Skip to main content
Log in

Face Detection Using Mixture of MLP Experts

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper presents a face detection method which makes use of a modified mixture of experts. In order to improve the face detection accuracy, a novel structure is introduced which uses the multilayer perceptrons (MLPs), as expert and gating networks, and employs a new learning algorithm to adapt with the MLPs. We call this model Mixture of MLP Experts (MMLPE). Experiments using images from the CMU-130 test set demonstrate the robustness of our method in detecting faces with wide variations in pose, facial expression, illumination, and complex backgrounds. The MMLPE produces promising high detection rate of 98.8% with ten false positives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang MH, Kriegman D and Ahuja N (2002). Detecting faces in images: a survey. IEEE Trans Pattern Anal Mach Intell 24(1): 34–58

    Article  Google Scholar 

  2. Pentland A (2000). Looking at people: sensing for ubiquitous and wearable computing. IEEE Trans Pattern Anal Mach Intell 22(1): 107–119

    Article  Google Scholar 

  3. Jain AK, Duin RPW and Mao J (2000). Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1): 4–37

    Article  Google Scholar 

  4. Daugman J (1997). Face and gesture recognition: overview. IEEE Trans Pattern Anal Mach Intell 19(7): 675–676

    Article  Google Scholar 

  5. Shih P and Liu C (2006). Face detection using discriminating feature analysis and support vector machine. Pattern Recogn 39: 260–276

    Article  Google Scholar 

  6. Pentland A, Moghaddam B, Starner T (1994) View-based and modular eigenspaces for face recognition. In: Proceedings of the computer vision and pattern recognition, pp 84–91

  7. Yuille AL (1991). Deformable templates for face recognition. J Cognitive Neurosci 3(1): 59–70

    Google Scholar 

  8. Chellappa R, Wilson CL and Sirohey S (1995). Human and machine recognition of faces: a survey. Proc IEEE 83(5): 705–740

    Article  Google Scholar 

  9. Samal A and Iyengar PA (1992). Automatic recognition and analysis of human faces and facial expression: a survey. Pattern Recogn 25(1): 65–77

    Article  Google Scholar 

  10. Sung KK (1996) Learning and example selection for object and pattern detection. Ph.D. thesis. AI Lab, MIT, USA

  11. Sung KK and Poggio T (1998). Example-based learning for view-based human face detection. IEEE Trans Pattern Anal Mach Intell 20(1): 39–51

    Article  Google Scholar 

  12. Rowley HA, Baluja S and Kanade T (1998). Neural network-based face detection. IEEE Trans Pattern Anal Mach Intell 20(1): 23–38

    Article  Google Scholar 

  13. Schneiderman H, Kanade T (1998) Probabilistic modeling of local appearance and spatial relationships for object recognition. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 45–51, Santa Barbara

  14. Schneiderman H, Kanade T (2000) A statistical method for 3D object detection applied to faces and cars. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 746–751

  15. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, pp 511–518, Kauai

  16. Sirovich L and Kirby M (1987). Low-dimensional procedure for the characterization of human faces. J Opt Soc Am 4: 519–524

    Article  ADS  Google Scholar 

  17. Turk M and Pentland A (1991). Eigenfaces for recognition. J Cogn Neurosci 3(1): 71–86

    Google Scholar 

  18. Turk M, Pentland A (1991) Face recognition using eigenfaces. In: Proceedings of the IEEE conference computer vision and pattern recognition, pp 586–591

  19. Bartlett M, Movellan J and Sejnowski T (2002). Face recognition by independent component analysis. IEEE Trans Neural Net 13(6): 1450–1464

    Article  Google Scholar 

  20. Martinez A and Kak A (2001). PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2): 228–233

    Article  Google Scholar 

  21. Haykin S (1999). Neural networks: a comprehensive foundation. Prentice Hall, USA

    MATH  Google Scholar 

  22. Jacobs R, Jordan M, Barto A (1991) Task decomposition through competition in a modular connectionist architecture: the what and where vision tasks. Tech rep. University of Massachusetts, Amherst, MA

  23. Jacobs R, Jordan M, Nowlan S and Hinton G (1991). Adaptive mixtures of local experts. Neural Comput 3: 79–87

    Article  Google Scholar 

  24. Jordan R and Jacobs M (1992). Hierarchies of adaptive experts. In: Moody, J, Hanson, S and Lippmann, R (eds) Proceedings of the advances in neural information processing systems, pp 985–992. Morgan Kaufmann, San Mateo, CA

    Google Scholar 

  25. Jordan M and Jacobs R (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Comput 6(2): 181–214

    Google Scholar 

  26. Alexandre L, Campilho A, Kamel M (2004) Bounds for the average generalization error of the mixture of experts neural network. In: Fred A (eds) SSPR/SPR. Springer-Verlag, pp 618–625

