
On the generative capacity of matrix insertion-deletion systems
of small sum-norm

Henning Fernau1 • Lakshmanan Kuppusamy2 • Indhumathi Raman3

Accepted: 21 June 2021 / Published online: 8 September 2021
� The Author(s) 2021

Abstract
A matrix insertion-deletion system (or matrix ins-del system) is described by a set of insertion-deletion rules presented in

matrix form, which demands all rules of a matrix to be applied in the given order. These systems were introduced to model

very simplistic fragments of sequential programs based on insertion and deletion as elementary operations as can be found

in biocomputing. We are investigating such systems with limited resources as formalized in descriptional complexity. A

traditional descriptional complexity measure of such a matrix ins-del system is its size s ¼ ðk; n; i0; i00;m; j0; j00Þ, where the

parameters from left to right represent the maximal matrix length, maximal insertion string length, maximal length of left

contexts in insertion rules, maximal length of right contexts in insertion rules; the last three are deletion counterparts of the

previous three parameters. We call the sum nþ i0 þ i00 þ mþ j0 þ j00 the sum-norm of s. We show that matrix ins-del

systems of sum-norm 4 and sizes (3; 1, 0, 0; 1, 2, 0), (3; 1, 0, 0; 1, 0, 2), (2; 1, 2, 0; 1, 0, 0), (2; 1, 0, 2; 1, 0, 0), and

(2; 1, 1, 1; 1, 0, 0) describe the recursively enumerable languages. Moreover, matrix ins-del systems of sizes (3; 1, 1, 0;

1, 0, 0), (3; 1, 0, 1; 1, 0, 0), (2; 2, 1, 0; 1, 0, 0) and (2; 2, 0, 1; 1, 0, 0) can describe at least the regular closure of the

linear languages. In fact, we show that if a matrix ins-del system of size s can describe the class of linear languages LIN,

then without any additional resources, matrix ins-del systems of size s also describe the regular closure of LIN. Finally, we

prove that matrix ins-del systems of sizes (2; 1, 1, 0; 1, 1, 0) and (2; 1, 0, 1; 1, 0, 1) can describe at least the regular

languages.

Keywords Matrix control � Insertion-deletion systems � Descriptional complexity � Computational completeness �
Regular closure of linear languages

1 Introduction

Two common operations while processing natural lan-

guages are inserting and deleting words in between parts of

sentences; such insertions and deletions are usually based

on context information. The (context-free) insertion oper-

ation was first considered in Haussler (1983), but also

recently in Verlan et al. (2020). The deletion operation as a

basis of a grammatical derivation process was introduced

in Kari (1991), where the deletion was motivated as a

variant of the right-quotient operation that does not nec-

essarily happen at the right end of the string. Insertion and

deletion were considered with a linguistic motivation in

Galiukschov (1981) and together were first studied in Kari

and Thierrin (1996). The corresponding grammatical

mechanism is called an insertion-deletion system (abbre-

viated as ins-del system). Informally, the insertion and

deletion operations of an ins-del system are defined as

A preliminary version of this paper appeared in Proceedings

of SOFSEM 2019, LNCS 11376, pp. 192–205, 2019.

& Henning Fernau

fernau@uni-trier.de

& Lakshmanan Kuppusamy

klakshma@vit.ac.in

& Indhumathi Raman

ind.amcs@psgtech.ac.in

1 Fachbereich 4-Abteilung Informatikwissenschaften, CIRT,

Universität Trier, 54286 Trier, Germany

2 School of Computer Science and Engineering, VIT

University, Vellore 632 014, India

3 Department of Applied Mathematics and Computational

Sciences, PSG College of Technology, Coimbatore 641 004,

India

123

Natural Computing (2021) 20:671–689
https://doi.org/10.1007/s11047-021-09866-y(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-021-09866-y&domain=pdf
https://doi.org/10.1007/s11047-021-09866-y

follows: if a string g is inserted between two parts w1 and

w2 of a string w1w2 to get w1gw2, we call the operation

insertion, whereas if a substring d is deleted from a string

w1dw2 to get w1w2, we call the operation deletion. Suffixes

of w1 and prefixes of w2 are called contexts.

Several variants of ins-del systems have been considered

in the literature, imposing regulation mechanisms on top,

motivated by classical formal language theory (Dassow

and Păun 1989). Some interesting variants (from our per-

spective) are ins-del P systems (Alhazov et al. 2011), tissue

P systems with ins-del rules (Kuppusamy and Rama 2003),

context-free ins-del systems (Margenstern et al. 2005),

graph-controlled ins-del systems (Fernau et al. 2017b;

Freund et al. 2010; Ivanov and Verlan 2017), matrix

insertion systems (Marcus and Păun 1990), matrix ins-del

systems (Kuppusamy et al. 2011; Petre and Verlan 2012;

Kuppusamy and Mahendran 2016), random context and

semi-conditional ins-del systems (Ivanov and Verlan 2015),

etc. We refer to the survey (Verlan 2010) for more details

of several variants of ins-del systems. In this paper, we

focus on matrix ins-del systems (Kuppusamy et al. 2011;

Petre and Verlan 2012; Kuppusamy and Mahendran 2016).

Viewing insertions and deletions as elementary operations

for biocomputing (Păun et al. 1998), matrices can be seen

as a very simple control mechanism.

In a matrix ins-del system, the insertion-deletion rules

are given in matrix form. If a matrix is chosen for

derivation, then all the rules in that matrix are applied in

order and no rule of the matrix is exempted. In the size

s ¼ ðk; n; i0; i00;m; j0; j00Þ of a matrix ins-del system, the

parameters (from left to right) denote the maximum num-

ber of rules (length) in any matrix, the maximal length of

the inserted string, the maximal length of the left context

for insertion, the maximal length of the right context for

insertion, the maximal length of the deleted string, the

maximal length of the left context for deletion, maximal

length of the right context for deletion. We denote the

language classes generated by matrix ins-del systems of

size s by MATðsÞ. The tuple formed by the last six

parameters, namely ðn; i0; i00;m; j0; j00Þ, is called the ins-del

size. We call the sum of its parameters the sum-norm of the

(matrix) ins-del system.1

It is known that ins-del systems are computationally

complete, i.e., they characterize the family RE of recur-

sively enumerable languages, which readily transfers to the

mentioned variants. Descriptional complexity then aims at

investigating which of the resources are really needed to

obtain computational completeness. For instance, is it

really necessary to permit insertion operations that check

out contexts of arbitrary length? For resource restrictions

that do not (or are not known to) suffice to achieve com-

putational completeness, one is interested in seeing which

known families of languages can be still generated. As in

our case, for several families of matrix ins-del systems, it is

even unknown if all of CF (the context-free languages) can

be generated, we then look at the rather large sub-family

LregðLINÞ, the regular closure of LIN. In Table 1, we

report on what resources are needed for a matrix ins-del

system of sum-norm 3 or 4 to generate the class specified

there, also giving a short literature survey. Further races for

smaller sizes are described when we discuss the particu-

larities of our results below.

Also, the open questions that we list are sometimes

connected, sometimes not. For instance, by the closure of

RE under reversal, MATð�; 1; 0; 0; 1; 1; 0Þ ¼ RE iff

MATð�; 1; 0; 0; 1; 0; 1Þ ¼ RE(here the left and right con-

texts size within insertion/deletion are exchanged), but the

questions whether MATð�; 1; 0; 0; 2; 1; 0Þ ¼ RE or whether

MATð�; 2; 1; 0; 1; 0; 0Þ ¼ RE (here all the parameters of

insertions are swapped with deletion parameters) seem to

be independent of each other.

Matrix ins-del systems of sizes (3; 1, 1, 0; 1, 1, 0) and

(3; 1, 0, 1; 1, 0, 1) are shown to RE earlier and in Fernau

et al. (2019), the preliminary version of the paper, an

attempt was made to reduce the matrix length from 3 to 2.

However, a flaw in the proof was later pointed out by one

of the referees and therefore this case remains open.

Besides this size, matrix ins-del systems of sizes

(3; 1, 1, 0; 1, 0, 0), (3; 1, 0, 1; 1, 0, 0), (2; 2, 1, 0;

1, 0, 0), (2; 2, 0, 1; 1, 0, 0) are not known to describe RE,

not even all of CF. However, these systems have been

shown to describe at least the class MLIN of metalinear

languages (Fernau et al. 2018b). It is known that

MATð1; 1; 1; 0; 1; 0; 0Þ [MATð3; 1; 0; 0; 1; 0; 0Þ 6¼ RE (F-

ernau and Kuppusamy 2017). In particular, it has been

shown that the Parikh images of languages from

MATð3; 1; 0; 0; 1; 0; 0Þ coincide with the (commutative)

Petri net languages and that even allowing for longer

matrices would not increase the generative power when

keeping the ins-del size of (1, 0, 0; 1, 0, 0). We consider a

family of languages strictly between MLIN and CF —

namely, the regular closure of LIN, which is the smallest

language class containing LIN but being closed under the

three regular operations union, concatenations and Kleene

star. We show that if LIN � MATðsÞ, then

LregðLINÞ � MATðsÞ. As a consequence, it follows that

matrix ins-del systems of the sizes mentioned above con-

tain LregðLINÞ. Finally, we prove that matrix ins-del sys-

tems of sizes (2; 1, 1, 0; 1, 1, 0) and (2; 1, 0, 1; 1, 0, 1)

can describe at least the regular languages and some non-1 In papers like (Krassovitskiy et al. 2011), our sum-norm is termed

as total size. We avoid the latter terminology just to avoid its

confusion with size s of MAT(s).

672 H. Fernau et al.

123

regular languages. This is clearly only a weak replacement

of the earlier claimed computational completeness result.

A further technical contribution consists in formulating

a new normal form, called time separating special Geffert

normal form (tsSGNF), that allows to simplify some

arguments, because in particular there is no way to have

mixtures of terminals and nonterminals at the right end of a

derivable sentential form. Hence, such mixed cases need

not be considered when proving correctness of simulation

results based on tsSGNF. This is important, as the non-

existence of such mixed forms is often tacitly assumed in

several proofs that use SGNF; replacing SGNF by tsSGNF

should help to easily fix these results. In this respect, matrix

control differs from graph control2 (GCID) in connection

with ins-del systems since the latter control demands that if

LIN � GCIDðk; n; i0; i00;m; j0; j00Þ, then LregðLINÞ � GCID

ðk þ 2; n; i0; i00;m; j0; j00Þ; see Fernau et al. (2017b), Fernau

et al. (2017d).

Parts of this work have been presented at the conference

SOFSEM 2019; see Fernau et al. (2019). As an easy ref-

erence, the following results were showcased in Fernau

et al. (2019).

1. MATð3; 1; 0; 0; 1; 2; 0Þ ¼ MATð3; 1; 0; 0; 1; 0; 2Þ ¼
RE.

2. MATð2; 1; 1; 0; 1; 1; 0Þ ¼ MATð2; 1; 0; 1; 1; 0; 1Þ ¼
RE.

3. MATð3; 1; 2; 0; 1; 0; 0Þ ¼ MATð3; 1; 0; 2; 1; 0; 0Þ ¼
RE.

4. LregðLINÞ(MATð3; 1; 1; 0; 1; 0; 0Þ \MAT

ð3; 1; 0; 1; 1; 0; 0Þ.

