turakainen P (1981) On nonstochastic languages and homomorphic

images of stochastic languages. Inf Sci 24(3):229–253

Villagra M, Yakaryılmaz A (2016) Language recognition power and

succintness of affine automata. In: Unconventional computation

and natural computation, LNCS, vol 9726. Springer,

pp 116–129

Villagra M, Yakaryılmaz A (2018) Language recognition power

and succinctness of affine automata. Natural Comput

17(2):283–293

Computational limitations of affine automata and generalized affine automata 269

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1507.01988
http://arxiv.org/abs/1602.04732

Yakaryılmaz A, Say ACC (2010) Languages recognized by nonde-

terministic quantum finite automata. Quantum Inf Comput

10(9&10):747–770

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

270 M. Hirvensalo et al.

123

	Computational limitations of affine automata and generalized affine automata
	Abstract
	Introduction
	Preliminaries
	Models
	Language recognition
	Language classes
	Models using the right end-marker

	Logarithmic simulation
	A Non-affine Language
	Generalized affine automata
	Funding
	References

