Skip to main content
Log in

Convergence Analysis of Möller Algorithm for Estimating Minor Component

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

The minor component analysis (MCA) deals with the recovery of the eigenvector associated with the smallest eigenvalue of the autocorrelation matrix of the input data, and Möller algorithm is a famous self-stability MCA method. In this paper, we present a convergence analysis of Möller algorithm for estimating minor component of an input signal via a deterministic discrete time method. Some sufficient conditions are obtained to guarantee the convergence of Möller algorithm. Simulations are carried out to further illustrate the theoretical results achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cirrincione G, Cirrincione M, Herault J, Van Huffel S (2002) The MCA EXIN neuron for the minor component analysis. IEEE Trans Neural Netw 13:160–187

    Article  Google Scholar 

  2. Feng DZ, Bao Z, Jiao LC (1998) Total least mean squares algorithm. IEEE Trans Signal Process 46:2122–2130

    Article  Google Scholar 

  3. Kong X, Han C, Wei R (2006) Modified gradient algorithm for total least square filtering. Neurocomputing 70:568–576

    Article  Google Scholar 

  4. Schmidt R (1986) Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag 34:276–280

    Article  Google Scholar 

  5. Mathew G, Reddy VU (1994) Development and analysis of a neural network approach to Pisarenko’s harmonic retrieval method. IEEE Trans Signal Process 42:663–667

    Article  MATH  Google Scholar 

  6. Cirrincione G (1998) A neural approach to the structure from motion problem. Ph.D. dissertation. LIS INPG Grenoble, Grenoble, France

  7. Xu L, Oja E, Suen C (1992) Modified Hebbian learning for curve and surface fitting. Neural Netw 5:441–457

    Article  Google Scholar 

  8. Tian D, Wang J, Xue Y, Xue G (2005) A neural minor component analysis algorithm for robust beamforming. In: ISCIT, vol 2, pp 1182–1185

  9. Luo F, Unbehauen R, Cichocki A (1997) A minor subspace analysis algorithm. IEEE Trans Neural Netw 8:291–297

    Article  Google Scholar 

  10. Luo F, Unbehauen R (1999) Comment on: A unified algorithm for principal and minor components extraction. Neural Netw 12:393

    Article  Google Scholar 

  11. Chen T (1997) Modified Oja’s algorithms for principal subspace and minor subspace extraction. Neural Process Lett 5:105–110

    Article  Google Scholar 

  12. Oja E (1992) Principal component, minor component and linear neural networks. Neural Netw 5:927–935

    Article  Google Scholar 

  13. Douglas SC, Kung SY, Amari S (1998) A self-stabilized minor subspace rule. IEEE Signal Process Lett 5:328–330

    Article  Google Scholar 

  14. Möller R (2004) A self-stabilizing learning rule for minor component analysis. Int J Neural Syst 14:1–8

    Article  Google Scholar 

  15. Ouyang S, Bao Z, Liao GS, Ching PC (2001) Adaptive minor component extraction with modular structure. IEEE Trans Signal Process 49:2127–2137

    Article  Google Scholar 

  16. Chen T, Amari S (2001) Unified stabilization approach to principal and minor components extraction. Neural Netw 14:1377–1387

    Article  Google Scholar 

  17. Kong XY, Hu CH, Han CZ (2010) A self-stabilizing MSA algorithm in high-dimension data stream. Neural Netw 23:865–871

    Article  Google Scholar 

  18. Ljung L (1977) Analysis of recursive stochastic algorithm. Trans Autom Control 22:551–575

    Article  MathSciNet  MATH  Google Scholar 

  19. Peng D, Yi Z (2006) Convergence analysis of a deterministic discrete time system of Feng’s MCA learning algorithm. IEEE Trans Signal Process 54:3626–3632

    Article  Google Scholar 

  20. Yi Z, Ye M, Lv JC et al (2005) Convergence analysis of a deterministic discrete time system of Oja’s PCA learning algorithm. IEEE Trans Neural Netw 16:1318–1328

    Article  Google Scholar 

  21. Peng D, Yi D (2008) On the discrete time dynamic of a self-stabilizing MCA learning algorithm. Math Comput Model 47:903–916

