Skip to main content
Log in

A Mathematical Model of Retinal Ganglion Cells and Its Applications in Image Representation

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Contrast stimuli are the essential components that constitute visual scenes. This paper studies how retinal ganglion cells respond to a contrast stimulus covering their concentric receptive fields with center-surround antagonism, and thereby proposes a mathematical model that describes the response by the multiplication of the contrast of the stimulus and a normalized response function with respect to the coverage ratio and the center/surround ratio. The obtained response curves turn out to be consistent with physiological data. This model partially accounts for the contrast sensitivities of ganglion cells and the invariance of visual perception to the contrast. A computational approach based on this neural model is developed for orientation detection, and is further applied to image representation. The experiments achieve convincing results on challenging image datasets. Moreover, it is revealed that the produced orientation maps remarkably enhance the efficiencies and the effectiveness of segmentation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbeláez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5): 898–916

    Article  Google Scholar 

  2. Arbib MA (ed) (2002) Sensory systems. In: The handbook of brain theory and neural networks, 2nd edn., chap. 2.7. The MIT Press, Cambridge 66–67

  3. Borji A, Hamidi M, Mahmoudi F (2008) Robust handwritten character recognition with features inspired by visual ventral stream. Neural Process Lett 28: 97–111

    Article  Google Scholar 

  4. Chen AH, Zhou Y, Gong HQ, Liang PJ (2005) Luminance adaptation increased the contrast sensitivity of retinal ganglion cells. NeuroReport 16(4): 371–375

    Article  Google Scholar 

  5. Chirimuuta M, Gold I (2009) The embedded neuron, the enactive field?. In: Bickle J (ed) The Oxford handbook of philosophy and neuroscience, chap. 9. Oxford University Press, Oxford, p 200

    Google Scholar 

  6. Croner LJ, Kaplan E (1995) Receptive fields of P and M ganglion cells across the primate retina. Vis Res 35(1): 7–24

    Article  Google Scholar 

  7. Dhingra NK, Freed MA, Smith RG (2005) Voltage-gated sodium channels improve contrast sensitivity of a retinal ganglion cell. J Neurosci 25(35): 8097–8103

    Article  Google Scholar 

  8. Diedrich E, Schaeffel F (2009) Spatial resolution, contrast sensitivity, and sensitivity to defocus of chicken retinal ganglion cells in vitro. Vis Neurosci 26(5–6): 467–476

    Article  Google Scholar 

  9. Einevoll G (2003) Mathematical modelling in the early visual system: why and how. In: Buracas G, Ruksenas O, Albright T, Boynton G (eds) NATO advanced institute series: modulation of neuronal signaling: implications for visual perception, vol 334. IOS Press, Amsterdam (2003)

  10. Einevoll GT, Plesser HE (2005) Response of the difference-of-Gaussians model to circular drifting-grating patches. Vis Neurosci 22(04): 437–446

    Article  Google Scholar 

  11. Enroth-Cugell C, Freeman AW (1987) The receptive-field spatial structure of cat retinal y cells. J Physiol 384(1): 49–79

    Google Scholar 

  12. Enroth-Cugell C, Robson JG (1966) The contrast sensitivity of retinal ganglion cells of the cat. J Physiol Lond 187(3): 517–552

    Google Scholar 

  13. Fairchild MD (2005) Receptive fields. In: Color appearance models, 2nd edn., chap. 1. Wiley, p 15

  14. Heeger DJ (1992) Normalization of cell responses in cat striate cortex. Vis Neurosci 9(2): 181–197

    Article  MathSciNet  Google Scholar 

  15. Jerez J, Atencia M, Vico F (2005) A learning rule to model the development of orientation selectivity in visual cortex. Neural Process Lett 21: 1–20

    Article  Google Scholar 

  16. Kilavik BE, Silveira LCL, Kremers J (2003) Centre and surround responses of marmoset lateral geniculate neurones at different temporal frequencies. J Physiol 546(3): 903–919

