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Abstract
In evolutionary algorithms, the notion of diversity has been adopted from biology and is used to describe the distribution of

a population of solution candidates. While it has been known that maintaining a reasonable amount of diversity often

benefits the overall result of the evolutionary optimization process by adjusting the exploration/exploitation trade-off, little

has been known about what diversity is optimal. We introduce the notion of productive fitness based on the effect that a

specific solution candidate has some generations down the evolutionary path. We derive the notion of final productive

fitness, which is the ideal target fitness for any evolutionary process. Although it is inefficient to compute, we show

empirically that it allows for an a posteriori analysis of how well a given evolutionary optimization process hit the ideal

exploration/exploitation trade-off, providing insight into why diversity-aware evolutionary optimization often performs

better.

Keywords Evolutionary algorithm � Adaptive fitness � Diversity

1 Introduction

Evolutionary algorithms are a widely used type of

stochastic optimization that mimics biological evolution in

nature. Like any other metaheuristic optimization algo-

rithm (Brown et al. 2005; Conti et al. 2018), they need to

maintain a balance on the exploration/exploitation trade-off

in their search process: High exploration bears the risk to

miss out on optimizing the intermediate solutions to the

fullest; high exploitation bears the risk to miss the global

optimum and get stuck in a sub-optimal part of the search

space. Analogous to biological evolution, diversity within

the population of solution candidates has been identified as

a central feature to adjust the exploration/exploitation

trade-off. Many means to maintain the diversity of the

population throughout the process of evolution have been

developed in literature; comprehensive overviews are

provided by Squillero and Tonda (2016) and Gabor et al.

(2018), for example.

For problems with complex fitness landscapes, it is well

known that increased exploration (via increased diversity)

yields better overall results in the optimization, even when

disregarding any diversity goal in the final evaluation

(Ursem 2002; Toffolo and Benini 2003). However, this

gives rise to a curious phenomenon: By augmenting the

fitness function and thus making it match the original

objective function less, we actually get results that opti-

mize the original objective function more. This implies that

any evolutionary algorithm does not immediately optimize

for the fitness function it uses (but instead optimizes for a

slightly different implicit goal). Furthermore, to really

optimize for a given objective function, one should ideally

use a (slightly) different fitness function for evolution. In

this paper, we introduce final productive fitness as a theo-

retical approach to derive the ideal fitness function from a

given objective function.

We see that final productive fitness cannot feasibly be

computed in advance. However, we show how to approx-

imate it a posteriori, i.e., when the optimization process is

already finished. We show that the notion of final pro-

ductive fitness is sound by applying it to the special case of

diversity-aware evolutionary algorithms, which (for our
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purposes) are algorithms that directly encode a strife for

increased diversity by altering the fitness of the individuals.

By running these on various benchmark problems, we

empirically show that diversity-aware evolutionary pro-

cesses might just approximate final productive fitness more

accurately than an evolutionary process using just the

original objective. We show that the fitness alteration

performed by these algorithms, when it improves overall

performance, does so while (perhaps because) it better

approximates final productive fitness. We thus argue that

the notion of final productive fitness for the first time

provides a model of how diversity is beneficial to evolu-

tionary optimization, which has been called for by various

works in literature:

• ‘‘One of the urgent steps for future research work is to

better understand the influence of diversity for achiev-

ing good balance between exploration and exploita-

tion.’’ (Črepinšek et al. 2013),

• ‘‘This tendency to discover both quality and diversity at

the same time differs from many of the conventional

algorithms of machine learning, and also thereby

suggests a different foundation for inferring the

approach of greatest potential for evolutionary algo-

rithms.’’ (Pugh et al. 2016),

• ‘‘However, the fragmentation of the field and the

difference in terminology led to a general dispersion of

this important corpus of knowledge in many small,

hard-to-track research lines’’ and, ‘‘[w]hile diversity

preservation is essential, the main challenge for schol-

ars is devising general methodologies that could be

applied seamlessly [...]’’ (Squillero and Tonda 2016).

It should be noted that the approach presented in this paper

merely provides a new perspective on exploration/ex-

ploitation in evolutionary algorithms and a new method of

analyzing the effects of diversity. It is up to future works to

derive new means to actively promote diversity from this

analysis.

In this paper, we provide a short mathematical

description of evolutionary processes in Sect. 2 and build

our notion of (final) productive fitness on top of that in

Sect. 3. Section 4 describes the empirical results and

Sect. 5 discusses related work before Sect. 6 concludes.

2 Foundations

For this paper, we assume an evolutionary process (EP) to

be defined as follows: Given a fitness function f : X !
½0; 1� � R for an arbitrary set X called the search space, we

want to find an individual x 2 X with the best fitness f(x).

For a maximization problem, the best fitness is that of an

individual x so that f ðxÞ� f ðx0Þ 8x0 2 X . For a

minimization problem, the best fitness is that of an indi-

vidual x so that f ðxÞ� f ðx0Þ 8x0 2 X . Note that we nor-

malize our fitness space on ½0; 1� � R for all problems for

ease of comparison. Whenever the maximum and mini-

mum fitness are bounded, this can be done without loss of

generality.

Usually, the search space X is too large or too com-

plicated to guarantee that we can find the exact best indi-

vidual(s) using standard computing models (and physically

realistic time). Thus, we take discrete subsets of the search

space X via sampling and iteratively improve their fitness.