    Article  MathSciNet  Google Scholar 

  22. Zufiria PJ (2002) On the discrete-time dynamics of the basic Hebbian neural-network nodes. IEEE Trans Neural Netw 13:1342–1352

    Article  Google Scholar 

  23. Zhang Q (2003) On the discrete-time dynamics of a PCA learning algorithm. Neurocomputing 55:761–769

    Article  MATH  Google Scholar 

  24. Gao J, Ye M, Li J, Xia Q (2011) A globally convergent MCA algorithm by generalized eigen-decomposition. Int J Comput Intell Syst 4:991–1001

    Article  Google Scholar 

  25. Kong XY, An QS, Ma HG et al (2012) Convergence analysis of deterministic discrete time system of a unified self-stabilizing algorithm for PCA and MCA. Neural Netw 36:64–72

    Article  MATH  Google Scholar 

  26. Nguyen TG, Yamada I (2013) A unified convergence analysis of normalized PAST algorithms for estimating principal and minor components. Signal Process 93:176–184

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Fund for Distinguished Youth Scholars of China (61025014) and National Natural Science Foundation of China under Grants 61074072 and 61374120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Kong.

Appendices

Appendix 1: Proof of Theorem 1

Proof

By using (6)–(8), we have

$$\begin{aligned} \left\| {{\varvec{w}}(k+1)} \right\| ^{2}&= \sum _{i=1}^n {z_i^{2}(k+1)} \nonumber \\&= \sum _{i=1}^n {\left\{ {1-\eta [\lambda _i (2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)-{\varvec{w}}^{T}(k){\varvec{Rw}}(k)]} \right\} ^{2}z_i^{2}(k)} \nonumber \\&\le \sum _{i=1}^n {\left[ {1-\lambda _i \eta (2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)+\eta \lambda _1 \left\| {{\varvec{w}}(k)} \right\| ^{2}} \right] ^{2}z_i^{2}(k)} \nonumber \\&< (1+\eta \lambda _1 +\eta \lambda _1 \left\| {{\varvec{w}}(k)} \right\| ^{2})^{2}\sum _{i=1}^n {\hbox {z}_{\mathrm{i}}^{2}(k)} \nonumber \\&= (1+\eta \lambda _1 +\eta \lambda _1 \left\| {{\varvec{w}}(k)} \right\| ^{2})^{2}\left\| {{\varvec{w}}(k)} \right\| ^{2} \end{aligned}$$
(15)

So, we obtain that

$$\begin{aligned} \left\| {{\varvec{w}}(k+1)} \right\| ^{2}<(1+\eta \lambda _1 +\eta \lambda _1 \left\| {{\varvec{w}}(k)} \right\| ^{2})^{2}\left\| {{\varvec{w}}(k)} \right\| ^{2} \end{aligned}$$
(16)

Define a differential function \(f(s)=(1+\eta \lambda _1 +\eta \lambda _1 s)^{2}s\) on the interval \([0,1]\), where \(s=\left\| {{\varvec{w}}(k)} \right\| ^{2}\) and \(f(s)=\left\| {{\varvec{w}}(k+1)} \right\| ^{2}\), it follows that

$$\begin{aligned} \dot{f}(s)=(1+\eta \lambda _1 +\eta \lambda _1 s)(1+\eta \lambda _1 +3\eta \lambda _1 s) \end{aligned}$$
(17)

for all \(0\le s\le 1\). Clearly, the roots of the function \(\dot{f}(s)=0\) are

$$\begin{aligned} s_1 =-(1+\eta \lambda _1 )/\eta \lambda _1 \hbox { and }s_2 =-(1+\eta \lambda _1 )/3\eta \lambda _1 \end{aligned}$$
(18)

By using \(\eta >0\) and \(\lambda _1 >0\), we have that \(s_1 <s_2 <0\). So it holds that \(\dot{f}(s)>0\) for all \(0\le s\le 1\), i.e. \(f(s)\) is monotone increasing on the interval \([0,1]\). Thus, for all \(0\le s\le 1\), it follows that

$$\begin{aligned} f(s)\le f(1)<(1+2\eta \lambda _1 )^{2} \end{aligned}$$
(19)

So, we have \(\left\| {{\varvec{w}}(k)} \right\| <1+2\eta \lambda _1\), for all \(k\ge 0\). This completes the proof of Theorem 1.

