Skip to main content
Log in

Smooth Nonparametric Copula Estimation with Least Squares Support Vector Regression

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Copula has become the standard tool in dependence modeling. With the aide of copula, the estimation of multivariate distributions can be obtained by two steps: marginal distributions construction and copula estimation. This paper puts forward a smooth nonparametric copula estimation based on least squares support vector regression. By supplementing the classical least squares support vector regression with some additional shape-related constraints, this method tries to make the estimator satisfy three shape restrictions of copula: grounded, marginal and 2-increasing. Its training involves a simple convex quadratic programming problem, which can be solved in polynomial time. Experimental results clearly showed that this method could achieve significantly better performance than the classical least squares support vector regression and kernel smoother for copula estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Autin F, Le Pennec E, Tribouley K (2010) Thresholding methods to estimate copula density. J Multivar Anal 101(1):200–222

    Article  MATH  Google Scholar 

  2. Barlow R, Bartholomew D, Bremner J, Brunk H (1972) Statistical inference under order restrictions: the theory and application of isotonic regression. Wiley, London

    MATH  Google Scholar 

  3. Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12(10):2385–2404

    Article  Google Scholar 

  4. Cherubini U, Luciano E, Vecchiato W (2004) Copula methods in finance. Wiley, West Sussex

    Book  MATH  Google Scholar 

  5. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  6. Deheuvels P (1980) Non parametric tests of independence. In: Raoult J (ed) Statistique non Paramètrique Asymptotique. Springer, Heidelberg, pp 95–107

    Chapter  Google Scholar 

  7. Deheuvels P (1981) A Kolmogorov-Smirnov type test for independence and multivariate samples. Revue Roumaine de Mathèmatiques Pures et Appliquèes 26(2):213–226

    MathSciNet  MATH  Google Scholar 

  8. Dimitrova D, Kaishev V, Penev S (2008) GeD spline estimation of multivariate Archimedean copulas. Comput Stat Data Anal 52(7):3570–3582

    Article  MathSciNet  MATH  Google Scholar 

  9. Drucker H, Burges C, Kaufman L, Smola A, Vapnik V (1997) Support vector regression machines. In: Mozer MC, Jordan MI, Petsche T (eds) Advances in neural information processing systems 9. MIT Press, Cambridge, pp 155–161

  10. Fermanian J, Scaillet O (2003) Nonparametric estimation of copulas for time series. J Risk 5:25–54

    Google Scholar 

  11. Frees E, Valdez E (1998) Understanding relationships using copulas. North Am Act J 2:1–25

    Article  MathSciNet  MATH  Google Scholar 

  12. Genest C, Masiello E, Tribouley K (2009) Estimating copula densities through wavelets. Insur Math Econ 44(2):170–181

    Article  MathSciNet  MATH  Google Scholar 

  13. Genest C, Rivest L (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88(423):1034–1043

    Article  MathSciNet  MATH  Google Scholar 

  14. Hall P, Huang L (2001) Nonparametric kernel regression subject to monotonicity constraints. Ann Stat 29(3):624–647

    Article  MathSciNet  MATH  Google Scholar 

  15. Lambert P (2007) Archimedean copula estimation using Bayesian splines smoothing techniques. Comput Stat Data Anal 51(12):6307–6320

    Article  MATH  Google Scholar 

  16. Li D (2000) On default correlation: a copula function approach. J Fixed Income 9(4):43–54

    Article  Google Scholar 

  17. Li Y, Liu Y, Zhu J (2007) Quantile regression in reproducing kernel hilbert spaces. J Am Stat Assoc 102(477):255–268

    Article  MathSciNet  MATH  Google Scholar 

  18. Mika S, Rätsch G, Weston J, Schölkopf B, Müllers K (1999) Fisher discriminant analysis with kernels. In: Neural networks for signal processing IX, 1999. In: Proceedings of the 1999 IEEE signal processing society workshop, IEEE, pp 41–48

  19. Morettin P, de Castro Toloi C, Chiann C, de Miranda J (2010) Wavelet smoothed empirical copula estimators. Brazilian. Rev Finance 8(3):263–281

    Google Scholar 

  20. Robertson T, Wright F, Dykstra R, Robertson T (1988) Order restricted statistical inference, vol 229. Wiley, Chichester

    MATH  Google Scholar 

  21. Schölkopf B, Smola A (2002) Learning with Kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge

    Google Scholar 

  22. Schölkopf B, Smola A, Müller K (1999) Kernel principal component analysis. In: Advances in kernel methods. MIT Press, Cambridge, pp 327–352

  23. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  24. Shen X, Zhu Y, Song L (2008) Linear B-spline copulas with applications to nonparametric estimation of copulas. Compu Stat Data Anal 52(7):3806–3819

    Article  MathSciNet  MATH  Google Scholar 

  25. Shih J, Louis T (1995) Inferences on the association parameter in copula models for bivariate survival data. Biometrics 51(4):1384–1399

    Article  MathSciNet  MATH  Google Scholar 

  26. Sklar A (1959) Fonctions de répartition àn dimensions et leurs marges. Publications de l’ Institut Statistique de l’Universitè de Paris 8:229–231

    MathSciNet  Google Scholar 

  27. Suykens J (2002) Least squares support vector machines. World Scientific, Singapore

    Book  MATH  Google Scholar 

  28. Suykens J, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  MathSciNet  Google Scholar 

  29. Takeuchi I, Le Q, Sears T, Smola A (2006) Nonparametric quantile estimation. J Mach Learn Res 7:1231–1264

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (71101127), Social Sciences Foundation of Chinese Ministry of Education (10YJC790265) and Zhejiang Province Universities Social Sciences Key Base (Research Center for Finance of Zhejiang Gongshang University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y. Smooth Nonparametric Copula Estimation with Least Squares Support Vector Regression. Neural Process Lett 38, 81–96 (2013). https://doi.org/10.1007/s11063-012-9264-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-012-9264-7

Keywords

Navigation