    Article  Google Scholar 

  17. Kolb H, Nelson R, Fernandez E, Jones BW (2011) Ganglion cell physiology. http://webvision.med.utah.edu/book/part-ii-anatomy-and-physiology-of-the-retina/ganglion-cell-physiology

  18. Lee BB, Sun H (2011) Contrast sensitivity and retinal ganglion cell responses in the primate. Psychol Neurosci 4: 11–18

    Article  Google Scholar 

  19. Maire M, Arbeláez P, Fowlkes C, Malik J (2008) Using contours to detect and localize junctions in natural images. In: IEEE conference on computer vision and pattern recognition, pp 1–8

  20. Malmivuo J, Plonsey R (1995) Bioelectric function of the nerve cell. In: Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields, 1st edn., chap. 2.5. Oxford University Press

  21. Medina-Carnicer R, Munoz-Salinas R, Yeguas-Bolivar E, Diaz-Mas L (2011) A novel method to look for the hysteresis thresholds for the Canny edge detector. Pattern Recognit 44(6): 1201–1211

    Article  Google Scholar 

  22. Meftah B, Lezoray O, Benyettou A (2010) Segmentation and edge detection based on spiking neural network model. Neural Process Lett 32: 131–146

    Article  Google Scholar 

  23. Papari G, Petkov N (2011) Edge and line oriented contour detection: State of the art. Image Vis Comput 29(2C3): 79–103

    Article  Google Scholar 

  24. Pitkow X, Meister M (2012) Decorrelation and efficient coding by retinal ganglion cells. Nat Neurosci 15(4): 628–635

    Article  Google Scholar 

  25. Risner ML, Amthor FR, Gawne TJ (2010) The response dynamics of rabbit retinal ganglion cells to simulated blur. Vis Neurosci 27(1–2): 43–55

    Article  Google Scholar 

  26. Rodieck RW (1965) Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vis Res 5(12): 583–601

    Article  Google Scholar 

  27. Russ JC (2011) The image processing handbook, 6th edn., chap. 6. CRC Press, p 376

  28. Russell TL, Werblin FS (2010) Retinal synaptic pathways underlying the response of the rabbit local edge detctor. J Neurophysiol 103(5): 2757–2769

    Article  Google Scholar 

  29. Sadagopan S, Ferster D (2012) Feedforward origins of response variability underlying contrast invariant orientation tuning in cat visual cortex. Neuron 74(5): 911–923

    Article  Google Scholar 

  30. Schwartz G, Rieke F (2011) Nonlinear spatial encoding by retinal ganglion cells: when 1 + 1 ≠ 2. J Gen Physiol 138(3): 283–290

    Article  Google Scholar 

  31. Shape data for the MPEG-7 core experiment CE-Shape-1. http://www.dabi.temple.edu/~shape/MPEG7/MPEG7dataset.zip

  32. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8): 888–905

    Article  Google Scholar 

  33. Wei H, Re Y (2012) An orientation detection model based on fitting from multiple local hypotheses. In: Proceedings of the 19th international conference on neural information processing (accepted)

  34. Wei H, Ren Y, Li B (2012) A collaborative decision-making model for orientation detection. Appl Soft Comput (accepted)

  35. Wei H, Ren Y, Wang Z (2012) A group-decision making model of orientation detection. In: Proceedings of the international joint conference on neural networks. IEEE world congress on computational intelligence, pp 2136–2143

  36. Zhang Y, Webber R (1996) A windowing approach to detecting line segments using hough transform. Pattern Recognit 29(2): 255–265

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, H., Ren, Y. A Mathematical Model of Retinal Ganglion Cells and Its Applications in Image Representation. Neural Process Lett 38, 205–226 (2013). https://doi.org/10.1007/s11063-012-9249-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-012-9249-6

Keywords

Navigation