Appendix 2: Proof of Theorem 2

Proof

By using (6)–(8), we have

$$\begin{aligned} \left\| {{\varvec{w}}(k+1)} \right\| ^{2}&= \sum _{i=1}^n {\left\{ {1-\eta \lambda _i (2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)+\eta {\varvec{w}}^{T}(k){\varvec{Rw}}(k)} \right\} ^{2}z_i^{2}(k)}\nonumber \\&\ge \sum _{i=1}^n {\left\{ {1-\eta \lambda _1 (2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)+\eta \lambda _n \left\| {{\varvec{w}}(k)} \right\| ^{2}} \right\} ^{2}z_i^{2}(k)} \nonumber \\&> [1-\eta \lambda _1 (2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)]^{2}\sum _{i=1}^n {z_i^{2}(k)} \nonumber \\&> [1-\eta \lambda _1 (2(1+2\eta \lambda _1 )^{2}-1)]^{2}\left\| {{\varvec{w}}(k)} \right\| ^{2} \end{aligned}$$
(20)

Denote \(c=\{1-\eta \lambda _1 (2(1+2\eta \lambda _1 )^{2}-1)\}\). By using condition (a), we have

$$\begin{aligned} c=\{1-\eta \lambda _1 (2(1+2\eta \lambda _1 )^{2}-1)\}>\left\{ 1-0.25 *\left[ {2 *(1+2 *0.25)^{2}-1} \right] \right\} =0.1250>0 \end{aligned}$$
(21)

From (20) and (21), we have

$$\begin{aligned} \left\| {{\varvec{w}}(k)} \right\| ^{2}>c^{2}\left\| {{\varvec{w}}(k-1)} \right\| ^{2}>\cdots >c^{2k}\left\| {{\varvec{w}}(0)} \right\| ^{2} \end{aligned}$$
(22)

So, we have\(\left\| {{\varvec{w}}(k)} \right\| >c^{k}\left\| {{\varvec{w}}(0)} \right\| \), for all \(k\ge 0\). This completes the proof of Theorem 2.

Appendix 3: Proof of Lemma 1

Proof

By using (6)–(8), we have

$$\begin{aligned}&1-\eta \lambda _i (2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)+\eta {\varvec{w}}^{T}(k){\varvec{Rw}}(k) \nonumber \\&\quad >1-\eta \lambda _1 (2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)+\eta \lambda _n \left\| {{\varvec{w}}(k)} \right\| ^{2} \nonumber \\&\quad >1-\eta \lambda _1 (2(1+2\eta \lambda _1 )^{2}-1) \nonumber \\&\quad >1-0.25 *(2 *(1+2 *0.25)^{2}-1) \nonumber \\&\quad =0.1250>0 \end{aligned}$$
(23)

This completes the proof of Lemma 1.

Appendix 4: Proof of Lemma 2

Proof

By using (6)–(8), we have for all \(k\ge 0\) and \(i=1,2,\ldots , n\) that

$$\begin{aligned} 1-\eta \lambda _i (2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)+\eta {\varvec{w}}^{T}(k){\varvec{Rw}}(k)>0 \end{aligned}$$
(24)

By using Theorem 1, it holds that \(\left\| {{\varvec{w}}(k)} \right\| <1+2\eta \lambda _1 \) for all \(k\ge 0\), then we have