Table 1 Generative power of MATðk; n; i0; i00;m; j0; j00Þ with sum-norm 3 or 4

Sum-

norm

ID size ðn; i0; i00;m; j0; j00Þ, where n;m 2 f1; 2g and

i0; i00; j0; j00 2 f0; 1; 2g
Matrix

length k
Language

family

relation

Remarks

3 (1, 0, 0; 2, 0, 0), (2, 0, 0; 1, 0, 0) � 1 6¼ RE Inferred from Krassovitskiy et al. (2011)

3 (1, 0, 0; 1, 1, 0), (1, 0, 0; 1, 0, 1) 1 6¼ RE Inferred from Krassovitskiy et al. (2011)

� 2 ? OPEN

3 (1, 1, 0; 1, 0, 0), (1, 0, 1; 1, 0, 0) 3 � MLIN Fernau et al. (2018b)

3 � LregðLINÞ Fernau et al. (2019), Corollary 1

4 (1, 0, 0; 1, 1, 1) 3 RE Fernau et al. (2018b)

4 (1, 1, 1; 1, 0, 0) 3 RE Fernau et al. (2018b)

2 RE Theorem 4

4 (1, 0, 0; 2, 1, 0), (1, 0, 0; 2, 0, 1) � 1 ? OPEN

4 (1, 0, 0; 1, 2, 0), (1, 0, 0; 1, 0, 2) 3 RE Fernau et al. (2019), Theorem 2

4 (1, 2, 0; 1, 0, 0), (1, 0, 2; 1, 0, 0) 3 RE Fernau et al. (2019)

2 RE Theorem 3

4 (1, 1, 0; 1, 1, 0), (1, 0, 1; 1, 0, 1) 3 RE Petre and Verlan (2012) and Fernau et al.

(2018b)

2 � REG Theorem 6

1 � CF Krassovitskiy et al. (2011)

4 (1, 1, 0; 1, 0, 1), (1, 0, 1; 1, 1, 0) 3 RE Petre and Verlan (2012) and Fernau et al.

(2018b)

1 6¼ RE Krassovitskiy et al. (2011)

4 (1, 1, 0; 2, 0, 0), (1, 0, 1; 2, 0, 0) 2 RE Petre and Verlan (2012) and Fernau et al.

(2018b)

1 6¼ RE Krassovitskiy et al. (2011)

4 (2, 0, 0; 2, 0, 0) � 1 6¼ RE Krassovitskiy et al. (2011)

4 (2, 0, 0; 1, 1, 0), (2, 0, 0; 1, 0, 1) 2 RE Petre and Verlan (2012) and Fernau et al.

(2018b)

1 6¼ RE Krassovitskiy et al. (2011)

4 (2, 1, 0; 1, 0, 0), (2, 0, 1; 1, 0, 0) 2 � MLIN Fernau et al. (2018b)

2 � LregðLINÞ Fernau et al. (2019), Corollary 1

2 One should also keep in mind the slightly different meanings of the

parameter lists.

On the generative capacity of matrix insertion-deletion systems of small sum-norm 673

123

5. LregðLINÞ(MATð2; 2; 1; 0; 1; 0; 0Þ \
MATð2; 2; 0; 1; 1; 0; 0Þ.

However, most of the proofs have been suppressed in the

conference paper. In this extended version of the paper, we

retain the first one and the last two results stated above

from Fernau et al. (2019), however with detailed proofs.

We must also thank one of the referees of this manuscript

for pointing us to a problem with the construction sug-

gested in Fernau et al. (2019) for proving the above-stated

second result. The matrix length in the above-stated third

result is improved from 3 to 2 in this paper and a new result

MATð2; 1; 1; 1; 1; 0; 0Þ ¼ RE, is also proved here. A sum-

mary of the results of this paper can be seen in Tables 1

and 2 below.

2 Preliminaries

We assume that the readers are familiar with the standard

notations in formal language theory. We recall a few

notations here to keep the paper self-contained.

Let R� denote the free monoid generated by the alphabet

(finite set) R. The elements of R� are called strings or

words; k denotes the empty string, LR and LR denote the

reversal of language L and language family L, respec-

tively. RE and LIN denote the families of recursively

enumerable languages and linear languages, respectively.

Occasionally, we use the shuffle operator, written as .

For the computational completeness results, we use the

fact that type-0 grammars in Special Geffert Normal Form

(SGNF) (Freund et al. 2010) are known to characterize the

recursively enumerable languages and is extensively used

in Fernau et al. (2017a, 2017c, 2018a) and Petre and Verlan

(2012). In fact, we slightly extend this notion in order to

simplify certain arguments below. These simplifications

were often tacitly assumed in previous works, but the fol-

lowing new definition gives good ground for it.

Definition 1 A type-0 grammar G ¼ ðN; T ; S;PÞ is said to

be in time separating special Geffert normal form, tsSGNF

for short, if N is the nonterminal alphabet, T is the terminal

alphabet, S 2 N is the start symbol and P is the set of

production rules satisfying the following conditions.

– N decomposes as N ¼ Nð0Þ [N 0 [N 00, where N 00 ¼
fA;B;C;Dg and S 2 Nð0Þ, S0 2 N 0,

– the only non-context-free rules in P are the two erasing

rules AB ! k and CD ! k,
– the context-free rules are of one of the following forms:

(a) X ! Yb or X ! b0Y where X 2 Nð0Þ,

Y 2 Nð0Þ [N 0, b 2 T ,

(b) X ! Yb00 or X ! b0Y where X; Y 2 N 0, or

S0 ! k,
where b0 2 fA;Cg, b00 2 fB;Dg and X 6¼ Y in

(a) and (b);

(c) possibly, there is also the rule S ! k.

Remark 1 Notice that as these context-free rules are more

of a linear type, it is easy to see that there can be at most

one nonterminal from Nð0Þ [N 0 present in the derivation of

G. We exploit this observation in our proofs. According to

the construction of this normal form described in Freund

et al. (2010) and Geffert (1991), the derivation of a string is

performed in two phases. In Phase I, the context-free rules

are applied repeatedly. More precisely, this phase splits

into two stages: in stage one, rules from (a) have left-hand

sides from Nð0Þ; this stage produces a string of terminal

symbols to the right side of the only nonterminal from Nð0Þ

in the sentential form and codings thereof are put on the

left side of the only nonterminal occurrence from Nð0Þ; the
transition to stage two is performed by using rules with

left-hand sides from Nð0Þ and one symbol from N 0 occur-
ring on the right-hand sides; in stage two, rules from (b)

with left-hand sides from N 0 are applied; importantly, here

(and later) no further terminal symbols are produced. This

separation into non-interacting times of the derivation

Table 2 How the results of this

section/paper

improve/complement previous

results

Result Theorem Improves/relates to References

MATð3; 1; 0; 0; 1; 2; 0Þ ¼ RE Theorem 2 MATð3; 1; 0; 0; 1; 1; 1Þ ¼ RE Fernau et al. (2018b)

MATð3; 1; 0; 0; 1; 1; 0Þ ¼ ??? OPEN

MATð2; 1; 2; 0; 1; 0; 0Þ ¼ RE Theorem 3 MATð3; 1; 2; 0; 1; 0; 0Þ ¼ RE Fernau et al. (2019)

MATð3; 1; 1; 1; 1; 0; 0Þ ¼ RE Fernau et al. (2018b)

MATð2; 1; 1; 0; 1; 1; 0Þ ¼ ??? OPEN MATð2; 1; 1; 0; 1; 1; 1Þ ¼ RE Fernau et al. (2018b)

MATð2; 1; 1; 1; 1; 1; 0Þ ¼ RE Fernau et al. (2018b)

MATð3; 1; 1; 0; 1; 1; 0Þ ¼ RE Fernau et al. (2018b)

MATð2; 1; 1; 1; 1; 0; 0Þ ¼ RE Theorem 4 MATð3; 1; 1; 1; 1; 0; 0Þ ¼ RE Fernau et al. (2018b)

674 H. Fernau et al.

123

process was the reason to call this normal form time sep-

arating. In the previous version of the normal form, it was

possible that rules from the two stages could be applied

also in different orders; this could lead to problems in the

simulation. The two erasing rules AB ! k and CD ! k are

not applicable during the first phase as long as there is a S

(or S0) in the middle. All the symbols A and C are gener-

ated on the left side of these middle symbols and the cor-

responding symbols B and D are generated on the right

side. Phase I is completed by applying the rule S0 ! k in

the derivation. In Phase II, only the non-context-free

erasing rules are applied repeatedly and the derivation

ends. By induction, it is clear that sentential forms deriv-

able by tsSGNF grammars belong to

fA;Cg�Nð0ÞT� [fA;Cg�ðN 0 [fkgÞfB;Dg�T�.
Finally, notice that [similar to Fernau et al. (2017e)], we

can also assume that X 6¼ Y in the context-free rules, as we

can we can alternate between even and odd derivation

steps.

Let us remark that the idea of a time separating (special)

Geffert normal form is useful even when the number of

nonterminal symbols matter, as proven by us in a recent

paper presented at ICMC 2020 (to appear in its LNCS

volume).

Our reasoning shows in particular the following first

result:

Theorem 1 For any recursively enumerable language L,

i.e., L 2 RE, there exists a type-0 grammar G in tsSGNF

with L ¼ LðGÞ.

2.1 Matrix insertion-deletion systems

In this subsection, we describe matrix insertion-deletion

systems as in Kuppusamy et al. (2011), Petre and Verlan

(2012) and Kuppusamy and Mahendran (2016).

Definition 2 A matrix insertion-deletion system is a con-

struct C ¼ ðV ; T ;A;RÞ where V is an alphabet, T � V , A is

a finite language over V, R is a finite set of matrices

fr1; r2; . . .rlg, where each ri, 1� i� l, is a matrix of the

form ri ¼ ½ðu1; a1; v1Þt1 ; ðu2; a2; v2Þt2 ; . . .; ðuk; ak; vkÞtk 	. For
1� j� k, uj; vj 2 V�, aj 2 Vþ and tj 2 fins; delg.

The triplet ðuj; aj; vjÞtj is called an ins-del rule and the

pair ðuj; vjÞ is termed the context with ui as the left and vi as

the right context for aj in tj; aj is called insertion string if

tj ¼ ins and deletion string if tj ¼ del. The elements of A

are called axioms. For all contexts of t where t 2 fins; delg,
if u ¼ k or v ¼ k, then we call the context to be one-sided.

If u ¼ v ¼ k for a rule, then the corresponding insertion/

deletion can be done freely anywhere in the string and is

called context-free insertion/deletion. An insertion rule is

of the form ðu; g; vÞins, which means that the string g is

inserted between u and v. A deletion rule is of the form

ðu; d; vÞdel, which means that the string d is deleted between
u and v. Applying ðu; g; vÞins corresponds to applying the

rewrite rule uv ! ugv, and applying ðu; d; vÞdel corresponds
to applying the rewriting rule udv ! uv.

At this point, we make a note that in a derivation, the

rules of a matrix are applied sequentially one after another

in the given order and no rule is used in appearance

checking, as it is often the case in more classical matrix

grammars with rewriting rules; see Dassow and Păun

(1989). For x; y 2 V� we write x)ri y, if y can be obtained

from x by applying all the rules of a matrix ri; 1� i� l, in

order. The language LðCÞ generated by C is defined as

LðCÞ ¼ fw 2 T� j x)� w; forsomex 2 Ag; where)� (as

usual with matrix ins-del systems) denotes the reflexive

and transitive closure of):¼
S

r2R)r.

If a matrix ins-del system has at most k rules in a matrix

and the size of the underlying ins-del system is

ðn; i0; i00;m; j0; j00Þ, then we denote the corresponding class of
language by MATðk; n; i0; i00;m; j0; j00Þ.

Example 1 The language L1 ¼ fanbmcndm j m; n� 1g of

cross-serial dependencies can be generated by a binary

matrix insertion-deletion system as follows:

C1 ¼ ðfa; b; c; dg; fa; b; c; dg; fabcdg;RÞ, where R consists

of two matrices: m1 ¼ ½ða; a; kÞins; ðc; c; kÞins	,
m2 ¼ ½ðb; b; kÞins; ðd; d; kÞins	. We note that the matrices

m10 ¼ ½ðk; a; aÞins; ðk; c; cÞins	; m20 ¼ ½ðk; b; bÞins; ðk; d; dÞins	

also generate L1. Hence,

L1 2 MATð2; 1; 1; 0; 0; 0; 0Þ \MATð2; 1; 0; 1; 0; 0; 0Þ :

We refer to Stabler (2004) for further variants and a dis-

cussion of the linguistic relevance of this type of example.