An evolutionary process E over g generations, g 2 N, is

defined as E ¼ hX ; e; f ; ðXiÞi\gi. X is the search space.

e : 2X ! 2X is the evolutionary step function so that

Xiþ1 ¼ eðXiÞ 8i� 0. As defined above, f : X ! ½0; 1� � R

is the fitness function. ðXiÞi\g is a series of populations so

that Xi � X 8i and X0 is the initial population. Note that as

the evolutionary step function e is usually non-determin-

istic, we define EðXÞ ¼ fX0jX0 ¼ eðXÞg to be the set of all

possible next populations.

We use the following evolutionary operators:

• The recombination operator rec : X � X ! X gener-

ates a new individual from two individuals.

• The mutation operator mut : X ! X alters a given

individual slightly to return a new one.

• The migration operator mig : X generates a random

individual migðÞ 2 X .

• The (survivors) selection operator sel : 2X �N ! 2X

returns a new population X0 ¼ selðX; nÞ given a popu-

lation X � X , so that jX0j � n.

The operators rec;mut;mig can be applied to a population

X by choosing individuals from X to fill their parameters (if

any) according to some selection scheme r : 2X ! 2X and

adding their return to the population. For example, we

allow to write mutrðXÞ ¼ X [ f mutðx0Þ j x0 2 rðXÞ g.
Note that all children are added to the population and do

not replace their parents in this formulation.

For any evolutionary process E ¼ hX ; e; f ; ðXiÞi\gi and
selection schemes r1; r2; r3 we assume that

Xiþ1 ¼ eðXiÞ ¼ sel ðmigr3ðmutr2ðrecr1ðXiÞÞÞ; jXijÞ: ð1Þ

Usually, we assume that an evolutionary process fulfills its

purpose if the best fitness of the population tends to

become better over time, i.e., given a sufficiently large

amount of generations k 2 N, it holds for maximization

problems that maxx2Xi
f ðxÞ\maxx2Xiþk

f ðxÞ. We define the

overall result of an evolutionary process E ¼
hX ; e; f ; ðXiÞi\gi with respect to a fitness function / (which

may or may not be different from the fitness f used during

evolution) to be best value found and kept in evolution, i.e.,

for a maximizing objective / we define
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jEj/ ¼ max
x2Xg

/ðxÞ: ð2Þ

Note that there are evolutionary processes which include a

hall-of-fame mechanism, i.e., are able to return the result

fitness

jjEjj/ ¼ max
i¼1;:::;g

max
x2Xi

/ðxÞ: ð3Þ

However, we can derive the equality jEj/ ¼ jjEjj/ when we

assume elitism with respect to /, i.e., argmax x2Xi
/ðxÞ 2

Xiþ1 for all i ¼ 1; :::; g. Since it makes reasoning easier and

hardly comes with any drawback for sufficiently large

populations, we use elitist evolutionary processes (with

respect to f) from here on.

3 Approach

The central observation we build our analysis on is that in

many cases the results of optimizing for a given objective

function (called of) can be improved by not using of as a

the fitness function f of the evolutionary process directly.

Consequently, changing the fitness function f away from

the true objective of in some cases leads to better results

with respect to the original objective function of. Note that

this phenomenon extends beyond just heuristic optimiza-

tion and is known as reward shaping in reinforcement

learning, for example (Ng et al. 1999).

In evolutionary algorithms oftentimes a property called

diversity is considered in addition to the objective function

of to improve the progress of the evolutionary process

(Gabor et al. 2018; Squillero and Tonda 2016; Ursem

2002). In some way or the other, diversity-enhancing

evolutionary algorithms award individuals of the popula-

tion for being different from other individuals in the pop-

ulation. While there are many ways to implement this

behavior, like topology-based methods (Tomassini 2006),

fitness sharing (Sareni and Krahenbuhl 1998), ensembling

(Hart and Sim 2018), etc., we consider an instance of

diversity-enhancing evolutionary algorithms that is simpler

to analyze: By quantifying the distance of a single indi-

vidual to the population, we can define a secondary fitness

sf that rewards high diversity in the individual. This

approach was shown by Wineberg and Oppacher (2003) to

be an adequate general representation of most well-known

means of measuring diversity in a population.

In order to avoid the difficulties of multi-objective

evolution, we can then define the augmented fitness func-

tion af that incorporates both the objective fitness of and

the secondary fitness sf into one fitness function to be used

for the evolutionary process.

Definition 1 (Augmented Fitness) Given the objective

fitness of, a diversity-aware secondary fitness sf, and a

diversity weight k 2 ½0; 1� � R, we define the augmented

fitness af as

afðxÞ ¼ ð1	 kÞ � ofðxÞ þ k � sfðxÞ: ð4Þ

As is shown in Gabor et al. (2018) and Wineberg and

Oppacher (2003) such a definition of the augmented fitness

suffices to show benefits of employing diversity.

We can then define two evolutionary processes Eof ¼
hX ; e; of; ðXiÞi\gi and Eaf ¼ hX ; e; af; ðX0

iÞi\gi. We

observe the curious phenomenon that in many cases the

augmented fitness af better optimizes for of than using of

itself, formally

jEofjof\jEafjof; ð5Þ

which raises the following question: If of is not the ideal

fitness function to optimize for the objective of, what is?

Given a sequence of populations ðXiÞi\g spanning over

multiple generations i ¼ 1; :::; g we can write down what

we actually want our population to be like inductively

starting from the last generation g: The net benefit of Xg to

our (maximizing) optimization process is exactly

jEj
of
¼ max

x2Xg

ofðxÞ ð6Þ

as this population will not evolve any further and thus the

best individual within Xg is what we are going to be stuck

with as the result of the optimization process.