$$\begin{aligned} \left[ {\frac{z_i (k+1)}{z_n (k+1)}} \right] ^{2}&= \left\{ {\frac{1-\eta \left[ {\lambda _i (2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)-{\varvec{w}}(k)^{T}{\varvec{Rw}}(k)} \right] }{1-\eta \left[ {\lambda _n (2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)-{\varvec{w}}(k)^{T}{\varvec{Rw}}(k)} \right] }} \right\} ^{2}\left[ {\frac{z_i (k)}{z_n (k)}} \right] ^{2} \nonumber \\&= \left\{ {1-\frac{\eta (\lambda _i -\lambda _n )(2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)}{1+\eta {\varvec{w}}(k)^{T}{\varvec{Rw}}(k)-\eta \lambda _n (2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)}} \right\} ^{2}\left[ {\frac{z_i (k)}{z_n (k)}} \right] ^{2} \nonumber \\&= \left\{ {1-\frac{\eta (\lambda _i -\lambda _n )}{\frac{1+\eta {\varvec{w}}(k)^{T}{\varvec{Rw}}(k)}{(2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)}-\eta \lambda _n }} \right\} ^{2}\left[ {\frac{z_i (k)}{z_n (k)}} \right] ^{2}. \end{aligned}$$
(25)

Denote \(\beta _k =\left\{ {1-\frac{\eta (\lambda _i -\lambda _n )(2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)}{1+\eta {\varvec{w}}(k)^{T}{\varvec{Rw}}(k)-\eta \lambda _n (2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)}} \right\} ^{2}\), then we will prove that \(\beta _k <1\), which can be completed by the following two equations. To make the proof more brief, let’s denote \({\beta }'_k =\frac{\eta (\lambda _i -\lambda _n )(2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)}{1+\eta {\varvec{w}}(k)^{T}{\varvec{Rw}}(k)-\eta \lambda _n (2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)}\), then we have \(\beta _k =(1-{\beta }'_k )^{2}\) and

$$\begin{aligned} {\beta }_k^{\prime }&= \frac{\eta (\lambda _i -\lambda _n )(2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)}{1+\eta {\varvec{w}}(k)^{T}{\varvec{Rw}}(k)-\eta \lambda _n (2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)} \nonumber \\&< \frac{\eta \lambda _1 (2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)}{1+\eta \lambda _n \left\| {{\varvec{w}}(k)} \right\| ^{2}-\eta \lambda _n (2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)} \nonumber \\&= \frac{\eta \lambda _1 (2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)}{1-\eta \lambda _n \left\| {{\varvec{w}}(k)} \right\| ^{2}+\eta \lambda _n } \nonumber \\&< \frac{\eta \lambda _1 \left[ {2(1+2\eta \lambda _1 )^{2}-1} \right] }{1-\eta \lambda _1 (1+2\eta \lambda _1 )^{2}} \nonumber \\&< \frac{0.25\times [2\times (1+2\times 0.25)^{2}-1]}{1-0.25\times (1+2\times 0.25)^{2}} \nonumber \\&= 2. \end{aligned}$$
(26)

Denote \({\beta }_k^{\prime \prime } =\frac{1+\eta {\varvec{w}}(k)^{T}{\varvec{Rw}}(k)}{(2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)}-\eta \lambda _n\), then \({\beta }_k^{\prime } =\eta (\lambda _i -\lambda _n ){\beta }_k^{\prime \prime }\). By using condition (a), we have

$$\begin{aligned} {\beta }_k^{\prime \prime }&= \frac{1+\eta {\varvec{w}}(k)^{T}{\varvec{Rw}}(k)}{(2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)}-\eta \lambda _n \nonumber \\&> \frac{1+\eta \lambda _n \left\| {{\varvec{w}}(k)} \right\| ^{2}}{(2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1)}-\eta \lambda _n \nonumber \\&= \frac{1+\eta \lambda _n -\eta \lambda _n \left\| {{\varvec{w}}(k)} \right\| ^{2}}{2\left\| {{\varvec{w}}(k)} \right\| ^{2}-1} \nonumber \\&> \frac{1-\eta \lambda _1 (1+2\eta \lambda _1 )^{2}}{2(1+2\eta \lambda _1 )^{2}-1} \nonumber \\&> \frac{1-0.25\times (1+2\times 0.25)^{2}}{2\times (1+2\times 0.25)^{2}-1} \nonumber \\&= 0.125>0 \end{aligned}$$
(27)

By using \(\lambda _i -\lambda _n >0\) and (27), we have \(0<{\beta }_k^{'} <2\), that is to say, \(\beta _k =(1-{\beta }_k^{'})^{2}<1\).