2.2 Regular closure of linear languages

Recall that a linear grammar is a context-free grammar

G ¼ ðN; T; S;PÞ whose productions are of the form A ! x,

where A is a nonterminal symbol, and x is a word over

N [T with at most one occurrence of a nonterminal

symbol. The language class LIN collects all languages that

can be described by linear grammars. LIN can be charac-

terized by linear grammars in normal form, which means

that any rule A ! x either obeys x 2 T [fkg or x 2 TN or

x 2 NT . It is well known that LIN is not closed under

concatenation and Kleene star. This motivates to consider

the class LregðLINÞ as the smallest class containing LIN

that is closed under union, concatenation or Kleene star.

Similarly, we can assume that any right-linear grammar

that we consider is in normal form, i.e., it has only rules

A ! aB or A ! k, with A 2 N, B 2 NnfAg and a 2 T . The

On the generative capacity of matrix insertion-deletion systems of small sum-norm 675

123

following grammatical characterization for LregðLINÞ was
shown in Fernau et al. (2018d).

Proposition 1 Fernau et al. (2018d) Let L � T� be some

language. Then, L 2 LregðLINÞ if and only if there is a

context-free grammar G ¼ ðN; T ; S;PÞ with LðGÞ ¼ L that

satisfies the following properties.

– N can be partitioned into N0 and N 0.
– There is a right-linear grammar GR ¼ ðN0;N

0; S;P0Þ.
– N 0 can be further partitioned into N1; . . .;Nk for some k,

such that the restriction Pi of P involving symbols from

Ni [T are only linear rules, with T serving as the

terminal alphabet.

– P can be partitioned into P0;P1; . . .;Pk.

Notice that this characterization corresponds to a two-

stage approach: First, the right-linear grammar GR is used

to produce a sequence of symbols from N 0 that both serve

as terminal symbols for GR and as nonterminal symbols for

the linear grammar Gi that can be obtained from G by using

rules Pi only. Here, it is not necessary but possible to insist

on using N 00 � N 0 instead of N 0 as the terminal alphabet of

GR, such that N 00 \ Ni ¼ fSig for each i 2 ½1. . .k	, i.e., we
can single out a start symbol Si for each Gi. Clearly, the

linear rules mentioned in the previous proposition can be

assumed to be in normal form. In order to simplify the

proofs of some of our main results, the following obser-

vations from Fernau et al. (2018b); Fernau et al. (2018c)

are helpful.

Proposition 2 Fernau et al. (2018b) Let L be a language

class that is closed under reversal. Then, for all non-neg-

ative integers k; n; i0; i00;m; j; j00, we have that

– MATðk; n; i0; i00;m; j0; j00Þ ¼ ½MATðk; n; i00; i0;m; j00; j0Þ	R;
– L ¼ MATðk; n; i0; i00;m; j0; j00Þ if and only if

L ¼ MATðk; n; i00; i0;m; j00; j0Þ;
– L � MATðk; n; i0; i00;m; j0; j00Þ if and only if

L � MATðk; n; i00; i0;m; j00; j0Þ.

Proposition 3 Fernau et al. (2018c) LregðLINÞ is closed

under reversal.

3 Computational completeness results

In this section, we show the computational completeness of

matrix ins-del systems of sizes (3; 1, 0, 0; 1, 2, 0), (3; 1, 0,

0; 1, 0, 2), (2; 1, 2, 0; 1, 0, 0), (2; 1, 0, 2; 1, 0, 0), (2; 1,

1, 0; 1, 1, 0), (2; 1, 0, 1; 1, 0, 1), (2; 1, 1, 1; 1, 0, 0), by

providing matrix ins-del systems of the above said sizes

that simulate type-0 grammars in tsSGNF. How these

results improve/complement previously known results is

explained in Table 2.

We often use labels from ½1. . .jPj	 to uniquely address

the rules of a grammar in tsSGNF. Then, such labels (and

possibly also primed version thereof) will be used as rule

markers that are therefore part of the nonterminal alphabet

of the simulating matrix ins-del system. For the ease of

reference, we collect in Pll the labels of the context-free

rules of the form X ! Yb (which resemble left-linear rules)

and in Prl the labels of the context-free rules of the form

X ! bY (which resemble right-linear rules).

Some of the key features in our construction of matrix

ins-del systems in this section are the following ones:

– There is at least one deletion rule in most simulating

matrices, mostly for reasons of control. In some cases,

the axiom will have $ and we delete this in order to

avoid repeating the matrix and to ensure that the matrix

(containing the deletion of $) is applied only once until

the intended rule simulation is completed. We insert $

again at the end of the simulation.

– In the majority of cases, at least one of the deletion

rules of every matrix has a rule marker in the left

context or the marker itself is deleted. A matrix of this

type is said to be guarded. The importance of a matrix

being guarded is that it can be applied only in the

presence of the corresponding rule marker. This will

avoid interference of any other matrix application.

– After successful application of every matrix, either a

rule marker remains or the intended simulation is

completed.

– As discussed in Remark 1, during Phase I, the symbols

A and C are on the left of the middle nonterminal S or S0

and the corresponding symbols B and D are on the right

of S or S0. When S0 is deleted from the center, the

symbols from fA;Cg and fB;Dg may combine to be

erased in Phase II.

– In the transition to Phase II, a special symbol Z is

introduced that is assumed to stay to the left of AB or

CD, whatever substring is to be deleted. Special

matrices allow Z to move in the sentential form or to

be (finally) deleted. This is our novel idea not used in

earlier papers.

– There is a subtlety if k 2 L. Then, we can assume that

S ! k is in the simulated grammar, which would add

one more erasing matrix, similar to h1 in Fig. 2, which

deletes S and introduces Z.

We now proceed to present our results.

Theorem 2 MATð3;1;0;0;1;2;0Þ¼MATð3;1;0;0;1;0;2Þ
¼RE.

Proof Formally, consider a type-0 grammar G ¼
ðN; T ;P; SÞ in tsSGNF. The rules from P are supposed to

be labelled injectively with labels from the set ½1. . .jPj	,
with label sets Pll and Prl as defined above. Also recall that

676 H. Fernau et al.

123

the nonterminal alphabet decomposes as

N ¼ Nð0Þ [N 0 [N 00, N 00 ¼ fA;B;C;Dg, S 2 Nð0Þ; S0 2 N 0,
according to the normal form. We construct a matrix

insertion–deletion system C ¼ ðV ; T; fSg;MÞ, where the

alphabet of C is

V ¼ N [T [fp; p0; p00; p000 j p 2 Prlg [fq; q0; q00 j q 2 Pllg [fZg :

The set of matrices M of C consists of the matrices

described in the following.

We simulate a rule p: X ! bY , X; Y 2 Nð0Þ [N 0,
b 2 N 00, i.e., p 2 Prl, by the four matrices displayed on

the left-hand side of Fig. 1.

Similarly, we simulate the rule q: X ! Yb,

X; Y 2 Nð0Þ [N 0, b 2 N 00 [T , i.e., q 2 Pll, by the four

matrices shown on the right-hand side of Fig. 1 in a

symmetrical manner.

Recall that applying the rule h : S0 ! k starts Phase II

within the working of G. In the simulation, the presence of

a new symbol, Z, indicates that we are in Phase II. This

motivates the introduction of the five matrices listed in

Fig. 2.

We now proceed to prove that LðCÞ ¼ LðGÞ. We

initially prove that LðGÞ � LðCÞ by showing that C
correctly simulates the application of the rules of the types

p, q, f, g, h, as discussed above. We explain the working of

the simulation matrices for the cases p and f mainly, as the

working of q and g simulation matrices are similar, and as

the working of the simulation of the h rule is clear. Notice

that the transition from Phase I to Phase II (as accom-

plished by applying h in G) is now carried out by applying

h1 and hence introducing Z which will be always present

when simulating Phase II with the system C.
Simulation of p : X ! bY : consider the string aXb

derivable from S in G, with X 2 Nð0Þ [N 0 and

a 2 fA;Cg�, b 2 fB;Dg�T� according to Remark 1. We

now show that on applying the matrices introduced for

simulating rules from Prl, we can derive abYb within C,
starting from aXb. First, we apply the rules of matrix p1.

The markers p and p0 are randomly inserted by the first two

rules, leading to a string from . However, the

third rule of p1 is applicable only when p0p is inserted

before the nonterminal X. This shows that aXb)p1 c1 is

possible if and only if c1 ¼ ap0pb.
Now, on applying matrix p2, p00 and p000 are inserted

anywhere, so intermediately we arrive at a string from

. Then, p0 is deleted in the left context of

p000p00. So, we now arrive at the string ap000p00pb. This shows
that c1 ¼ ap0pb)p2 c2 is possible if and only if

c2 ¼ ap000p00pb. We now apply matrix p3. Hence, b is first

inserted randomly, leading to a string from .

The left context in the second rule of p3, enforces that,

inevitably, we arrive at c3 ¼ ap000bpb. Finally, we apply

matrix p4. Here, Y is inserted anywhere by the first rule, but

the second one enforces that we now look at ap000bYb,
which yields c4 ¼ abYb by the last rule. As G is in

tsSGNF, we also know that Y 2 N 00. This shows that c3 ¼
ap000bpb)p4 c4 is possible if and only if c4 ¼ abYb. The
intended sequence of derivations is hence:

aXb)p1 ap
0pb)p2 ap

000p00pb)p3 ap
000bpb)p4 abYb:

This completes the simulation of rule p. Simulation of q :

X ! Yb is similar and symmetric to the working of the

p rule simulation and hence omitted.

Simulation of f : AB ! k or g : CD ! k: consider the

sentential form aABb derivable in G. This means that we

are in Phase II. As said above, the symbol Z will be present

in the corresponding sentential form derivable in C. Any
string from can be transformed into aZABb by

using matrix move-Z. Now, aZABb)f1 aZb correctly

simulates one application of f.

Now, we prove LðCÞ � LðGÞ. Formally, this is an

inductive argument that proves the following properties of

a string w 2 V� such that S)� w in C:

1. At most one symbol from Nð0Þ [N 0 is occurring in w.

2. If one symbol X from Nð0Þ occurs in w, then w ¼ aXu,
where a 2 fA;Cg� and u 2 T�: w is derivable in G;

3. If one symbol X from N 0 occurs in w, then w ¼ aXbu,
where a 2 fA;Cg�, b 2 fB;Dg� and u 2 T�: w is

derivable in G;

4. If no symbol from Nð0Þ [N 0 occurs in w, then Z occurs

at most once in w.

5. If no symbol from Nð0Þ [N 0 [fZg occurs in w, then

(a) either w ¼ ar0rbu, where a 2 fA;Cg�, r is some

context-free rule from G with left-hand side X,

b 2 fB;Dg� and u 2 T�: aXbu is derivable in G;

(b) or w ¼ ap000p00pbu, where a 2 fA;Cg�, p 2 Prl

with p : X ! bY , b 2 fB;Dg� and u 2 T�: aXbu
is derivable in G;

(a) (b)

Fig. 1 Matrices of size (3; 1, 0, 0; 1, 2, 0) for simulating the context-free rules of tsSGNF

On the generative capacity of matrix insertion-deletion systems of small sum-norm 677

123

(c) or w ¼ ap000bpbu, where a 2 fA;Cg�, p 2 Prl

with p : X ! bY , b 2 fB;Dg� and u 2 T�: aXbu
is derivable in G;

(d) or w 2 ðfA;B;C;Dg [TÞ�: w is derivable in G.