Note that the individuals of Xg	1 already contribute

differently to the result of the optimization process: From

the perspective of generation g	 1 the overall optimization

result is

max
x2Xg	1

max
x02XgðxÞ

ofðx0Þ ð7Þ

where the follow-up generation XgðxÞ is any1 population

from fXg j Xg 2 EðXg	1Þ ^ x 2 Xgg, i.e., the possible next

populations where x survived.

Intuitively, the contribution of the the second-to-last

generation Xg	1 to the result of the optimization process

stems from the objective fitness of that this generation’s

individuals can still achieve in the final generation Xg.

Generally, this does not fully coincide with the application

of the objective function of in said generation:

max
x2Xg	1

max
x02XgðxÞ

ofðx0Þ 6¼ max
x2Xg	1

ofðxÞ ð8Þ

1 Arguments can be made to pick either the average or the maximum

over all these populations. We discuss both cases later in the text.
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That means: While rating individuals according to their

objective fitness of in the last generation of the evolu-

tionary process is adequate, the actual benefit of the indi-

vidual x to the optimization result and the value of ofðxÞ
may diverge more the earlier we are in the evolutionary

process. Accordingly, at the beginning of an evolutionary

process, the objective fitness of might not be a good esti-

mate of how much the individuals will contribute to the

process’s return with respect to of at the end of the opti-

mization process. Still, standard optimization techniques

often use the objective fitness of as a (sole) guideline for

the optimization process.

Instead, we ideally want to make every decision (mu-

tation, recombination, survival, ...) at every generation Xi

with the ideal result for the following generations

Xiþ1;Xiþ2; ::: and ultimately the final generation Xg in

mind. We call this the optimal evolutionary process.

Obviously, to make the optimal decision early on, we

would need to simulate all the way to the end of the evo-

lution, including all the follow-up decisions. This renders

optimal evolution infeasible as an algorithm. However, we

can use it for a posteriori analysis of what has happened

within a different evolutionary process. In order to do so,

we need to give a fitness function for the optimal process

(as it obviously should not be of).

Instead, we formalize the benefit to the optimization

process discussed above and thus introduce the notion of

productive fitness. But first, we need a simple definition on

the inter-generational relationships between individuals.

Definition 2 (Descendants) Given an individual x in the

population of generation i, x 2 Xi; of an evolutionary

process. All individuals x0 2 Xiþ1 so that x0 resulted from x

via a mutation operator, i.e., x0 ¼ mutðxÞ, or a recombi-

nation operator with any other parent, i.e., there exists y 2
Xi so that x0 ¼ recðx; yÞ, are called direct descendants of x.

Further given a series of populations ðXiÞ0\i\g we define

the set of all descendants Dx as the transitive hull on all

direct descendants of x.

We can now use this relationship to assign the benefit

that a single individual has had to the evolution a posteri-

ori. For this, we simply average the fitness of all its sur-

viving descendants.

Definition 3 (Productive Fitness) Given an individual x in

the population of generation i, x 2 Xi, of an evolutionary

process. Let Dx � X be the set of all descendants from x.

The productive fitness after n generations or n-productive

fitness is the average objective fitness of x’s descendants,

written

PFnðxÞ ¼
avgx02Dx\Xiþn

OFðx0Þ if Dx \ Xiþn 6¼ ;
w otherwise:

�
ð9Þ

Note that in case the individual x has no descendants in n

generations, we set its productive fitness pfnðxÞ to a worst

case value w, which in our case of bounded fitness values is

0 for maximizing optimization processes and 1 for mini-

mizing optimization processes.

We argue that the productive fitness pf is better able to

describe the actual benefit the individual brings to the

optimization process, as represented by what parts of the

individual still remain inside the population in a few gen-

erations. Note that our notion of productive fitness is rather

harsh in two points:

• We only take the average of all descendants’ fitness.

One could argue that we may want a more optimistic

approach where we might reward the individual for the

best offspring it has given rise to. However, we argue

that every bad individual binds additional resources for

eliminating it down the road and thus a low target

accuracy should actively be discouraged.

• When the line of an individual dies out completely, we

assign the worst possible fitness. Arguments could be

made that even dead lines contribute to the search

process by ruling out unpromising areas while, e.g.,

increasing the diversity scores of individuals in more

promising areas of the search space. Still, we do count

any however distant descendants, so even small contri-

butions to the final population avoid the penalty w.

We leave the analysis of the effects of the discussed

parameters to future work. Note that for now, our notion of

productive fitness only covers a fixed horizon into the

future. We can trivially extend this definition to respect the

final generation no matter what generation the current

individual is from:

Definition 4 (Final Productive Fitness) Given an individ-

ual x in the population of generation i, x 2 Xi, of an evo-

lutionary process of g generations in total. The final

productive fitness of x is the fitness of its descendants in the

final generation, i.e., fpfðxÞ ¼ pfg	iðxÞ.

We argue that final productive fitness is able to describe

what the fitness function of an optimal evolutionary pro-

cess looks like: Every evaluation is done in regard to the

contribution to the final generation, i.e., the ultimate

solution returned by the search process.

Thesis 1 When rolling the ideal choices in all randomized

evolutionary operators, final productive fitness fpf is the

optimal fitness function for evolutionary processes, i.e., an

evolutionary process yields the best results when it opti-

mizes for fpf at every generation.