Denote \(\beta =\max (\beta _0, \beta _1, \ldots , \beta _k, \ldots )\) and \(\theta _1 =\,{-}\ln \beta \), then we have \(\theta _1 >0\) and

$$\begin{aligned} \left[ {\frac{z_j (k+1)}{z_n (k+1)}} \right] ^{2}&= \beta _k \left[ {\frac{z_j (k)}{z_n (k)}} \right] ^{2}=\cdots =\beta _k \beta _{k-1} \beta _0 \left[ {\frac{z_j (0)}{z_n (0)}} \right] ^{2}\le \beta ^{k+1}\left[ {\frac{z_j (0)}{z_n (0)}} \right] ^{2}\nonumber \\&= \frac{z_j^{2}(0)}{z_n^{2}(0)}e^{-\theta _1 (k+1)} \end{aligned}$$
(28)

By using \(\theta _1 >0\) and (28), we have for all \(i=1,2,\ldots , n-1\) that

$$\begin{aligned} \mathop {\lim }\limits _{k\rightarrow \infty } \frac{z_i (k)}{z_n (k)}=0 \end{aligned}$$
(29)

From Theorems 1 and 2, we obtain \(z_n (k)\) must be bounded, then \(\mathop {\lim }\nolimits _{k\rightarrow \infty } z_i (k)=0,(i=1,2,\ldots , n-1)\). This completes the proof of Lemma 2.

Appendix 5: Proof of Lemma 3

Proof

By using Lemma 2, we obtain that \({\varvec{w}}(k)\) will converge to the direction of the minor component\({\varvec{v}}_{{\varvec{n}}} \), as \(k\rightarrow \infty \). Suppose \({\varvec{w}}(k)\) has converged to the direction of \({\varvec{v}}_{{\varvec{n}}} \) at time \(k_0 \), i.e. \({\varvec{w}}(k_0 )=z_n (k_0 ){\varvec{v}}_{{\varvec{n}}} \).

From (8), we have

$$\begin{aligned} z_n (k+1)&= (1-\eta \lambda _n (2z_n^{2}(k)-1)+\eta \lambda _n z_n^{2}(k))z_n (k) \nonumber \\&= (1-2\eta \lambda _n z_n^{2}(k)+\eta \lambda _n +\eta \lambda _n z_n^{2}(k))z_n (k) \nonumber \\&= [1+\eta \lambda _n (1-z_n^{2}(k))]z_n (k) \end{aligned}$$
(30)

By using (30), we have for all \(k>k_0\) that

$$\begin{aligned} z_n (k+1)-1&= [1+\eta \lambda _n (1-z_n^{2}(k))]z_n (k)-1 \nonumber \\&= (z_n (k)-1)\left[ {1-\eta \lambda _n z_n (k)(z_n (k)+1)} \right] \end{aligned}$$
(31)

By using \(\left\| {{\varvec{w}}(k)} \right\| <1+2\eta \lambda _1\), we have for all \(k>k_0 \) that

$$\begin{aligned} 1-\eta \lambda _n z_n (k)(z_n (k)+1)&> 1-\eta \lambda _n \left\| {{\varvec{w}}(k)} \right\| (\left\| {{\varvec{w}}(k)} \right\| +1) \nonumber \\&> 1-\eta \lambda _1 \left\| {{\varvec{w}}(k)} \right\| (\left\| {{\varvec{w}}(k)} \right\| +1) \nonumber \\&> 1-\eta \lambda _1 (1+2\eta \lambda _1 )(1+2\eta \lambda _1 +1) \nonumber \\&> 1-0.25 *(1+2 *0.25) *(2+2 *0.25) \nonumber \\&= 0.0625>0 \end{aligned}$$
(32)

Denote \(\delta _k =1-\eta \lambda _n z_n (k)(z_n (k)+1)\), since \(z_n (k)>0\), then we can conclude that \(0<\delta _k <1\). By using (30)–(32), we have for all \(k>k_0 \) that

$$\begin{aligned} \left| {z_n (k+1)-1} \right| =\delta _k \left| {z_n (k)-1} \right| =\delta _{k-1} \delta _k \left| {z_n (k-1)-1} \right| =\cdots =\prod _{r=0}^k {\delta _r } \left| {z_n (0)-1} \right| \end{aligned}$$
(33)