6. If Z occurs in w, then , where

a 2 fA;Cg�, b 2 fB;Dg� and u 2 T�: abu is derivable in

G.

These properties are surely true at the very beginning, as

the sentential form S satisfies 2. We are discussing the

induction step in what follows.

Conditions 2 and 3 consider any sentential form w that

satisfies 2 or 3. Hence, w ¼ aXbu, where a 2 fA;Cg�, b 2
fB;Dg� and u 2 T�. In fact, the conditions are more

specific about some details regarding X and b. All rules but
r1 (for some context-free rule r) or h1 require the presence

of some rule marker (or of Z) and are hence not applicable.

– If matrix r1 is applied, then w0 ¼ ar0rbu results,

satisfying 5(a). The left-hand side of rule r must have

been X. By induction, aXbu is derivable in G.

– If h1 is applied, then w0 results, with ,

satisfying 6. Matrix h1 checks the presence of X ¼ S0. By
induction, aS0bu is derivable in G, so that applying h1

corresponds to an application of h on aS0bu in G.

Condition 5(a) Consider any sentential form w that satisfies

5(a). Hence, w ¼ ar0rbu, where a 2 fA;Cg�, b 2 fB;Dg�
and u 2 T�. Moreover, aXbu is derivable in G, where X is

the left-hand side of rule r. As no other rule markers are

present in w, only matrix r1 is applicable. Now, we have to

distinguish between r ¼ p 2 Prl and r ¼ q 2 Pll. In the first

case, we inevitably derive w0 ¼ ap000p00pbu [see 5(b)], and

in the second case, we arrive at w0 ¼ aq0q00bbu [see 5(d)].

In both cases, by induction hypothesis, the stated deriv-

ability conditions on G are true.

Condition 5(b) Consider any sentential form w that

satisfies 5(b). Hence, w ¼ ap00bpbu, where a 2 fA;Cg�,
p 2 Prl with p : X ! bY , b 2 fB;Dg� and u 2 T�: aXbu is

derivable in G. The only matrix that can cope with the

presence of the rules markers p and p00 (and only these) is

p3. Now, inevitably, w)p3 w
0 ¼ abYbu, bringing us into

Case 2 or 3, as G can derive this string from aXbu
(induction hypothesis) by applying p.

Condition 5(c) Consider any sentential form w that

satisfies 5(c). Hence, w ¼ ap000bpbu, where a 2 fA;Cg�,
p 2 Prl with p : X ! bY , b 2 fB;Dg� and u 2 T�: aXbu is

derivable in G. The presence of the rules markers p and p000

enforces us to apply matrix p4. Now, inevitably,

w)p4 w
0 ¼ abYbu, bringing us into Cases 2 or 3, as G

can derive this string from aXbu (induction hypothesis) by

applying p.

Condition 5(d) As the reader may check, no matrix from

C is applicable in such a situation.

Condition 6 Consider any sentential form w that

satisfies 6. The only applicable matrices are move-Z,

del-Z, f1, g1. If we apply matrix move-Z, this brings us

back to another situation of Case 6, whose claims readily

hold by induction. A similar easy case is the application

of del-Z, which leads us into Case 5(d). This is

particularly interesting when , as now a ter-

minal string was derived in C that is also generated by

G. Matrix f1 can only be applied if Z sits immediately to

the left of the substring AB. The effect of applying f1

corresponds to deleting this substring and hence to

applying the rule f in G. This brings us back to Case 6. A

similar argument holds for applying matrix g1.

These considerations complete the proof due to Condi-

tion 5(d) that applies to w 2 T�. The second equality

follows by Proposition 2. h

It is shown that MATð3; 1; 2; 0; 1; 0; 0Þ ¼
MATð3; 1; 0; 2; 1; 0; 0Þ ¼ RE in Fernau et al. (2019), which

is the conference version of this paper. We now improve

the matrix length from 3 to 2 in the following theorem.

Theorem 3 MATð2;1;2;0;1;0;0Þ¼MATð2;1;0;2;1;0;0Þ
¼RE.

Before we begin our proof, we highlight the key feature

of the markers first. In order to simulate, say, AB ! k, we
have to use deletion rules ðk;A; kÞdel and ðk;B; kÞdel, as
deletions cannot be performed under contexts. However,

there is the danger that we are deleting unintended occur-

rences. So we have to carefully place markers before, after

and between the chosen nonterminals A and B in order to

check that they are neighbored. Also, the auxiliary non-

terminal $, which is present in the axiom itself, serves as a

Fig. 2 Matrices of size (2; 1, 0, 0; 1, 1, 0) for simulating the erasing rules of tsSGNF

678 H. Fernau et al.

123

semaphore flag as known in concurrent programming,

preventing simulation cycles from being interrupted. We

will use this trick also in other simulations below.

Proof Consider a type-0 grammar G ¼ ðN; T ;P; SÞ in

tsSGNF, with the rules uniquely labelled with Pll [Prl.

Recall the decomposition N ¼ Nð0Þ [N 0 [N 00 by tsSGNF.

We can construct a matrix ins-del system C ¼
ðV; T ; f$Sg;MÞ with alphabet V ¼ N [T [Prl [Pll [K

where K is the following set of markers:

fp; p0; p00; p000 j p 2 Prlg [fq; q0; q00; q000 j q 2 Pllg
[ff ; f 0; f 00; f 3; f 4; f 5; f 6; f 7; f 8; f 9; f 10;
g; g0; g00; g3; g4; g5; g6; g7; g8; g9; g10; $g :

The set of matrices M is defined as follows. Rules p : X !
bY 2 Prl and q : X ! Yb 2 Pll are simulated by the

matrices shown in Fig. 3a, b, respectively. We simulate

rule f : AB ! k by the matrices shown in Fig. 4. Rule g :

CD ! k is simulated alike.

Recalling that our axiom is $S, we also have two

additional matrices (i) s ¼ ½ðk; $; kÞdel	 for termination and

(ii) h1 ¼ ½ðk; S0; kÞdel	 to simulate the phase transition

h : S0 ! k.
We now proceed to prove that LðCÞ ¼ LðGÞ, starting

with the inclusion LðGÞ � LðCÞ. Consider the string aXb

derivable from S in G, with X 2 Nð0Þ [N 0 and a 2 fA;Cg�,
b 2 fB;Dg�T� according to Remark 1. We now show that

on applying the matrices of Fig. 3a (introduced for

simulating rules from Prl of the type X ! bY), we can

derive some string within C, starting from

some , simulating w ¼ aXb) abYb ¼ w0

in G.

Quite similarly, applying the matrices of Fig. 3b

(introduced for simulating rules from Pll of the type

X ! Yb), we can derive some string

within C, starting from some , simulating w ¼
aXb) aYbb ¼ w0 in G.

Every time a context-free rule is simulated by either p or

q rules, the marker $ is first deleted and finally re-inserted

at a somewhat random position at the end of every

simulation. In other words, the $ gets shuffled around the

string during Phase I. The phase transition rule h : S0 ! k
is simulated by applying h1, so that we can now speak

about Phase II of G. As the working of the g rule

(a) (b)

Fig. 3 Simulating context-free

rules of tsSGNF by matrix rules

of size (2; 1, 2, 0; 1, 0, 0)

On the generative capacity of matrix insertion-deletion systems of small sum-norm 679

123

simulation is similar to the working of the f rule simulation,

we discuss only rule f below. To actually produce a

terminal word, C has to apply s at the very end.

We now discuss Phase II in detail, focussing on

f : AB ! k. Let w ¼ aABb be a sentential form derivable

in G, with A;B 2 N 00 and a 2 fA;Cg�, b 2 fB;Dg�T�,
ensured by tsSGNF. This means that is

derivable in C (by induction). We can now see that

The purpose of introducing a $ in f13 is to enable

another simulation of AB ! k or of CD ! k. When all

occurrences of AB and CD are deleted by repeated

applications of the matrices designed for simulating the f

and g rules, there is still a $ at the end of every simulation.

This $ is deleted by applying rule s, thereby terminating

Phase II of tsSGNF. Inductively, this shows that

LðGÞ � LðCÞ.
Let us now prove the converse direction. Consider once

more a string w ¼ aXb derivable from S in G, with X 2
Nð0Þ [N 0 and a 2 fA;Cg�, b 2 fB;Dg�T� according to

Remark 1. We know by our previous arguments that the

variation can be derived in C. In particular, the
axiom fits into this description. We will now argue that,

starting with such a string, we either terminate the first

phase of the simulation by applying h1, which obviously

corresponds to applying S0 ! k in G, or we try to apply any
of the other matrices. We will then show that any non-

blocked derivation will again lead to a string of the form

, which justifies our

starting point inductively. As all matrices of the form p2,

..., p7 or q2, ..., q7 or f2, ..., f13 require the presence of a

marker symbol from Knf$g, we can focus on applying the

matrices p1, q1 or f1. Here, we ignore the rules g1, ..., g13

due to their similarity to the matrices simulating the f rules.

Also, the matrices simulating the p rules and the q rules are

very similar, so that we only discuss the first ones.

If we apply f1, this blocks any other simulation branch,

as the marker $ is deleted and the marker f is inserted, but

no other marker is present in the string w0 that can be

thought of being produced from w by randomly inserting

some f. As can be checked case-by-case, the only appli-

cable matrix is now f2, which also makes clear that the f

was inserted left to some A-occurrence (and hence within

a) in w. To highlight the chosen insertion place, let a ¼
a0Aa00 such that w0 ¼ a0fAa00Xb. Now, if w0)f2 w

00, we can

conclude that w00 ¼ a0ff 0Af 00a00Xb. The only applicable

matrix is now f4, leading to

w00)f4 a0ff 0f 00f 6a00Xb)f5 a0ff 0a00Xb. Notice that the

application of f5 that we displayed is in fact the only

possibility. But now, the derivation is stuck. Therefore,

there is no use of applying f1 on w$.

We can only simulate p rules on w$ that have X as their

left-hand side, because the correctness of this (unique)

symbol is tested as left context in p1. This enforces w$)p1

aXpb as intended. As $ is deleted and no (variation of) f is

present as a marker, in particular no fi matrix is applicable

for i ¼ 1; . . .; 13. As p is the only marker in aXpb, only p2

is applicable indeed, which enforces aXpb)p2 app0b as

intended. The presence of p and p0 makes three matrices

interesting to apply: p2, p3 and p7. However, the absence

of X renders applying p2 impossible. Yet, p7 could be

applied, leading to apb. But how to continue from here?

Any rule dealing with p either requires some symbol like X

Fig. 4 Simulating non-context-

free rules by matrix rules of size

(2; 1, 2, 0; 1, 0, 0)

680 H. Fernau et al.

123

to the left of p (in matrix p2) or some p0 to the right of p (in

matrix p3) or the presence of p00p0 (in matrix p4). The

absence of $ also prohibits starting another rule simulation.

In other words, the derivation is stuck. This shows that we

have to continue with app0b)p3 app000p0p00b, as was our

intention. Observe that neither $ nor X nor pp0 nor bp00 nor
Y is present in the current sentential form, which means

that only p4 or p7 might apply. After applying p7, we

obtain app000p00b, which again has no substring like $, X,
pp0, bp00 or Y. Additionally, the substring p000p0 is now

lacking, which means that none of the rules is applicable

and hence the derivation is blocked. Therefore, we have to

apply matrix p4 as intended, enforcing

app000p0p00b)p4 ap000p0bp00b. The absence of $, X (or Y)

and p blocks pi for i ¼ 1; 2; 3; 4; 6, as well as f1. If we

apply p7, we arrive at ap000bp00b. Still, symbols X, Y and p

are missing, so that p5 would be the only applicable rule,

leading to ap000bp00b)p5 ap000bYb. Due to the absence of a

$-marker, the only matrix that can deal with the substring

p000b is p6, which leads to abY$b as intended, although by

following a strategy slightly different from the one

presented before. Finally, we have to discuss what happens

if we apply p5 on ap000p0bp00b (as presented above). We

arrive at ap000p0bYb. As the markers p and $ are missing,

only p6 and p7 are applicable. If p7 is applied first, then

arguments similar to the previous ones show that now

only p6 is applicable, leading to abY$b as intended,

although by again following a slightly different strategy.