We sketch a short argument in favor of Thesis 1. For a

more in-depth discussion, see Gabor and Linnhoff-Popien
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(2020). Let Efpf ¼ hX ; e; fpf; ðXfpf

i Þi\gi be an evolutionary

process using final productive fitness fpf. Let E idf ¼
hX ; e; idf; ðXidf

i Þi\gi be an evolutionary process using a

different (possibly more ideal) fitness idf. Let Xfpf

0 ¼ Xidf

0 .

We assume that

max
x2Xfpf

g

ofðxÞ\max
x2Xidf

g

ofðxÞ: ð10Þ

Since Eq. 10 implies that at least Xfpf

g 6¼ Xidf

g , there is an

individual x 2 Xidf

g so that x 62 Xfpf

g and

ofðxÞ[ maxy2Xfpf

g
ofðyÞ. Since both Efpf and E idf use the

same evolutionary step function e except for the used fit-

ness, their difference regarding x needs to stem from the

fact that there exists an individual x0 that is an ancestor of x,
i.e., x 2 Dx0 , so that x0 was selected for survival in E idf and

not in Efpf, which implies that fpfðx0Þ\idfðx0Þ. However,
since x is a possible descendant for x0, the computation of

fpfðx0Þ should have taken ofðxÞ into account,2 meaning that

x0 should have survived in Efpf after all, which contradicts

the previous assumption. h

Of course, Thesis 1 is a purely theoretical argument as

we cannot guarantee optimal choices in usually random-

ized evolutionary operators and productive fitness in gen-

eral thus comes with the reasonable disadvantage that it

cannot be fully computed in advance. But for a given,

completed run of an evolutionary process, we can compute

the factual fpf single individuals had a posteriori. There, we

still do not make optimal random choices but just assume

the ones made as given.

Still, we take Thesis 1 as hint that final productive fit-

ness might be the right target to strive for. We argue that

augmenting the objective fitness of (even with easily

computable secondary fitness functions) may result in a

fitness function which better approximates final productive

fitness fpf. In the following Sect. 4, we show empirically

that (in the instances where it helps3) diversity-based sec-

ondary fitness sf resembles the final productive fitness fpf

of individuals much better than the raw objective function

of does.

Thesis 2 When a diversity-aware augmented fitness

function af is aiding the evolutionary optimization process

with respect to an objective fitness of, it is doing so by

approximating the final productive fitness fpf of a con-

verged evolutionary process in a more stable way (i.e.,

more closely when disregarding the respective scaling of

the fitness functions) throughout the generations of the

evolutionary process.

This connection not only explains why diversity-aware

fitness functions fare better than the pure objective fitness

but also poses a first step towards a description how to

deliberately construct diversity-aware fitness functions,

knowing that their ideal purpose is to approximate the not

fully computable final productive fitness. Again, we refer

to Gabor and Linnhoff-Popien (2020) for more elaborate

theoretical arguments.

Since we cannot estimate all possible futures for an

evolutionary process, we provide empirical evidence in

favor of Thesis 2 using a a posteriori approximation: Given

an already finished evolutionary process, we compute the

fpf values given only those individuals that actually came

into being during that single evolutionary process (instead

of using all possible descendants). We argue that this

approximation is valid because if the evolutionary process

was somewhat successful, then all individuals’ descendants

should be somewhat close to their ideal descendants most

likely.4 Note that the reverse property is not true (i.e., even

in a bad run, individuals still aim to generate better

descendants, not worse), which is why our approximation

does not permit any statements about augmented fitness

that does not aid the evolutionary process.

4 Experiments

For all experiments, we run an evolutionary process as

defined in Sect. 2 with a mutation operator mut that adds a

(possibly negative) random value to one dimension of

individual, applied with rate 0.1 to all individuals at

random. For rec we apply random crossover with rate 0.3

for a single individual and a randomly chosen mate. We

apply mig with a rate of 0.1 (Gabor et al. 2018). Fol-

lowing Wineberg and Oppacher (2003) and the results in

Gabor et al. (2018), we focus on a Manhattan distance

function for the secondary fitness; we also plot evolu-

tionary processes using fitness sharing with parameter a ¼
2:0 and dissimilarity threshold r ¼ n, where n is the

dimensionality of the problem (Sareni and Krahenbuhl

1998), or inherited fitness with inheritance weight j ¼ 0:5

(Chen et al. 2002; Gabor et al. 2018) for comparison,

2 Note that ofðxÞ cannot be compensated by other descendants of x0

with possibly bad objective fitness even as we average the results

because all offspring is created by a random choice, which we assume

to be ideal. This also shows how strong that assumption is.
3 Note the gravity of that restriction: We do not consider failed runs

of evolutionary algorithms since we have no assumptions on how fpf

should behave. i.e., relate to af, in that case. Future work may fill that

void.

4 Note that we could construct a terrible evolutionary process that

just happens to find the global optimum in the last generation out of

the blue via random migration. That process would have a poor

stability between af and fpf but a very successful result. However,

since evolution at every step tries not to be terrible, we consider that

scenario to be quite unlikely so that it should not play a role when we

analyze the augmented fitness on multiple runs, parametrizations, and

domains.
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since both approaches also use an adapted fitness function

to promote diversity.5 The selection operator sel is a

simple rank-based cut-off in the shown evolutionary

processes. Cut-off with protection for new individuals as

well as roulette wheel selection was also tested without

yielding noticeably different results.

All code that produced the results of this paper is

available at github.com/thomasgabor/naco-evolib.