Denote \(\delta =\max (\delta _k, \delta _{k-1}, \ldots , \delta _0 )\), clearly \(0<\delta <1\). By using (33), we have for all \(k>k_0 \) that

$$\begin{aligned} \left| {z_n (k+1)-1} \right| \le \delta ^{k+1}\left| {z_n (0)-1} \right| \le (k+1)\prod e^{-\theta (k+1)} \end{aligned}$$
(34)

where \(\theta ={-}\ln \delta , \prod =\left| {z_n (0)-1} \right| \).

Denote \(\prod _2 =\eta \lambda _1 \left( {1+\eta \lambda _1 } \right) \left( {2+\eta \lambda _1 } \right) \left| {z_n (0)-1} \right| \). Given any \(\varepsilon >0\), there exists a \(K\ge 1\) such that

$$\begin{aligned} \frac{\prod _2 Ke^{-\theta K}}{(1-e^{-\theta })}\le \varepsilon \end{aligned}$$
(35)

For any \(k_1 >k_2 >K\), it follows from (34) that:

$$\begin{aligned}&\left| {z_n (k_1 )-z_n (k_2 )} \right| \nonumber \\&= \left| {\sum _{r=k_2 }^{k_1 -1} {\left[ {z_n (r+1)-z_n (r)} \right] } } \right| \nonumber \\&= \left| {\sum _{r=k_2 }^{k_1 -1} {[\eta \lambda _n z_n (r)(1-z_n^{2}(r))]} } \right| \nonumber \\&\le \sum _{r=k_2 }^{k_1 -1} {\left| {\eta \lambda _n z_n (r)(1-z_n^{2}(r))} \right| } \nonumber \\&= \sum _{r=k_2 }^{k_1 -1} {\left| {\eta \lambda _n z_n (r)(z_n (r)+1)(z_n (r)-1)} \right| } \nonumber \\&<\eta \lambda _1 (1+2\eta \lambda _1 )(1+2\eta \lambda _1 +1)\sum _{r=k_2 }^{k_1 -1} {\left| {z_n (r)-1} \right| } \le \prod _2 \sum _{r=k_2 }^{k_1 -1} {re^{-\theta r}} \nonumber \\&\le \prod _2 \sum _{r=\hbox {K}}^{k_1 -1} {re^{-\theta r}}\nonumber \\&\le \prod _2 \hbox {K}e^{-\theta K}\sum _{r=0}^{+\infty } {r(e^{-\theta })^{r-1}} \nonumber \\&\le \frac{\prod _2 \hbox {K}e^{-\theta K}}{\left( {1-e^{-\theta }} \right) ^{2}} \nonumber \\&\le \varepsilon \end{aligned}$$
(36)

This implies that the sequence \(\left\{ {z_n (k)} \right\} \) is a Cauchy sequence. By using the Cauchy convergence principle, there must exist a constant \(z^{{*}}\) such that \(\mathop {\lim }\nolimits _{k\rightarrow \infty } z_n (k)=z^{{*}}\).

By using (7), we have that \(\mathop {\lim }\nolimits _{k\rightarrow \infty } {\varvec{w}}(k)=z^{{*}}{\varvec{v}}_{{\varvec{n}}}\). Since (6) has self-stabilizing property, we have that \(\mathop {\lim }\nolimits _{k\rightarrow \infty } {{\varvec{w}}(k+1)}/{{\varvec{w}}(k)}=1\). From (8), we have that \(z^{{*}}=\{1-\eta \lambda _n [2(z^{{*}})^{2}-1]+\eta \lambda _n (z^{{*}})^{2}\}z^{{*}}\), then we obtain that \(z^{{*}}=\pm 1\). This completes the proof of Lemma 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Kong, X., Hu, C. et al. Convergence Analysis of Möller Algorithm for Estimating Minor Component. Neural Process Lett 42, 355–368 (2015). https://doi.org/10.1007/s11063-014-9360-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-014-9360-y

Keywords

Navigation