Alternatively, we consider applying p6 on ap000p0bYb as

intended, leading to ap0bY$b. When we apply p7 now, we

have arrived at abY$b with the derivation strategy

presented above.

However, there is one last catch in this simulation.

Nobody forces us to apply p7 on ap0bY$b; we could also

keep p0 within the string and continue with simulations of

context-free rules or (failed) simulations of non-context-

free rules (as discussed above) or, after applying h1, we

might even start (successfully) simulating non-context-free

rules (as discussed below). A similar analysis is valid for

the q rules, leading to a string like aq0Yb$b. Now, observe
that any matrix (apart from p7 or q7 that erase p0 or q0) that
makes use of p0 (or q0) expects p or p000 (q or q000,
respectively) to the left of p0 (or q0), which cannot happen,

as the (unique) symbols from Nð0Þ [N 0 of the tsSGNF

grammar stay to the right of p0 (or q0). Therefore, the

presence of single-primed rule markers is harmless, they

are to be deleted at any time later using p7 or q7. Hence,

we ignore them in our discussions. In particular, assuming

that we only have to discuss a string w ¼ aXb derivable

from S in G (as we did so far) is not devaluating our

argumentation.

Now, assume that Phase I was simulated as intended.

This means that we consider some string w that is derivable

in Phase I by G as well as is by C. As we are

using tsSGNF, this means that w 2 fA;Cg�fB;Dg�T� by

Remark 1. Notice that by the discussions performed so far,

this observation translates to the simulating grammar C.
First, assume that w ¼ aAfb for some a 2 fA;Cg�, f 2

fB;Dg and b 2 fB;Dg�T�, or f 2 T and b 2 T�, or w ¼ aA
is a sentential form derivable in G, corresponding to some

string w$ derivable in C. The only applicable rule is f1

(or g1, discussed at the end), since other matrices demand

the presence of a marker (say, either f or f 00). Also, no rule

from the simulation of Phase I is applicable anymore due

to the absence of symbols from Nð0Þ [N 0. Recall that we
ignore the possible presence of symbols like p0 as discussed
above. Also, by the very structure of the matrices

simulating an f rule, no progress on a sentential form b
with b 2 fB;Dg�T� is observed beyond the possible

application of f1. One application of f1 on w deletes the

symbol $ that was present in the axiom and introduces a

marker f randomly, hence leading to a string w1 from

. All matrices simulating the f rule require the pres-

ence of (multiply) primed versions of the marker f, apart

from f2 which has to be applied next. Matrix f2 checks that

an A must be immediately to the right of f, which means

that f has been previously inserted within the prefix aA of

w. Hence, the resulting string w2 can be (equivalently)

obtained from w by first picking one occurrence of A within

the prefix aA and then inserting the string f 00 immediately

to the right of this A-occurrence and f 0 immediately to the

right of marker f. The introduction of f 0 between f and A

spoils the pattern fA, thus f2 cannot be applied again. This

leads to the string a0ff 0Af 00a00fb, with aA ¼ a0Aa00. All

matrices fi but f3 require at least one of the substrings $, fA,

f 0f 00 or f k (3� k� 10) to be present, which renders them

inapplicable. However, matrix f3 also checks that the A-

occurrence that we picked within w sees a B-occurrence to

the immediate right of Af 00. This enforces f ¼ B in our

string w ¼ aAfb and a ¼ a0a00 (all other strings are stuck at

this point). Therefore, after applying matrix f3, we arrive at

the string w3 ¼ aff 0Af 00f 3Bf 5b. Now, none of the matrices

f5
 f13 are applicable due to the absence of one of the

markers f 4; f 6; f 7; f 9; f 10. The matrices f1, f2, f3 are also

inapplicable due to the absence of $, fA, and f 00B, respec-
tively. Hence, the only applicable rule is f4. The first rule

in f4 demands the deletion of one occurrence of A. Ini-

tially, it might be tempting to delete some other unintended

A-occurrence. However, only if the intended A-occurrence

(part of the substring f 0Af 00) is deleted, then we will have

the substring f 0f 00 in order to apply the second rule of f4.

Hence, we get w4 ¼ aff 0f 00f 6f 3Bf 5b. Again, matrices

f1
 f3, f6
 f13 still remain inapplicable due to the same

On the generative capacity of matrix insertion-deletion systems of small sum-norm 681

123

reason as above. The only applicable matrices on w4 are f4

(again) or f5.

Suppose f4 is applied again (repeatedly for k� 0 times)

on w4, then some k number of As in a are deleted freely and

ðf 6Þk is inserted after f 0f 00, leading to a string

w0
4 ¼ a0ff 0f 00ðf 6Þkf 6f 3Bf 5b, where a0 is obtained from a

by deleting k occurrences of A. For further continuation of

the derivation, the only other applicable matrix is f5. Since

there is a unique occurrence of f 00, the matrix f5 can be

applied only once, which will delete only one f 6 leading to

the string w00
4 ¼ a0ff 0ðf 6Þkf 3Bf 5b. Assuming f4 is applied no

more, no other matrix (including f6), is applicable due to

the absence of one of $; fA; f 00B; f 00; f 4; f 7; f 9; f 10. Hence,
the derivation is stuck here if k[0. We hence apply

matrix f5 on w4 ¼ aff 0f 00f 6f 3Bf 5b to get w5 ¼ aff 0f 3Bf 5b.
Due to the absence of one of the markers or substrings

$; fA; f 00; f 4; f 7; f 9; f 10, no matrix other than f6 is applicable.

Applying f6 on w5 yields w6 ¼ aff 0f 7Bf 5b. The absence of
$; fA; f 00; f 3; f 4; f 7f 5; f 8; f 9; f 10 blocks the applicability of all

fi matrices except f7. Applying f7 on w6 leads to the string

w7 ¼ af 0f 7Bf 4f 5b as intended. Matrices f1
 f7 are not

applicable, since the markers $; f ; f 00; f 3 are not present in

w7. Similarly, matrices f9, f11, f12 and f13 are not

applicable on w7, since the markers f 8, f 9 and f 10 are not

present. Additionally, f10 is inapplicable due to the absence

of f 7f 5. Thus, the only applicable matrix is f8. The first rule

in f8 demands the deletion of one occurrence of B. Initially,

it might be tempting to delete some other unintended B-

occurrence. However, only if the indented B is deleted,

then we will have the substring f 7f 4, and the second rule of

f8 can be applied. Hence, we get w8 ¼ af 3f 7f 4f 8f 5b. The
matrices f1
 f7, f11
 f13 are inapplicable due to the

absence of one of the markers $; f ; f 3; f 00; f 9; f 10. The matrix

f10 is inapplicable, since we do not the have the context

f 7f 5 in w8. The only applicable matrices on w8 are f8

(again) or f9.

Suppose f8 is applied again (repeatedly for k� 0 times)

on w8, then some k number of Bs in b are deleted freely and

ðf 8Þk is inserted after f 7f 4, leading to a string

w0
8 ¼ af 0f 7f 4ðf 8Þkf 8f 5b0, where b0 ¼ b without some k

occurrences of B. For further continuation of the deriva-

tion, the only other applicable matrix is f9. Since there is a

unique occurrence of f 4, the matrix f9 can be applied only

once, which will delete only one f 8, leading to the string

w0
9 ¼ a0f 0f 7ðf 8Þkf 5b. Due to the absence of any of

$; f ; f 00; f 3; f 4; f 9; f 10, no matrix is applicable on w0
9 but

f 10, but this requires the presence of the substring f 7f 5.

This is only possible of k ¼ 0 (as intended), i.e., if w8 ¼ w0
8

and w9 ¼ w0
9 ¼ af 0f 7f 5b.

The matrices f1
 f9, f11
 f13 are clearly inapplicable

on w9 due to the absence of the markers

$; f ; f 0; f 00; f 4; f 9; f 10. So we could now apply f10 on w9,

then we will have w10 ¼ af 0f 7f 9b. Due to absence of

essential markers, all matrices except f11 and f12 are

inapplicable. If the latter is applied, then we get w0
10 ¼ af 7b

and the derivation is stuck as no continuation is possible. In

particular, we cannot apply matrix f7 due to the absence of

f, a marker that we cannot introduce by applying f1 due to

the absence of the marker $. So, f11 is applied onto w10 and

we get w11 ¼ af 0f 9f 10b. Now, the only applicable matrices

are f12 and f13. Both the rules can be applied in any order

(independently) to get . Observe that there are

also scenarios where only f13 is applied, so that we stick

with . Now, we can indeed start a new

cycle of simulation with f1 and f2, but then at latest, in

order to find the substring f 00B as required by f3, we should

apply f12 to connect a and b.
Let us finally return to the situation when we try to apply

g1 on w$, with w ¼ aAfb for some a 2 fA;Cg�, f 2
fB;Dg and b 2 fB;Dg�T�, or f 2 T and b 2 T�, or w ¼ aA
(i.e., f ¼ b ¼ k), being a sentential form derivable in G,

corresponding to some string w$ derivable in C. If

w)g1 w
0, then . If we now apply g2, this

means that we have split a as a0Ca00, so that for w0)g2 w
00,

w00 ¼ a0gg0Cg00a00Afb, with f and b satisfying the condi-

tions stated above. However, now the derivation is stuck, as

the string w00 does not contain a substring CD as required

by matrix g3.

These arguments show that also the non-context-free

rules are correctly simulated and hence the whole simu-

lation is correct, as also no successful re-starts of simula-

tions are possible on strings from .

The second claimed computational completeness result

follows by Proposition 2 and this concludes the proof. h

In the previous two theorems, the maximum length of

the insertion/deletion context was two and the other oper-

ation, namely deletion/insertion is done in a context-free

manner. If we restrict the parameters in the size to be

binary (0 or 1), then we achieve computational complete-

ness using matrices of maximum length two; however,

insertion is now performed under a 2-sided context.

Theorem 4 MATð2; 1; 1; 1; 1; 0; 0Þ ¼ RE.

Proof Consider a type-0 grammar G ¼ ðN; T ;P; SÞ in

tsSGNF. The rules from P are supposed to be labelled

injectively with labels from the set ½1. . .jPj	, with label sets

Pll and Prl as defined above. Also recall that the nonter-

minal alphabet decomposes as N ¼ Nð0Þ [N 0 [N 00,

N 00 ¼ fA;B;C;Dg, S 2 Nð0Þ; S0 2 N 0, according to the

normal form. We construct a matrix insertion-deletion

682 H. Fernau et al.

123

system C ¼ ðV ; T; f$Sg;MÞ with alphabet set

V ¼ N [T [K, where

K ¼fp; p0 j p 2 Prlg [fq; q0 j q 2 Pllg [f$g
[ff ; f 0; f 00; f 3; . . .; f 7; g; g0; g00; g3; . . .; g7g

The set of matrices M of C consists of the matrices

described in Fig. 5a, b and in Fig. 6.

Specifically, we simulate a rule p: X ! bY , X 6¼ Y ,

X; Y 2 Nð0Þ [N 0, b 2 N 00, i.e., p 2 Prl, by the matrices

displayed on the left-hand side of Fig. 5a. Similarly, we

simulate a rule q: X ! Yb, X 6¼ Y , X; Y 2 Nð0Þ [N 0,
b 2 N 00 [T , i.e., q 2 Pll, by the matrices shown on the

right-hand side of Fig. 5b. We simulate rule f : AB ! k by

the matrices shown in Fig. 6. The simulation of rule g :

CD ! k is done is a similar manner.