4.1 Pathfinding

We start with the pathfinding problem, which was shown to

greatly benefit from employing diversity in the optimiza-

tion process (Gabor et al. 2018): Given a room of dimen-

sions 1� 1, we imagine a robot standing at position

(0.5, 0.1). It needs to reach a target area at the opposite side

of the room. See Fig. 1 for an illustration. The room also

features a huge obstacle in the middle and thus the robot

needs to decide on a way around it. The agent can move by

performing an action a 2 fðdx; dyÞj 	 0:33\dx\
0:33;	0:33\dy\0:33g. A single solution candidate

consists of n ¼ 5 actions hðdxi; dyiÞi1� i� n. It achieves a

reward of 1
n ¼ 0:2 every time it stays within the target area

between steps, i.e., its fitness is given via

ofðhðdxi; dyiÞi1� i�mÞ ¼ rðhðdxi; dyiÞi1� i�m; ð0:5; 0:1ÞÞ
where

rðhðdxi; dyiÞi1� i�m; ðx; yÞÞ ¼
rðhðdxi; dyiÞi2� i�m; ðxþ dx1; yþ dy1ÞÞ þ tðx; yÞ

ð11Þ

with rðhi; ðx; yÞÞ ¼ tðx; yÞ ð12Þ

and tðx; yÞ ¼
1

n
if0:4� x� 0:6 ^ 0:8� y� 1:0

0 otherwise:

8<
:

ð13Þ

The pathfinding problem lends itself to the application of

diversity, as the optimization process in most cases first

strikes a local optimum where it reaches the target area

sometime by accident (and most probably towards the end

of its steps). It then needs to switch to the global optimum

where the first three steps are as goal-directed as possible

and the last two steps are very small in order to stay within

the target area.

We now compare a standard evolutionary algorithm

given only the objective function ofðxÞ ¼ f ðxÞ to a diver-

sity-aware evolutionary algorithm using the Manhattan

distance on the solution candidate structure as a secondary

fitness function, i.e., afðxÞ ¼ ð1	 kÞ � ofðxÞ þ k � sfðxÞ as

given in Definition 1

where sfðxÞ ¼ 1

2n
� avg x02r4ðXÞmanhattanðx; x

0Þ ð14Þ

and manhattanðhðdxi; dyiÞi1� i�m;

hðdx0i; dy0iÞi1� i�mÞ ¼Xm
i¼1

jdxi 	 dx0ij þ jdyi 	 dy0ij:
ð15Þ

Note that r4 is a selection function that randomly selects 10

individuals from the population X. We use it to reduce the

computational cost of computing the pairwise distance for

all individuals in the population. Its admissibility for

approximating the full pairwise distance was shown in

Gabor and Belzner (2017). Just as we normalized the fit-

ness function f to ½0; 1� � R we also normalize the sec-

ondary fitness sf to the same range via division by the

maximum Manhattan distance between two individuals,

i.e., 2n, to make the combination easier to understand. For

now, we set k ¼ 0:4, which we discuss later.

Each evolution was run 30 times for 1500 generations

each, using a population size of 50. Figure 2a shows the

best fitness achieved per generation for all tested approa-

ches. We see that (especially distance-based) diversity-

aware evolution produces much better objective results.

Figure 2b shows the separate diversity score sf maintained

by the best individual, which can only be computed in a

meaningful way for Manhattan diversity. In Fig. 2c the

standard approach shows the same plot as before since its

fitness is not augmented. For all other approaches we plot

1.0

0.0

0.5

0.50.0 1.0

Fig. 1 The Pathfinding problem. A robot (red) needs to find a fixed

path to reach the target area (green)

5 Of course, many more diversity-aware evolutionary algorithms

could have been analyzed here. We would like to refer to our

experiments in Gabor et al. (2018) as well as the survey by Squillero

and Tonda (2016) for a comprehensive overview.
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the augmented fitness af that is actually used for selection.

We see that due to the combination of distance and

objective fitness, Manhattan-diverse evolution starts higher

but climbs slower than the respective objective fitness.

Fitness sharing results in very small absolute values for

fitness but climbs up nonetheless.

From the already run evolutionary processes, we can

compute the final productive fitness as given in Defini-

tions 3 and 4 a posteriori. Figure 2d shows the maximum

fpf per generation. We see that Manhattan-diverse and

inherited fitness maintain a rather continuous lineage from

the initial population to the best solution in the final gen-

eration as the final fitness propagates to the final productive

fitness of very early generations. This behavior is rather

unsurprising but illustrates the notion of the final produc-

tive fitness that measures the individuals’ impact in the

final result.

For Fig. 2e we compute the perhaps most interesting

measurement: This plot shows for each population X in a

given generation the result of avg x2X jafðxÞ 	 fpfðxÞj, i.e.,
the average difference between the augmented fitness and

the final productive fitness per individual. Thus, we get to

assess how well the augmented fitness approximates the

final productive fitness. There are a few observations to be

made:

1. Towards the last few generations, we notice a rapid

spike in the fpf as the amount of descendants in the

final generation to be considered for the fpf decreases

fast.

2. The actual value of the distance (i.e., the height of the

line) is irrelevant to the analysis of Thesis 2 and largely

determined by the setting of k.
3. Throughout most of the plot, the Manhattan-diverse

evolution maintains a relatively stable level, i.e., the

augmented fitness af approximates the final productive

fitness fpf throughout the evolution. The less stable evo-

lutions also show a worse overall result.

