Skip to main content
Log in

Use of Phase in Brain–Computer Interfaces based on Steady-State Visual Evoked Potentials

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Brain–computer interfaces based on steady-state visual evoked potentials (SSVEP-BCIs) extract the amplitude of these potentials for classification. The use of the phase has not yet been widely used in on-line classification, since it requires a very accurate real time system that keeps synchronized the stimulation, recording and processing. In this paper, it has been presented an experiment, based on the AM modulation of flickering stimuli, that demonstrates that first, the phase shifts of different stimuli can be recovered from that of the corresponding SSVEPs without the need of a real time system; second, this information can be used efficiently to develop a BCI based on the classification of the phase shifts of the SSVEPs. Since the phase is statistically independent of the amplitude, the joint use in classification of both would improve the performance of this type of BCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kelly SP, Lalor EC, Finucane C, McDarby G, Reilly RB (2005) Visual spatial attention control in an independent brain–computer interface. IEEE Trans Biomed Eng 52(9): 1588–1596

    Article  Google Scholar 

  2. Muller MM, Picton TW, Valdes-Sosa P, Riera J, Teder-Salejarvi WA, Hillyard SA (1998) Effects of spatial selective attention on the steady-state visual evoked potential in the 20–28 Hz range. Cogn Brain Res 6(4): 249–261

    Article  Google Scholar 

  3. Piccini L, Parini S, Maggi L, Andreoni G (2005) A Wearable Home BCI system: preliminary results with SSVEP protocol. In: Proceedings of the IEEE engineering in medicine and biology 27th annual conference Shanghai, China, pp 5384–5387

  4. Trejo LJ, Rosipal R, Matthews B (2006) Brain–computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. IEEE Trans Neural Syst Rehabil Eng 14(2): 225–233

    Article  Google Scholar 

  5. Bergholz R, Lehmann TN, Fritz G, Ruther K (2008) Fourier transformed steady-state flash evoked potentials for continuous monitoring of visual pathway function. Doc Ophthalmol 116: 217–229. doi:10.1007/s10633-007-9085-6

    Article  Google Scholar 

  6. Lalor EC, Kelly SP, Finucane C, Burke R, Smith R, Reilly RB et al (2005) Steady-state VEP-based brain–computer interface control in an immersive 3D gaming environment. EURASIP J Appl Signal Process 19: 3156–3164

    Google Scholar 

  7. Lin Z, Zhang C, Wu W, Gao X (2007) Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng 54(6): 172–1176

    Article  Google Scholar 

  8. Muller-Putz GR, Scherer R, Brauneis C, Pfurtscheller G (2005) Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J Neural Eng 2: 123–130

    Article  Google Scholar 

  9. Gao X, Xu D, Cheng M, Gao S (2003) A BCI-based environmental controller for the motion-disabled. IEEE Trans Neural Syst Rehabil Eng 11(2): 137–140

    Article  Google Scholar 

  10. Cheng M, Gao X, Gao S, Xu D (2002) Design and implementation of a brain–computer interface with high transfer rates. IEEE Trans Biomed Eng 49(10): 1181–1186

    Article  Google Scholar 

  11. Middendorf M, McMillan G, Calhoun G, Jones K (2000) Braincomputer interfaces based on the steady-state visual-evoked response. IEEE Trans Rehab Eng 8(2): 211–214

    Article  Google Scholar 

  12. Calhoun GL, McMillan GR, Angle D, Middendorf M (1997) EEG-based control: neurologic mechanisms of steady-state self-regulation. United States Air Force Armstrong Laboratory, US

    Google Scholar 

  13. Kluge T, Hartmann M (2007) Phase coherent detection of steady-state evoked potentials: experimental results and application to brain–computer interfaces. In: Proceeding of the 3rd international IEEE EMBS conference on neural engineering, pp 425–429

  14. Wang Y, Gao X, Hong B, Jia C, Gao S (2008) Brain–computer interfaces based on visual evoked potentials, feasibility of practical system designs. IEEE Eng Med Biol Mag 64: 71

    Google Scholar 

  15. Hartmann M, Kluge T (2007) Phase coherent detection of steady-state evoked potentials: theory and performance analysis. In: Proceedings of the 3rd international IEEE EMBS conference on neural engineering, Kohala Coast, Hawaii, USA, pp 179–183

  16. Wilson JJ, Palaniappan R (2009) Augmenting a SSVEP BCI through single cycle analysis and phase weighting. Proceedings of the 4th International IEEE EMBS Conference on Neural Engineering Antalya, Turkey 371:374