Recalling that our axiom is $S, we also have two

additional matrices (i) s ¼ ½ðk; $; kÞdel	 for termination and

(ii) h1 ¼ ½ðk; S0; kÞdel	 to simulate the phase transition

h : S0 ! k.

We now proceed to prove that LðCÞ ¼ LðGÞ, starting
with the inclusion LðGÞ � LðCÞ. Consider the string

derivable from $S in G, with X 2 Nð0Þ [
N 0 and a 2 fA;Cg�, b 2 fB;Dg�T� according to

Remark 1. We apply matrix p1, which deletes the only

hanging marker $ and then inserts p to the right of X,

leading to w1 ¼ aXpb. On applying matrix p2, which

inserts a p0 between X and p and then deletes the

nonterminal X, we have w2 ¼ ap0pb. Applying matrices

p3, p4, p5 in the specified order, we have the following:

w$)p1 aXpb)p2 ap
0pb)p3 abpb)p4 abYpb)p5 ab$Yb:

We note that at every cycle of context-free rule simulation,

the $ is deleted at the beginning of the simulation and

introduced at the end of the simulation so as to enable the

start of next simulation cycle.

The phase transition rule h : S0 ! k is simulated by

applying h1, so that we can now speak about Phase II of G.

As the working of the g rule simulation is similar to the

working of the f rule simulation, we discuss only rule f

below. To actually produce a terminal word, C has to apply

s at the very end.

We now discuss Phase II in detail, focusing on

f : AB ! k. Let w ¼ aABb be a sentential form derivable

in G, with A;B 2 N 00 and a 2 fA;Cg�, b 2 fB;Dg�T�,
ensured by tsSGNF. This means that is

derivable in C (by induction). We can now see that

The purpose of introducing a $ in the last rule f10 or g10

is to enable another simulation of AB ! k or of CD ! k.
When all occurrences of AB and CD are deleted by

repeated applications of the simulations of the f and g rules,

there is still a $ at the end of every simulation. This $ is

deleted by applying rule s, thereby terminating Phase II of

tsSGNF. Inductively, this shows that LðGÞ � LðCÞ.
Let us now consider the converse direction. Consider a

string w ¼ aXb derivable from S in G, with X 2 Nð0Þ [N 0

(a) (b)

Fig. 5 Matrices of size

(2; 1, 1, 1; 1, 0, 0) for

simulating context-free rules of

tsSGNF

Fig. 6 Matrices with context-

free deletion simulating f :
AB ! k and g : CD ! k

On the generative capacity of matrix insertion-deletion systems of small sum-norm 683

123

and a 2 fA;Cg�, b 2 fB;Dg�T� according to Remark 1.

We know by our previous arguments that the variation

can be derived in C. We will now argue that,

starting with such a string, we either terminate the first

phase of the simulation by applying h1, which obviously

corresponds to applying S0 ! k in G, or we try to apply any
of the other matrices. As all matrices of the form p2, ..., p5

or q2, ..., q5 or f2, ..., f10 require the presence of a marker

symbol from Knf$g, we can focus on applying p1, q1 or f1.
Here, we ignore the matrices g1, ..., g10 due to their sim-

ilarity to the fi matrices. Also, the simulations of the p rules

and q rules are very similar, so that we only discuss the first

ones.

We now start to apply p1 on w$ which deletes the

marker $ and then inserts a p to the right of X. Hence,

w$)p1 aXpb. The absence of $; p0; Y blocks the applica-

tion of rules p1, p3, p4, p5. Deterministically, the next

matrix application is p2 on w1 which inserts p0 after X and

then deletes the X to yield w2 ¼ ap0pb. It is to be noted that

to the left of p, the marker p0 is present and therefore,

matrix p4 cannot be applied. Since there is no X, the

matrices p1 and p2 cannot be applied. Further, the absence

of bY prevents the application of the rule of p5. We must

apply matrix p3 now, introducing a b between p0 and p and

then deleting the marker p0. This corresponds to applying

the rewriting rule p0 ! b to w2, yielding w3 ¼ abpb. The
absence of $;X; p0; Y forces us to apply the only applicable

matrix p4 on w3 that inserts a Y before p, yielding

w4 ¼ abYpb. The only applicable matrix is now p5 which

inserts a $ between the recently introduced bY and deletes

the marker p, yielding w5 ¼ b$Y .

Now, assume that Phase I was simulated as intended.

This means that we consider some string w that is derivable

in Phase I by G as well as is by C. As we are

using tsSGNF, this means that w 2 fA;Cg�fB;Dg�T� by

Remark 1.

First, assume that w ¼ aAfb for some a 2 fA;Cg� and

b 2 fB;Dg�T�, or f 2 T and b 2 T�, or w ¼ aA is a

sentential form derivable in G, corresponding to some

string w$ derivable in C. The only applicable rule is f1 (or

g1, discussed at the end), since other matrices demand the

presence of a marker (say, either f or f 00). Also, no rule from
the simulation of Phase I is applicable anymore due to the

absence of symbols from Nð0Þ [N 0. Also, by the very

structure of the matrices simulating an f rule, no progress

on a sentential form b with b 2 fB;Dg�T� is observed

beyond the possible application of f1. On applying f1 on w

deletes the symbol $ that was present in the axiom and

introduces a marker f randomly, hence leading to a string

w1 from . Application of f1 again is not possible due

to the absence of $. Apart from the matrices f2 and f3, all

other matrices simulating the f rule require the presence of

(multiply) primed versions of the marker f and therefore

they cannot be applied.

Assume first we had applied matrix f3 on w1. The

obtained string w0 can be obtained from w by inserting a f 00

between AB (which must form the central part). Since f 0 is
missing, f4 cannot be applied. But f 0 is introduced by f2

only, which supposes f to be presented, whose introduction

assumes the presence of $. Can we get rid of f 00 again? In

order to do so, we must apply matrix f6, which assumes the

presence of f 4. However, in order to introduce f 4, we must

apply matrix f4, which is impossible. Hence, the derivation

is stuck.

So, to proceed further, one has to apply matrix f2 on w1.

The first rule in matrix f2 checks that an A must be

immediately to the right of f, which means that the

previously inserted f has been introduced within the prefix

aA of w1, thus verifying the decomposition w1 ¼ a0fAa00fb,
with aA ¼ a0Aa00. A new marker f 0 is introduced between f

and A by the first rule of matrix f2. The second rule in f2

introduces the marker f 3 after any B, thus obtaining

w2 ¼ a0ff 0Aa00b0Bf 3b00, with fb ¼ b0Bb00. The same matrix

cannot be applied again, as the substring fA is no longer

present in the derived string. Now, only two matrices,

namely f3 and f8, are applicable to w2, since other matrices

require markers which are not introduced yet. Applying f8

makes no sense, as the just introduced markers f 0 and f 3

are deleted. Alternatively, the matrix f3 introduces the

marker f 00 between A and B, this ensures that the B must be

immediately to the right of A in w2, which enforces f ¼ B

in w (also enforces that in w2, a00 must end with A and b0

must start with a B) and also deletes the marker f. Notice

that this introduction of f 00 also ensures that the central part

of w was properly formed, avoiding mismatches like AD.

Hence, we have w3 ¼ a0f 0Aa00f 00b0Bf 3b00. The absence of
the contexts $, fA, AB and f i for i� 4 blocks the application

of matrices f1
 f10 except f4, f5 and f8. If we apply

matrix f8 now, the derivation is stuck, as now also f4 and f5

are inapplicable. A similar problem appears if we apply

first f4 or f5 and then f8. The matrix f4 (applied on w3)

demands that if a A is deleted randomly, then we should get

the substring f 0f 00 in the sentential form in order to apply

the second rule of f4 and this is possible only if a0f 0Aa00f 00 ¼
a0f 0Af 00 in w3, i.e., if a00 ¼ k. Similarly, the matrix f5

demands that if a B is deleted randomly, then we should get

the substring f 00f 3 in the sentential form in order to apply

the second rule of f5 and this is possible only if

f 00b0Bf 3b00 ¼ f 00Bf 3b00 in w3, i.e., if b0 ¼ k. In summary,

we find that necessarily w3 ¼ a0f 0Af 00Bf 3b00. Now, matrices

f4 and f5 are applied in any order. They basically simulate

the rewriting rules f 0A ! f 0f 4 and f 00B ! f 00f 5, so that we

get w4 ¼ a0f 0f 4f 00f 5f 3b00. As the only matrix (namely, f6)

that requires (apart from an occurrence of f 00) the presence

684 H. Fernau et al.

123

of f 4 also requires the presence of f 5 (and vice versa), we

have to apply both matrices f4 and f5 before proceeding.

Note that from now on the matrices f4 or f5 can be re-

applied if and only if f 0f 00 or f 00f 3 is a substring of our

sentential form, because deleting A or B cannot produce

these substrings that are required by the second rules of the

matrices f4 or f5, respectively. We call this observa-

tion ob*. Now, what remains is the deletion of the markers

that were introduced in this simulation in some order,

however taking care that f 0f 00 and f 00f 3 is never a substring

in the resulting sentential form, so as to avoid an

unintended (re)application of rules f4, f5 which will delete

random occurrences of A or B (see ob*).

This danger is handled by replacing f 00 with f 6 in

matrix f6. One may wonder what if the matrix f6 was never

applied to the sentential form w4 ¼ a0f 0f 4f 00f 5f 3b00. Due to

ob*, the only matrices that are applicable to w4 are f6

and f8. If f6 was avoided and f8 was applied, then the

markers f 0; f 3 are deleted, leaving behind w5 ¼ a0f 4f 00f 5b00.
At this point, no matrix is applicable except f6. Hence the

matrix f6 is somehow enforced to be applied on w4 or w5

which replaces the marker f 00 as f 6. Due to absence of f 00

and ob*, matrices f4 and f5 can never be re-applied. If f 00

has to be introduced again (using matrix f3), then AB need

to be present as substring which is not possible as some

markers are present in between them in the derived string

w4 or w5. The purpose of matrix f7 is to make sure that f 4

and f 5 are deleted in different matrices. The markers are

deleted using matrices f8 to f10 in any desired (applicable)

order yielding . Three such derivations are

shown below.

– w4 ¼ a0f 0f 4f 00f 5f 3b00)f6 a0f 0f 4f 6f 5f 3b
00)f7 a0f 0f 6f 7

f 5f 3b00)f8

a0f 6f 7f 5b00)f9 a0f 7b
00)f10 w

$
9.

– w4 ¼ a0f 0f 4f 00f 5f 3b00)f8 w5 ¼ a0f 4f 00f 5b00)f6 a0f 4f 6

f 5b00)f7

a0f 6f 7f 5b00)f9 a0f 7b
00)f10 w

$
9.

– w4 ¼ a0f 0f 4f 00f 5f 3b00)f6 a0f 0f 4f 6f 5f 3b
00)f7 a0f 0f 6f 7

f 5f 3b00)f9 a0f 0f 7f 3b
00)f8 a0f 7b

00)f10 w
$
9.

Let us finally return to the situation when we try to apply

g1 on w$, with w ¼ aAfb for some a 2 fA;Cg�, f 2
fB;Dg and b 2 fB;Dg�T�, or f 2 T and b 2 T�, or w ¼ aA
(i.e., f ¼ b ¼ k), being a sentential form derivable in G,

corresponding to some string w$ derivable in C. If

w)g1 w
0, then . If we now apply g2, this

means that we have split a as a0Ca00 and fb like b0Db00, with
f and b satisfying the conditions stated above, so that for

w0)g2 w
00, w00 ¼ a0gg0Ca00Ab0Dg3b00. However, now the

derivation is stuck, as w00 contains no substring CD as

required by matrix g3.