To further elaborate on that last point, we consider Fig. 2:

It shows the average absolute value of change over 150-

generations-wide windows of the jafðxÞ 	 fpfðxÞj metric

used in Fig. 2e. The plot was smoothed using a convolution

kernel h1; . . .; 1i of size 25. Roughly speaking, we can see

the slope of the plots in Fig. 2e here. In this plot, good

evolutionary processes should maintain rather low values

according to Thesis 2. We can observe that Manhattan-

diverse evolution maintains the lowest values almost

throughout the entire evolution. While fitness sharing

shows increases and decreases in matching the fpf at a

higher level than Manhattan diversity, inherited fitness

shows a huge spike in the beginning (as does the standard

approach), thus making a much less stable match for the

fpf. As proposed by Thesis 2, the match between af and fpf

roughly corresponds to the quality of the overall result of

the evolutionary process.

As mentioned earlier, we also further analyzed the

importance of the setting for k for the evolution. Figure 3

shows the impact of k on the best results generated by the

evolution. k ¼ 0 equals the standard evolution in all pre-

vious plots. Unsurprisingly, we see that some amount of

diversity-awareness improves the results of evolution but

setting k too high favors diversity over the actual objective

fitness and thus yields very bad results. We want to add that

more intricate version of Manhattan-based augmented fit-

ness af might aim to adjust the k parameter during evo-

lution just as inherited fitness and fitness sharing might

want to adjust their parameters. For these experiments, we

chose a static parameter setting for simplicity.

4.2 The route planning problem

The route planning problem is a discrete optimization

problem with a similar motivation as the pathfinding

problem. Again, we adapt the problem and its description

from Gabor et al. (2018).

A robot needs to perform n ¼ 12 different tasks in a

fixed order by visiting relevant workstations. Each work-

station can perform exactly one of the tasks and for each

task, there are o ¼ 5 identical workstations to choose from.

Accordingly, a solution candidate is a vector hw1; . . .;wni
with wi 2 f1; :::; og for all 1� i� n. See Fig. 4 for an

illustration using a smaller setting. A single workstation W

can be identified by a tuple of its task type and its number,

i.e., W ¼ ði; kÞ for some 1� i� n and 1� k� o. To mimic

various means of transport, the distance DðW ;W 0Þ between
every two workstations W ¼ ði; kÞ and W 0 ¼ ðj; lÞ is ran-

domized individually within a range of ½0; 1n� � R. Note that

this (most likely) gives rise to a non-euclidean space the

robot is navigating. The objective fitness for this mini-

mization problem is given via

ofðhw1; :::;wniÞ

¼
Xn	1

i¼1

Dðði;wiÞ; ðiþ 1;wiþ1ÞÞ:
ð16Þ

Again, we from here also construct an augmented fitness

afðxÞ ¼ ð1	 kÞ � ofðxÞ þ k � sfðxÞ (cf. Definition 1) but

now use the Hamming distance as a secondary fitness so

that

sfðxÞ ¼ 1

2n
� avg x02r4ðXÞhammingðx; x

0Þ ð17Þ
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where hammingðhw1; . . .;wni; hw0
1; . . .;w

0
niÞ ¼

Xn
i¼1

hðwi;w
0
iÞ

ð18Þ

and hðw;w0Þ ¼
0 if w ¼ w0

1 otherwise.

�
ð19Þ

Besides, we apply the same evolutionary processes as in

Sect. 4.1 but the parameter search shown in Fig. 5 now

recommended k ¼ 0:25 for weighting now Hamming-

based diversity.6 We evolve 20 independent populations of

size 50 for 400 generations and plot the same data we have

seen before: Fig. 6a shows the best fitness achieved in

evolution. Inherited fitness takes a lot more time but

eventually almost reaches the level of Manhattan-diversity.

However, both methods yield similarly solid results as

fitness sharing or the naı̈ve algorithm. This is mirrored by

all methods showing quite stable behavior in Figs. 6e

and 6f with the standard approach showing the highest fall

within the first few generations as it matches fpf the least.

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Evolution for the

pathfinding problem. Standard

evolutionary process using of

shown in black, diversity-aware

evolutionary process using af

with Manhattan distance shown

in blue. Inherited fitness

(purple) and fitness sharing

(orange) shown for comparison.

All results averaged over 25

independent runs, the standard

deviation is shown in

transparent lines

6 It should be noted that the difference for various settings of

diversity weights (including k ¼ 0) is much less pronounced for this

domain as can be ssen in Fig. 5.
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However, the results for all evolutions are very close

together for the route planning problem.

4.3 Schwefel

Finally, we consider one7 of the canonical benchmark

problems for evolutionary algorithms. The implementation

of the Schwefel problem is taken from Rainville et al.

(2012) while our study on the impact of diversity again

follows experiments performed in Gabor et al. (2018).

The original fitness function is given as

schwefelðhx1; :::; xniÞ ¼ 418:9828872724339 � n

	
Xn
i¼1

xi � sinð
ffiffiffiffiffiffi
jxij

p
Þ

ð20Þ

with x1; :::; xn 2 ½	500; 500� � R where n ¼ 8 is the

dimensionality we use in our experiments (Rainville et al.

2012).8 The resulting function is illustrated in Fig. 7. The

Schwefel problem is a minimization problem looking for

an x so that schwefelðxÞ ¼ 0. Again, we normalize the

result values defining ofðxÞ ¼ 1
4000

� schwefelðxÞ. Manhattan

distance uses diversity weight k ¼ 0:3 as suggested by

Fig. 8.