  17. Diamond AL (1997) Latency of the steady state visual evoked potential. Electroencephalogr Clin Neurophysiol 42: 125–127

    Google Scholar 

  18. Spekreijse H (1996) Analysis of EEG responses in man. Junk Publishers, The Hague, The Netherlands

    Google Scholar 

  19. Van der Tweel LH, Verduyn Lunel HFE (1965) Human visual responses to sinusoidally modulated light. Electroencephalogr Clin Neurophysiol 18: 587–598

    Article  Google Scholar 

  20. Di Russo F, Teder-Sälejärvi WA, Hillyard SA (2002) The cognitive electrophysiology of mind and brain, Chap 11. Elsevier Science, New York

    Google Scholar 

  21. Vialatte F, Maurice M, Dauwels J, Cichocki A (2009) Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Progr Neurobiol 90: 418–438. doi:10.1016/j.pneurobio.2009.11.005

    Article  Google Scholar 

  22. Hillyard SA, Vogel EK, Luck SJ (1998) Sensory gain control (amplification) as a mechanism of selective attention: electro-physiological and neuroimaging evidence. Phil Trans R Soc Lond B 353: 1257–1270

    Article  Google Scholar 

  23. Hillyard SA, Anllo-Vento L (1998) Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci USA 95: 781–787

    Article  Google Scholar 

  24. Wang Y, Gao X, Hong B, Jia C, Gao S (2008) Brain–computer interfaces based on visual evoked potentials, feasibility of practical system designs. IEEE Eng Med Biol Mag 27: 64–71

    Article  Google Scholar 

  25. Hartmann M, Kluge T (2007) Phase coherent detection of steady-state evoked potentials: theory and performance analysis. In: Proceedings of the 3rd international IEEE EMBS conference on neural engineering Kohala Coast, Hawaii, USA, pp 179–183

  26. Odom JV, Bach M, Barber C, Brigell M, Marmor MF, Tormene AP, Holder GE, Vaegan (2004) Visual evoked potentials standard. Doc Ophthalmol 108: 115–123

    Article  Google Scholar 

  27. Altermuller E et al (1996) Visuell evozierte Potentiale (VEP) und Elektroretinogramm (ERG). In: Evozierte Potentiale. Springer, Berlin, pp 289–409

  28. Pastor MA, Artieda J, Arbizu J, Valencia M, Masdeu JC (2003) Human cerebral activation during steady-state visual-evoked responses. J Neurosci 23(37): 11621–11627

    Google Scholar 

  29. Allison BZ, Pineda JA (2003) ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system. IEEE Trans Neural Syst Rehab Eng 11(2): 110–113

    Article  Google Scholar 

  30. Brigell M, Bach M, Barber C, Moskowitz A, Robson J (2003) Guidelines for calibration of stimulus and recording parameters used in clinical electrophysiology of vision, Calibration Standard Committee of the International Society for Clinical Electrophysiology of Vision (ISCEV). Doc Ophthalmol 107: 185–193

    Article  Google Scholar 

  31. Wolpaw JR, Birbaumer N, Heetderks WJ, McFarland DJ, Peckham PH, Schalk G, Donchin E, Quatrano LA, Robinson CJ, Vaughan TM (2000) Brain–computer interface technology: a review of the first international meeting. IEEE Trans Rehab Eng 8: 2

    Google Scholar 

  32. Lopez-Gordo MA (2009) Interfaz BCI de altas prestaciones basada en la detección y procesamiento de la actividad cerebral (BCI-DEPRACAP). Dissertation, University of Granada

  33. Friman O, Volosyak I, Gräser A (2007) Multiple channel detection of steady-state visual evoked potentials for brain–computer interfaces. IEEE Trans Biomed Eng 54: 4

    Article  Google Scholar 

  34. Müller-Putz GR, Pfurtscheller G (2008) Control of an electrical prosthesis with an SSVEP-based BCI. IEEE Trans Biomed Eng 55(1): 361–364

    Article  Google Scholar 

  35. Müller-Putz GR, Scherer R, Brauneisand C, Pfurtscheller G (2005) Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J Neural Eng 2: 123–130

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Lopez-Gordo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez-Gordo, M.A., Prieto, A., Pelayo, F. et al. Use of Phase in Brain–Computer Interfaces based on Steady-State Visual Evoked Potentials. Neural Process Lett 32, 1–9 (2010). https://doi.org/10.1007/s11063-010-9139-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-010-9139-8

Keywords

Navigation