These arguments show that also the non-context-free

rules are correctly simulated and hence completes the

proof. h

The reader might think that the markers f 6; f 7; f 8 and

their relevant insertion and deletion rules are not necessary.

One idea would be to construct matrices like f70 ¼
½ðk; f 0; kÞdel; ðk; f 00; kÞdelÞ	 and

f80 ¼ ½ðk; f 3; kÞdel; ðk; $; kÞins	. The problem is that how-

ever, such ideas might not work as one can start to apply

these matrices f70 and f80 soon after applying f3, leading to

unintended situations. This would make a correctness proof

more tedious if not impossible at all. With the introduction

of the markers f 6; f 7; f 8, the proof is simplified, to say the

least.

4 Describing the regular closure of linear
languages

We showed in Theorem 4 that matrix ins-del systems of

size (2; 1, 1, 1; 1, 0, 0) can describe RE. Further, it is

shown in Fernau et al. (2018b) that, if we have a one-sided

context for insertion, then matrix ins-del systems of size

(3; 1, 1, 0; 1, 0, 0) or (3; 1, 0, 1; 1, 0, 0) and also

(2; 2, 1, 0; 1, 0, 0) or (2; 2, 0, 1; 1, 0, 0) can simulate

(meta-)linear grammars. However, whether or not one can

simulate general context-free grammars with matrix ins-del

systems of the above-mentioned sizes is still open. We

summarize these results now. Example 1 shows that there

are non-meta-linear languages that can be described by

these matrix ins-del systems.

Proposition 4 Fernau et al. (2018b) The following lan-

guage relations are true.

– LIN(MATð3; 1; 1; 0; 1; 0; 0Þ \MATð3; 1; 0; 1; 1; 0; 0Þ,
– LIN(MATð2; 2; 1; 0; 1; 0; 0Þ \MATð2; 2; 0; 1; 1; 0; 0Þ.

For quick reference, we present the matrix ins-del rules

of MATð3; 1; 1; 0; 1; 0; 0Þ that simulates the linear rules

p : X ! aY , q : X ! Ya, f : X ! k in Fig. 7a and the

matrix ins-del rules of MATð2; 2; 1; 0; 1; 0; 0Þ in Fig. 7b.

Initially, our main objective was to find how much

beyond LIN can a matrix ins-del system (of the four sizes

stated in Proposition 4) lead us to. However, we then

succeeded to provide a general result showing that if there

exists a matrix ins-del systems of size ðk; n; i0; i00;m; j0j00Þ
describing LIN, then the same system will describe

LregðLINÞ.

Theorem 5 For all integers n;m� 1, t� 2 and

i0; i00; j0; j00 � 0 with t þ n� 4 and i0 þ i00 � 1, if every L 2
LIN can be generated by a MATðt; n; i0; i00;m; j0; j00Þ system

On the generative capacity of matrix insertion-deletion systems of small sum-norm 685

123

with a single axiom that is identical to the start symbol S of

a linear grammar describing L, then

LregðLINÞ � MATðt; n; i0; i00;m; j0; j00Þ, as well.3

Proof Let L 2 LregðLINÞ for some L � T�. By Proposi-

tion 1, we can assume that L is described by a context-free

grammar G ¼ ðN; T ; S;PÞ that basically consists of a right-

linear grammar GR ¼ ðN0;N
00; S;P0Þ and linear grammars

Gi ¼ ðNi; T ; Si;PiÞ for 1� i� k. For technical reasons that

should become clear soon, we rather consider

G0
i ¼ ðN 0

i ; T ; Si;P
0
iÞ, where N 0

i ¼ Ni [fhSi;Ai j A 2 N0g
and P0

i contains, besides all rules from Pi, rules of the form

hSi;Ai ! w whenever Si ! w 2 Pi for some

w 2 ðNi [TÞ�. This means, apart from LðG0
iÞ ¼ LðGiÞ (as

the new nonterminals will never be used in terminating

derivations), that also LððN 0
i ; T ; hSi;Ai;P0

iÞÞ ¼ LðGiÞ for

any A 2 N0.

Since LIN � MATðt; n; i0; i00;m; j0; j00Þ, each G0
i can be

simulated by a matrix ins-del system Ci ¼ ðVi; T ; fSig;RiÞ
for 1� i� k, each of size ðt; n; i0; i00;m; j0; j00Þ. We assume,

without loss of generality, that Vi \ Vj ¼ T if 1� i\j� k.

Let us first consider the case i0 � 1 and i00 ¼ 0. We

construct a matrix ins-del system C for G as follows4: C ¼
V; T ; fhSi;AiA0 j S ! SiA 2 Pg;R [R0ð Þ, where

V ¼
[k

i¼1

Vi [fhSi;Ai j A 2 N0gð Þ
 !

[N0 [fA0 j A 2 N0g;

R ¼
[k

i¼1

Ri; and for t� 3, R0 is the set fmp j p 2 P0g, where:

– mp ¼ ½ðA0; hSi;Bi; kÞins; ðhSi;Bi;B0; kÞins;ðk;A0; kÞdelÞ	 if
p ¼ A ! SiB 2 P0,

– mp ¼ ½ðk;A0; kÞdelÞ	 if p ¼ A ! k 2 P0 (terminating

matrix).

For t ¼ 2 and n� 2, we add the following matrix mp

instead of the above-defined matrix mp into R0: mp ¼
½ðA0; hSi;BiB0; kÞins; ðk;A0; kÞdelÞ	 for p ¼ A ! SiB 2 P0.

Notice that A 6¼ B, as we assume that G0 is in normal form,

which is important for both variants of mp.

The case when i0 ¼ 0 and i00 � 1 follows from Proposi-

tions 2 and 3. h

Combining Theorem 5 with results from Fernau et al.

(2018b), we have the following corollary. The strictness of

the subset relation in the theorem below follows from

Example 1.

Corollary 1 The following assertions are true.

– LregðLINÞ(MATð3; 1; 1; 0; 1; 0; 0Þ \MATð3; 1;
0; 1; 1; 0; 0Þ,

– LregðLINÞ(MATð2; 2; 1; 0; 1; 0; 0Þ \MATð2; 2;
0; 1; 1; 0; 0Þ. h

5 Describing regular languages

Petre and Verlan (2012), matrices of maximum length 3

and size (1, 1, 0; 1, 1, 0) were used to describe RE. By

Krassovitskiy et al. (2011), ins-del systems of size

(1, 1, 0; 1, 1, 0) do not achieve computational complete-

ness. However, it is strictly contained in the class in the

context-free languages [see Krassovitskiy et al. (2011)].

This corresponds to matrix length one. In the following, we

attempt to study the generative power of (1, 1, 0; 1, 1, 0)

with matrix length 2. With rules of size (2; 1, 1, 0; 1, 1, 0),

we simulate the right-linear rules p : X ! bY and X ! k.
The non-context rules of tsSGNF namely AB ! k and

CD ! k can be simulated by rules of (2; 1, 0, 0; 1, 1, 0)

(see Fig. 2). So, if we are able to show that q : X ! Yb can

also be simulated by some set of rules of size

(2; 1, 1, 0; 1, 1, 0), then MATð2; 1; 1; 0; 1; 1; 0Þ will be

computationally complete. However, unfortunately, the

simulation of q : X ! Yb by rules of size

(2; 1, 1, 0; 1, 1, 0) is still open. This also explains the

difficulty with our earlier claims in Fernau et al. (2019).

Theorem
6 REG(MATð2; 1; 1; 0; 1; 1; 0Þ \MATð2; 1; 0; 1; 1; 0; 1Þ.

(a) (b)

Fig. 7 Matrix ins-del system

describing LIN (from Fernau

et al. (2018b))

3 The technical condition on MAT ins-del systems is not that severe,

as we can always take a new start symbol and first generate any finite

set with the resources at hand.
4 There is one subtlety with the case when k 2 LðGÞ: in that case, k
should be added as an axiom of C.

686 H. Fernau et al.

123

Proof Consider a type-3 grammar G ¼ ðN; T ;P; SÞ in

right-linear form, with the rules uniquely labelled with p :

X ! bY and r : X ! k where X; Y 2 N and b 2 T . We can

construct a matrix ins-del system C ¼ ðV; T ; S;MÞ with

alphabet

V ¼ N [T [fp; p0; p00; p000g :

The set of matrices shown in Fig. 8a, b constitutes M.

Consider a sentential form w ¼ aX derivable in the

grammar G, with a 2 T�. Assume we are about to apply a

concrete rule X ! bY 2 P, with X; Y 2 N, yielding

w0 ¼ abY . Hence, the matrices listed in Fig. 8a should

apply, one after the other, giving:

This shows that LðGÞ � LðCÞ. In the following, we are

arguing why LðGÞ � LðCÞ.
Consider a string w ¼ aX that is derivable from S in C.

As no rule markers are present, only a matrix of type p1 or

p2 can be applied.

Assume more concretely that matrix p1 or p2 belonging

to p : X ! bY is applied. If p2 is applied first before

applying p1, then this means that X is replaced by the

marker p00 and no further matrices are possible to apply as

they require either the markers p or p0 or X which are not

present in the derived string. So, only p1 can be applied

first and it can be applied any number of times, yielding

w1ðnÞ ¼ aXðp0pÞn; n� 1. On w1ðnÞ, matrices p3 and p4 are

inapplicable due to the absence of p00. At first glance, it may

appear that matrix p5 is applicable. However, if we closely

look at the two rules in the matrix p5, the matrix is

applicable if and only if bp is a substring of our sentential

form. We use this observation (calling it ob1) repeatedly.

Note that every p in w1ðnÞ is preceded by p0 and hence bp is
not a substring in w1ðnÞ. This prohibits the application of

p5 on w1ðnÞ. Finally, the absence of p000 renders p6

inapplicable. So, assuming that p1 is not applied again, the

only matrix applicable on w1ðnÞ is p2. On applying p2, the

marker p00 is introduced in the place of X which yields

w2ðnÞ ¼ ap00ðp0pÞn. The matrices p1 and p2 are hereafter

not applicable due to the absence of X. Matrices p4 and p6

require the presence of p000 and are hence not applicable to

w2ðnÞ. Observation ob1 prevents us from applying p5. The

only matrix that is applicable to w2ðnÞ is p3 which

introduces yet another new marker p000 randomly and the

second rule of p3 deletes the occurrence of p0 rightmost

of p00. Thus we obtain a string w3ðnÞ that can be described

as . For convenience, we let

sn ¼ ðp0pÞn
1
. The absence of X in w3ðnÞ prevents applying

matrices p1 and p2. We can now observe that the matrix p3

is applicable if and only p00p0 is a substring (we call this

observation ob2). Since w3ðnÞ contains neither bp nor p00p0

as a substring, matrices p5 and p3 are inapplicable on

w3ðnÞ due to ob1, ob2. Hence, the only matrices applicable

on w3ðnÞ are either p4 or p6. As a last observation ob3,

notice that matrices p4 and p6 are only applicable if p000 is
present.

Case 1: If we apply matrix p6 to w3ðnÞ, then the

(randomly inserted) marker p000 is deleted and we end up

with w0
3ðnÞ ¼ ap00psn. Due to the absence of any of

X; p00p0; p000; bp, all rules become inapplicable due to ob1,

ob2, ob3 and hence the derivation is stuck.

Case 2: If we apply matrix p4 to w3ðnÞ, then the marker

p00 is deleted with the (randomly inserted) marker p000 on its

left. This enforces the marker p000 that was introduced

randomly should have been placed on the left of p00. Hence,
we now know that w3ðnÞ ¼ ap000p00psn. So, the first rule of

p4 guarantees the presence of p000p00 as a substring and also

deletes p00. The second rule of p4 then introduces a b (the

intended b of the simulation rule X ! bY) to the right of

p000, thus yielding w4ðnÞ ¼ ap000bpsn. The matrix p4 actually

simulates the rewriting rule p00 ! b.