We run the same kind of analysis as for the previous

problems and plot the same data in Fig. 9. These experi-

ments were performed on populations of size 50 evolving

for 400 generations. Figure 9a shows a mixed picture: The

Manhattan-diverse evolution again outperforms the stan-

dard approach, but inherited fitness hardly yields any

benefit while fitness sharing performs worse than the

standard approach. In Fig. 9d we see a different picture

than before: All final productive fitness values are not as

stable anymore but vary throughout the evolution, sug-

gesting that solutions to the Schwefel problem are more

influenced by migration (and thus show no continuous

lineage) than for the other problems considered. Fig. 9e

shows the jaf	 fpfj metric, which measures the individual

difference between augmented fitness and final productive

fitness. We observe very clearly that, after a short starting

Fig. 3 Parameter analysis for the diversity weight k. We show best

fitness among all generations for 20 different settings of

k ¼ 0:0; 0:05; . . .; 1:0. All results averaged over 25 independent runs

each, the standard deviation shown in transparent lines

Type 3
No. 2

Type 1
No. 1

Type 1
No. 2

Type 1
No. 4

Type 1
No. 5

Type 2
No. 1

Type 2
No. 2

Type 2
No. 3

Type 2
No. 4

Type 2
No. 5

Type 3
No. 5

Type 3
No. 1

Type 3
No. 3

Type 3
No. 4

Type 1
No. 3. 3

Fig. 4 Illustration of the route planning problem for n ¼ 3 tasks and

o ¼ 5 workstations per task

Fig. 5 Parameter analysis for the diversity weight k for the route

planning problem. We show best fitness among all generations for 20

different settings of k ¼ 0:0; 0:05; . . .; 1:0. All results averaged over

20 independent runs each, the standard deviation shown in transparent

lines

7 We also tested other famous problems like Rainville et al. (2012)

with essentially similar results.

8 As can be seen in Eq. 20, the Schwefel function is identical in each

dimension. Choosing a higher-dimensional instance thus does not

substantially change the nature of the fitness landscape. For ease of

analysis, we settle for n ¼ 8.
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phase, this distance remains much more stable for the

Manhattan-diverse evolution than any other approach,

indicating that the augmented fitness is approximating the

final productive fitness. Note again that in the last few

generations, computing the final productive fitness has

limited meaning. In Fig. 9f this behavior shows clearly as

Manhattan-diverse evolution forms a line at the very bot-

tom of the plot with almost no change in how af matches

fpf. All other approaches, which perform noticeably worse,

also show a much more erratic pattern in how well their

augmented fitness matches the final productive fitness.

5 Related work

Diversity has been a central topic of research in evolu-

tionary algorithms (den Heijer and Eiben 2012; Morrison

and De Jong 2001; Toffolo and Benini 2003; Ursem 2002).

Its positive effect on the evolutionary process has often

been observed there, but rarely been interpreted beyond a

biological metaphor, i.e., ‘‘diversity is a key element of the

biological theory of natural selection and maintaining high

diversity is supposed to be generally beneficial’’ (Corno

et al. 2005).

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Evolution for the route

planning problem. Standard

evolutionary process using of

shown in black, diversity-aware

evolutionary process using af

with Hamming distance shown

in blue. Inherited fitness

(purple) and fitness sharing

(orange) shown for comparison.

Results averaged over 20

independent runs, the standard

deviation is shown in

transparent lines

372 T. Gabor et al.

123



Without much concept of what to look for in a mecha-

nism for diversity-awareness, lots of variants have spawned

in research. Instead of repeating them, we would like to

point out a few resources for a comprehensive overview:

Burke et al. (2004), among others like Brameier and

Banzhaf (2002 or McPhee and Hopper (1999) discuss

various means to measure and promote diversity in genetic

programming, which for the most part should apply to all

evolutionary algorithms. They also provide an extensive

analysis of the connection between diversity and achieved

fitness, but do not define productive fitness or a similar

notion. A more recent comprehensive overview of means

to describe and enable diversity has been put together by

Squillero and Tonda (2016), also providing a taxonomy on

various classes of approaches to diversity. Gabor et al.

(2018) provide a quantitative analysis of various means of

maintaining inheritance-based diversity on standard

domains like the ones we used in this paper. Regarding the

multitude of diversity mechanisms present in research,

however, it is most important to also point out the results of

Wineberg and Oppacher (2003), who most drastically show

that ‘‘all [notions of diversity] are restatements or slight

variants of the basic sum of the distances between all

possible pairs of the elements in a system’’ and suggest that

‘‘experiments need not be done to distinguish between the

various measures’’, a point which we already built upon in

our evaluation.

Note that a variety of ‘‘meta-measurements’’ for the

analysis of evolutionary processes exist: Effective fitness

measures the minimum fitness required for an individual to

increase in dominance at a given generation (when in

competition with the other individuals) (Stephens 1999). It

is related to reproductive fitness, which is the probability of

an individual to successfully produce offspring (Hu and

Banzhaf 2010). Both occur at the foundation of productive

fitness, but do not include the (computationally overly

expensive) diachronical analysis of the overall effect for

the end result. Our approach is also comparable to entropy-

based diversity preservation (Squillero and Tonda 2008),

where the positive effect of certain individuals on the

population’s entropy is measured and preserved in order to

deliberately maintain higher entropy levels. By contrast,

our approach is based on the fitness values only (without

the need to look into the individuals beyond their

genealogical relationships) and thus also cannot be used

directly as a secondary goal in evolution but purely as a

tool of a posteriori analysis on the effectiveness of other

secondary goal definitions.