  27. Jordan MI and Xu L (1993). Convergence results for the EM approach to mixtures of experts architectures. MIT rtif. Intell Lab., Massachusetts Inst Technol, Cambridge, MA

    Google Scholar 

  28. Kang K, Oh J-H (1997) Statistical mechanics of the mixture of experts. In: Mozer MC, Jordan MI, Petsche T (eds) Proceedings of advances in neural information processing systems, vol 9. The MIT Press, p 183

  29. Waterhouse S, MacKay D, Robinson T (1996) Bayesian methods for mixture of experts. In: Touretzky DS, Mozer MC, Hasselmo ME (eds) Proceedings of advances in neural information processing systems, vol 8. The MIT Press, pp 351–357

  30. Moeland P (1997) Mixtures of experts estimate a posteriori probabilities. In: Proceedings of the international conference on artificial neural networks, pp 499–504

  31. Tang B, Heywood M, Shepherd M (2002) Input partitioning to mixture of experts. In: Proceedings of International joint conference on neural networks, pp 227–232

  32. Samaria FS (1994) Face recognition using hidden Markov models. Ph.D. thesis, University of Cambridge, Cambridge, UK

    Google Scholar 

  33. Graham DB and Allinson NM (1998). Characterizing virtual eigen signatures for general purpose face recognition. In: Wechsler, H, Phillips, PJ, Bruce, V, Fogelman-Soulie, F and Huang, TS (eds) Proceedings of face recognition: from theory to applications, vol 163. NATOASI Series F, Computer and Systems Sciences., pp 446–456. Springer- Verlag, Berlin

    Google Scholar 

  34. Lades M, Vorruggen JC, Buhmann J, Lange J, Wurtz RP, Konen W and Malsurg C (1993). Distortion invariant object recognition in the dynamic link architecture. IEEE Trans Comput 42(3): 300–311

    Article  Google Scholar 

  35. Belhumeur P, Hespanha J and Kriegman D (1997). Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19: 711–720

    Article  Google Scholar 

  36. The BioID face database, http://www.bioid.com/research/index.htm, BioID-Technology Research, June 2001

  37. Ebrahimpour R, Ehteram SR and Kabir E (2005). Face recognition by multiple classifiers, a divide-and-conquer approach. Lect Notes Comput Sci 3683: 225–232

    Article  Google Scholar 

  38. Sim T, Baker S and Bsat M (2003). The CMU pose, illumination, and expression database. IEEE Trans Pattern Anal Mach Intell 25(12): 1615–1618

    Article  Google Scholar 

  39. Troje NF, Bulthoff HH (1996) Face recognition under varying poses: the role of texture and shape. Vision Res 36:1761–1771 (http://www.kyb.mpg.de/downloads/index.html)

    Google Scholar 

  40. Messer K, Matas J, Kittler J, Luettin J, Maitre G (1999) XM2VTSDB: the extended M2VTS database. In: International conference audio- and video-based person authentication, pp 72–77. (http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb/)

  41. Weyrauch B, Huang J, Heisele B, Blanz V (2004) Component-based face recognition with 3D morphable models. In: First IEEE workshop on face processing in video, Washington, DC

  42. Georghiades AS, Belhumeur PN and Kriegman DJ (2001). From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6): 643–660

    Article  Google Scholar 

  43. Chellapilla K and Fogel D (1999). Evolution, neural networks, games and intelligence. Proc IEEE 87(9): 1471–1496

    Article  Google Scholar 

  44. Nguyen MH, Abbass HA, McKay RI (2005) Stopping criteria for ensemble of evolutionary artificial neural networks. In: Applied soft computing. Elsevier, Amsterdam, pp 100–107

  45. Nguyen MH, Abbass HA and McKay RI (2006). A novel mixture of experts model based on cooperative coevolution. Neurocomputing 70: 155–163

    Article  Google Scholar 

  46. Roth D, Yang M and Ahuja N (2000). A SNoW-based face detector. Neural Inform Process 12: 855–861

    Google Scholar 

  47. Feraud R, Bernier O, Viallet JE, Collobert M (2000) A fast and accurate face detector for indexation of face images. In: Proceedings of the fourth IEEE international conference automatic face and gesture recognition

  48. Yang MH, Ahuja N, Kriegman D (2000) Face detection using mixtures of linear subspaces. In: Proceedings of the 5th international conference on automatic face and gesture recognition. Grenoble, pp 70–76

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ebrahimpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebrahimpour, R., Kabir, E. & Yousefi, M.R. Face Detection Using Mixture of MLP Experts. Neural Process Lett 26, 69–82 (2007). https://doi.org/10.1007/s11063-007-9043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-007-9043-z

Keywords

Navigation