The absence of X and p00 blocks the application of

matrices p1 through p4. Now, either p5 or p6 is applicable.

The order of application of the rules hereafter do not

matter, as they are independent.

Case A: If we apply matrix p5 on w4ðnÞ, then we get

w5ðnÞ ¼ ap000bYsn. The absence of X; p00; bp enforces the

application of matrix p6 which deletes the marker p000, thus
yielding w6ðnÞ ¼ abYsn. It is to be noted that matrix p6

need not be even applied after applying p5 and one can

start the derivation based on some Y-rule, but of course p6

can be applied at any time. In particular, sentential forms

that contain various r000 for different rules r are possible but
do not invalidate our arguments, as all these triple-primed

markers have to and can be deleted in a terminal derivation.

Notice that if indeed several occurrences of p000 are present
upon applying matrix p4, there is clearly the danger of

inserting b to the right of the wrong occurrence of p000 by
the second rule of p4. However, a successful application of

p5 enforces the correct occurrence of p000 to be chosen by

p4, again by observation ob1.

Case B: If we first apply matrix p6 on w4ðnÞ, then we get
w0
5ðnÞ ¼ abpsn. The absence of X; p00; p000 enforces the

On the generative capacity of matrix insertion-deletion systems of small sum-norm 687

123

deterministic application of matrix p5 which yields

w6ðnÞ ¼ abYsn.
Notice that should we ‘‘forget’’ to apply matrix p6, i.e.,

should p000 stay in the string, then we cannot make

mischievous use of that left-over occurrence of p000 by

applying the second rule of p4 to it, because then there

would not be any b left to Y as required by matrix p5.

After applying both matrices, we get w6ðnÞ ¼ abYsn.
Since no markers p0; p in sn can be deleted hereafter, this

enforces that the matrix p1 was applied exactly once, i.e.,

n ¼ 1, and hence sn ¼ k.
The singleton rule shown in Fig. 8b clearly simulate the

rule r : X ! k. The above arguments show the first

inclusion REG � MATð2; 1; 1; 0; 1; 1; 0Þ. The second

inclusion result follows by Proposition 2. The strictness

of the inclusions follow by Example 1. These considera-

tions complete the proof. h

6 Conclusions and further research
directions

In this paper, using matrix ins-del systems, we have

obtained some (improved) computational completeness

results and described the regular closure of linear lan-

guages with small resource needs. It is interesting to note

that if one could describe linear languages by a matrix

insertion-deletion system of size s, then with the same size

s, we could describe the regular closure of linear languages,

as well. We have also given a complete picture of the state

of the art of the generative power of the matrix ins-del

systems with sum-norm 3 or 4 in Table 1. Finally, we

believe that the normal form tsSGNF that we introduced

offers some features that could be used in other computa-

tional completeness proofs. In particular, no substrings

with nonterminals to the right of terminals are derivable in

this normal form.

Further to some open problems mentioned in the intro-

duction, We now present some further concrete research

questions.

– It would be interesting to explore closure properties for

matrix ins-del systems of small sizes. For instance, is

the family MATð2; 2; 1; 0; 1; 0; 0Þ closed under rever-

sal? If this were true, then

MATð2; 2; 1; 0; 1; 0; 0Þ ¼ MATð2; 2; 0; 1; 1; 0; 0Þ,
which would also mean that the statement of Corol-

lary 1 could be simplified.

– Do matrix ins-del systems of small sum-norm allow for

efficient parsing? We are not aware of any research in

this direction. Also this area seems to be largely

neglected, although it is clear that this is of much

importance if it comes to finally applying these

generative devices in language processing.

– It has been argued in other places that ins-del systems

could form the basis of biocomputing devices. Insertion

and deletions would form the basic operations for such

machines. Then the question arises how to program

such devices. Following the paradigm of imperative

programming, the most basic way of building programs

would be to design program fragments consisting of

basic operations that should be performed one after the

other. This is exactly what matrix grammars can do.

One future challenge would be to devise implementa-

tions that are based on these basic commands and their

sequential execution.

– In a recent paper (Vu and Fernau 2021), Vu and Fernau

studied matrix grammars with insertions, deletions and

substitutions, a third operation whose relevance to

biocomputing is explained in Beaver (1995) and Kari

(1997), allowing for further restrictions on the resources

studied in this paper. In this context, questions similar

to the previous item arise.

Acknowledgements We are grateful to the referees of this paper for

spotting some errors in one of the results of the previous version of

the paper.

Funding Open Access funding enabled and organized by Projekt

DEAL.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Alhazov A, Krassovitskiy A, Rogozhin Y, Verlan S (2011) P systems

with minimal insertion and deletion. Theor Comput Sci

412(1–2):136–144

Beaver D (1995) Computing with DNA. J Comput Biol 2(1):1–7

(a)

(b)

Fig. 8 Matrices of size (2; 1, 1, 0; 1, 1, 0) for simulating right-linear

rules X ! and X ! k

688 H. Fernau et al.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Dassow J, Păun Gh (1989) Regulated rewriting in formal language

theory, volume 18 of EATCS monographs in theoretical com-

puter science. Springer

Fernau H, Kuppusamy L (2017) Parikh images of matrix ins-del

systems. In: Gopal TV, Jäger G, Steila S (eds) Theory and

applications of models of computation, TAMC, volume 10185 of

LNCS. Springer, pp 201–215

Fernau H, Kuppusamy L, Raman I (2017a) Computational complete-

ness of path-structured graph-controlled insertion-deletion sys-

tems. In: Carayol A, Nicaud C (eds) Implementation and

application of automata–22nd international conference, CIAA,

volume 10329 of LNCS. Springer, pp 89–100

Fernau H, Kuppusamy L, Raman I (2017b) Graph-controlled

insertion-deletion systems generating language classes beyond

linearity. In: Pighizzini G, Câmpeanu C (eds) Descriptional

complexity of formal systems—19th IFIP WG 1.02 international

conference, DCFS, volume 10316 of LNCS. Springer,

pp 128–139

Fernau H, Kuppusamy L, Raman I (2017c) On the computational

completeness of graph-controlled insertion-deletion systems

with binary sizes. Theor Comput Sci 682:100–121 Special Issue

on Languages and Combinatorics in Theory and Nature

Fernau H, Kuppusamy L, Raman I (2017d) On the generative power

of graph-controlled insertion-deletion systems with small sizes.

J Autom, Lang Combin 22:61–92

Fernau H, Kuppusamy L, Verlan S (2017e) Universal matrix insertion

grammars with small size. In: Patitz MJ, Stannett M (eds)

Unconventional computation and natural computation—16th

international conference, UCNC, volume 10240 of LNCS.

Springer, pp 182–193

Fernau H, Kuppusamy L, Raman I (2018a) Computational complete-

ness of simple semi-conditional insertion-deletion systems. In:

Stepney S, Verlan S (eds) Unconventional computation and

natural computation, UCNC, volume 10867 of LNCS. Springer,

pp 86–100

Fernau H, Kuppusamy L, Raman I (2018b) Investigations on the

power of matrix insertion-deletion systems with small sizes. Nat

Comput 17(2):249–269

Fernau H, Kuppusamy L, Raman I (2018c) On describing the regular

closure of the linear languages with graph-controlled insertion–

deletion systems. RAIRO Inf théor Appl/Theor Informat Appl

52(1):1–21

Fernau H, Kuppusamy L, Raman I (2018d) Properties of language

classes between linear and context-free. J Autom, Lang Combin

23(4):329–360

Fernau H, Kuppusamy L, Raman I (2019) On matrix ins-del systems

of small sum-norm. In: Catania B, Královič R, Nawrocki J,

Pighizzini G (eds) SOFSEM 2019: theory and practice of

computer science - 45th international conference on current

trends in theory and practice of computer science, volume 11376

of LNCS. Springer, pp 192–205

Freund R, Kogler M, Rogozhin Y, Verlan S (2010) Graph-controlled

insertion-deletion systems. In: I. McQuillan and G. Pighizzini,

editors, Proceedings 12th annual workshop on descriptional

complexity of formal systems, DCFS, volume 31 of EPTCS,

pp 88–98

Galiukschov BS (1981) Semicontextual grammars. Mat. logica i mat.

ling., Kalinin University, pp 38–50 (in Russian)

Geffert V (1991) How to generate languages using only two pairs of

parentheses. J Inf Process Cybern EIK 27(5/6):303–315

Haussler D (1983) Insertion languages. Inf Sci 31(1):77–89

Ivanov S, Verlan S (2015) Random context and semi-conditional

insertion-deletion systems. Fundam Inform 138:127–144

Ivanov S, Verlan S (2017) Universality and computational complete-

ness of controlled leftist insertion–deletion systems. Fundam

Inform 155(1–2):163–185

Kari L (1991) On insertions and deletions in formal languages. PhD

thesis, University of Turku, Finland

Kari L (1997) DNA computing: arrival of biological mathematics.

Math Intell 19(2):9–22

Kari L, Thierrin G (1996) Contextual insertions/deletions and

computability. Inf Comput 131(1):47–61

Krassovitskiy A, Rogozhin Y, Verlan S (2011) Computational power

of insertion-deletion (P) systems with rules of size two. Nat

Comput 10:835–852

Kuppusamy L, Mahendran A (2016) Modelling DNA and RNA

secondary structures using matrix insertion–deletion systems. Int

J Appl Math Comput Sci 26(1):245–258

Kuppusamy L, Rama R (2003) On the power of tissue P systems with

insertion and deletion rules. In: Pre-proc. of workshop on

membrane computing, volume 28 of report RGML. University

Tarragona, Spain, pp 304–318

Kuppusamy L, Mahendran A, Krishna SN (2011) Matrix insertion-

deletion systems for bio-molecular structures. In: Natarajan R,

Ojo AK (eds) Distributed computing and internet technology—

7th international conference, ICDCIT, volume 6536 of LNCS.

Springer, pp 301–312

Marcus M, Păun Gh (1990) Regulated Galiukschov semicontextual

grammars. Kybernetika 26(4):316–326

Margenstern M, Păun Gh, Rogozhin Y, Verlan S (2005) Context-free

insertion-deletion systems. Theor Comput Sci 330(2):339–348

Păun Gh, Rozenberg G, Salomaa A (1998) DNA computing: new

computing paradigms. Springer

Petre I, Verlan S (2012) Matrix insertion–deletion systems. Theor

Comput Sci 456:80–88

Stabler E (2004) Varieties of crossing dependencies: structure

dependence and mild context sensitivity. Cogn Sci 28:699–720

Verlan S (2010) Recent developments on insertion–deletion systems.

Comput Sci J Mold 18(2):210–245

Verlan S, Fernau H, Kuppusamy L (2020) Universal insertion

grammars of size two. Theor Comput Sci 843:153–163

Vu M, Fernau H (2021) Adding matrix control: insertion–deletion

systems with substitutions III. In: Bures T, Dondi R, Gamper J,

Guerrini G, Jurdzinski T, Pahl C, Sikora F, Wong PWH (eds)

SOFSEM 2021: theory and practice of computer science—47th

international conference on current trends in theory and practice

of computer science, SOFSEM, volume 12607 of LNCS.

Springer, pp 577–592

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

On the generative capacity of matrix insertion-deletion systems of small sum-norm 689

123

	On the generative capacity of matrix insertion-deletion systems of small sum-norm
	Abstract
	Introduction
	Preliminaries
	Matrix insertion-deletion systems
	Regular closure of linear languages

	Computational completeness results
	Describing the regular closure of linear languages
	Describing regular languages
	Conclusions and further research directions
	Funding
	References