When we construct the ‘‘optimal evolutionary process’’,

we construct a dynamic optimization problem from a tra-

ditionally static one. It is interesting that specifically

dynamic or on-line (Bredeche et al. 2009) evolutionary

algorithms have been shown to benefit from increased

diversity especially when facing changes in their fitness

functions (Gabor et al. 2018; Grefenstette 1992). While

this is obviously intuitive as more options in the population

allow for higher coverage of possible changes, the reverse

connection (pointed to by this work) is not stated there, i.e.,

that diversity in static domains may work because even for

static domains the optimization process is inherently

dynamic to some degree.

Fig. 7 Illustration of the Schwefel function for n ¼ 2 dimensions.

Image taken from (Benchmarks 2020)

Fig. 8 Parameter analysis for the diversity weight k for the Schwefel

problem. We show best fitness among all generations for 10 different

settings of k ¼ 0:0; 0:1; . . .; 1:0. All results averaged over 20

independent runs each, the standard deviation shown in transparent

lines
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6 Conclusion

We have introduced the novel notion of final productive

fitness fpf (and all the definitions it is built upon). We make

a theoretical argument that fpf is the goal an optimal

evolutionary process should strive for to achieve the best

overall results. However, fpf cannot be computed effi-

ciently in advance, producing the need for an approxima-

tion. We argue that the well-known technique of

augmenting the objective fitness function with an addi-

tional diversity goal (when it helps) happens to effectively

approximate the theoretically derived fpf (at least better

than just the objective fitness on its own). We have shown

this connection empirically on benchmark domains. We

argue that this provides first insight into why and how

diversity terms are beneficial to evolutionary processes.

Immediate future work would consist of answering the

when and which: We have tested several domains for

evolutionary algorithms and many are too simple to further

benefit from explicit diversity-awareness. Maybe fpf can be

used to derive a criterion to estimate the usefulness of

diversity in advance. Similarly, many mechanism to cater

explicitly to diversity exist. While many can be subsumed

by the pairwise distance used here (Wineberg and

(a) (b)

(c) (d)

(e) (f)

Fig. 9 Evolution for the

Schwefel problem. Standard

evolutionary process using of

shown in black, diversity-aware

evolutionary process using af

with Manhattan distance shown

in blue. Inherited fitness

(purple) and fitness sharing

(yellow) shown for comparison.

Results averaged over 20

independent runs, the standard

deviation is shown in

transparent lines
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Oppacher 2003), others may still show different behavior.

Their relation to fpf requires further work.

There are means of maintaining diversity without

altering the fitness function, most prominently structural

techniques like island models (Tomassini 2006; Whitley

et al. 1999) or hypermutation phases (Morrison and

De Jong 2000; Simões and Costa 2002). As no match for

jaf	 fpfj can be computed for them, we omitted them in

this first analysis. Final productive fitness may be a useful

tool to translate these structural means into an effect of the

fitness function.

Eventually, there may be even more direct or outright

better (compared to using diversity or similarly augmented

fitness) approximations of fpf to be found now that we

know what we are looking for. The ultimate goal of the

research into fpf might be to utilize it directly or indirectly

in actually constructing new types of evolutionary algo-

rithms (instead of it ‘‘only’’ helping to explain how well-

known types work). We can imagine:

• We could compute fpf for a simplified version of the

problem (and the algorithm) for various parametriza-

tions (Eiben and Smith 2003; Mitchell 1998). The fpf’s

values could then help evaluate the respective

parametrization’s success. However, for most complex

problems it is not entirely clear how to derive simpler

instances that still preserve the interesting or challeng-

ing aspects of their larger counterparts. Furthermore, it

is unclear how fpf might provide more information than

just using the respective runs’ of.

• In this paper, we checked how well various established

models for fitness functions approximate fpf. Instead,

we might now construct new models with the goal to

approximate fpf better. Surrogate models have been

used in evolutionary algorithms to approximate com-

putationally expensive fitness functions (Gabor and

Altmann 2019; Jin 2005; Jin and Sendhoff 2004). In our

case, a surrogate model would have to approximate our

a-posteriori-approximation of fpf and could then maybe

save time for future evaluations. It should be noted that

our results make it seem plausible that no general model

for fpf on all domains should exist and we cannot train

the surrogate as the algorithm goes along since our

target metric is only computed a posteriori. However,

we might still be able to learn an n-pf surrogate for

small n or a similar target metric. In Gabor and

Linnhoff-Popien (2020) we already suspect (based on

the a posteriori approximation as we do in this paper)

that fpf constructs a simpler fitness landscape compared

to, quite like surrogates do, suggesting that surrogates

may be trained to achieve a similar fitness landscape.

That dynamic should be explored in future work.

• In Gabor and Belzner (2017) and Gabor et al. (2018)

we introduce genealogical distance as a diversity

metric for evolutionary algorithms. We show that it

provides similar although at times inferior results to

distance-based diversity metrics (i.e., the Manhattan

and Hamming diversity we use in this paper). However,

genealogical diversity may provide means to approxi-

mate genealogical relations between individuals making

our a-posteriori-approximation much easier to compute

(probably at the expense of accuracy). Future work

should evaluate if that approach brings any relevant

benefits.

Some of these may be applicable to other methods of

optimization as well: We suspect that the notion of final

productive fitness translates directly to all optimization

methods (ranging from simulated annealing or particle

swarm optimization to Monte-Carlo tree search and back-

propagation) that may or may not already implement

means to approximate final productive fitness rather than

just objective fitness.
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