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Abstract

Albeit automated classifiers offer a standard tool in many application
areas, there exists hardly a generic possibility to directly inspect their be-
havior, which goes beyond the mere classification of (sets of) data points.
In this contribution, we propose a general framework how to visualize
a given classifier and its behavior as concerns a given data set in two
dimensions. More specifically, we use modern nonlinear dimensionality
reduction (DR) techniques to project a given set of data points and their
relation to the classification decision boundaries. Furthermore, since data
are usually intrinsically more than two-dimensional and hence cannot be
projected to two dimensions without information loss, we propose to use
discriminative DR methods which shape the projection according to given
class labeling as is the case for a classification setting. With a given data
set, this framework can be used to visualize any trained classifier which
provides a probability or certainty of the classification together with the
predicted class label. We demonstrate the suitability of the framework in
the context of different dimensionality reduction techniques, in the context
of different attention foci as concerns the visualization, and as concerns
different classifiers which should be visualized.

1 Introduction

An increasing complexity of data as concerns its size, dimensionality, or het-
erogeneity poses strong challenges on automated data analysis. Often, it is no
longer possible to specify a dedicated learning task in advance, rather com-
plex settings cause the need of an interactive data analysis: humans interac-
tively process and interpret large, heterogeneous, and high-dimensional data
sets, specifying the learning goals and appropriate data analysis tools based on
the obtained findings [45, 19, 36]. In this realm, interpretability of the models
and data visualization play a major role since they offer an intuitive interface to
the data and its analysis tools for the human practitioner [42, 24, 31]. Hence a
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trained classifier is no longer judged by its classification accuracy only, rather,
the question moves into the focus based on which rationale the classifier makes
it decision, what are problematic regions of the classification task where re-
finement would be valuable, and which data correspond to outliers or noise.
Possible remedies to the challenge of model interpretability are offered by rel-
evance learning, feature selection techniques, or sparse model descriptions, for
example [27, 42, 31, 32, 18]. Further, visualization plays a major role, since it
addresses one of the most powerful senses of humans relying on their astonish-
ing cognitive abilities for visual structure detection, such as grouping or outlier
detection.

Visualization of data constitutes a well-investigated research topic with a
plethora of different visualization techniques having been proposed in the ma-
chine learning context. Besides classical methods such as linear projections
offered by principal component analysis or linear discriminant analysis and
nonlinear extensions such as the self-organizing map (SOM) or generative to-
pographic mapping (GTM), a variety of (often non-parametric) dimensionality
reduction (DR) techniques has been proposed in the last decade, such as t-
distributed stochastic neighbor embedding (t-SNE), neighborhood retrieval vi-
sualizer (NeRV), or maximum variance unfolding (MVU), see e.g. the articles
[39, 40, 24, 43, 16, 11, 24] for overviews on DR techniques. Often, however,
these methods are used to visualize a given data set in two dimensions only, not
yet answering the question how to visualize the relation of these data in connec-
tion to a given classifier. The possibility to also visualize decision boundaries
as provided by a given classifier would allow us to extract information beyond
the mere classification accuracy of the classifier addressing questions such as:
are there potential mis-labelings of data which are observable as outliers, are
there noisy data regions where the classification is inherently difficult, are there
regions where the flexibility of the classifier is not yet sufficient, what is the
modality of single classes, etc.

At present, visualization in the context of classifiers is rather limited: visu-
alization is often restricted to the training procedure, e.g. providing interfaces
to set certain parameters or to inspect the area under the curve (AUC) results
[17]. Other methods analyse the class topology in a projection space [8] and
in the original data space [1]. There exists relatively little work to visualize
the underlying classification function itself, including interactive tour methods
[5], nomograms [20], linear projection techniques on top of the distance to the
decision boundary [29], or graphs emphasizing those reagions where class affil-
iation changes [26]. Very few nonlinear techniques exist, one notable approach
being proposed for the visualization of support vector machine (SVM) using
self-organizing maps (SOM), resulting in a technique dubbed support vector
machine visualization (SVMV) [44]. Recently, a first step towards a general
framework how to visualize a general classifier based on nonlinear dimensional-
ity reduction techniques has been proposed in [33]; the proposed principle allows
us to project any given classifier and underlying data points to two dimensions
using any dimensionality reduction method which best suits the given data. In
this contribution, which constitutes an extension of the approach as presented
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in [33], we present and improve this technique and extensively test it as regards
different classifiers and dimensionality reduction techniques.

Given a trained classification model, typical user tasks which can be ad-
dressed with our framework include the following questions:

1. Is there multimodality in the data, i.e. are there certain classes which fall
into multiple modes and how does the classifier handle them?

2. How does the classification model deal with potential outliers in the data?

3. Is there overlap in the data and how do the class boundaries look in those
regions?

4. How complex are the class boundaries of the trained model? Do they
potentially overfit the data?

5. If the model contains interpretable components such as data prototypical
instances: What is their location in relation to the data and how do they
contribute to the class boundary?

With our experiments, we show exemplarily how these questions can be ad-
dressed within our framework.

Generally speaking, the general framework for classifier visualization as pro-
posed in this article relies on an identification of a given data manifold and a two
dimensional projection. A bijective mapping between the original data mani-
fold and a low dimensional projection enables us to directly map the decision
boundaries of a given classifier in the data manifold as the set of points with
output zero as concerns their distance to the decision boundary. This naive ap-
proach, however, has a few drawbacks: (i) Many powerful DR methods do not
provide an explicit mapping, rather they provide a nonparametric projection of
the given data points only. Relying on ideas as proposed in [13], we propose a
general technique to extend non-parametric projections to explicit parametric
forms, if necessary. (ii) It is infeasible to sample the usually high dimensional
feature space; still we have to somehow detect the decision boundaries of a given
arbitrary classifier to provide its visualization in two dimensions. We solve this
problem by a trick: we sample in the low dimensional projection space rather
than the feature space itself, and use the inverse projection of these sampled
data to determine the decision boundary in the original data manifold. (iii)
Unless the data manifold is intrinsically two-dimensional, however, there can-
not exist a bijection of the data manifold and a low dimensional projection,
hence no valid back-projection. More generally, the question what to visualize
in a reasonable way is not clear due to the usually high data dimensionality.
Hence the task of classifier visualization is essentially ill-posed. We will rely on
discriminative DR to circumvent this problem.

More precisely, we will point out the necessity to integrate auxiliary infor-
mation to the DR technique to make the DR problem well-posed. For classifier
visualization, we do not want to visualize all aspects of the data, rather we are
interested in the positioning of the data as concerns the class boundaries. As
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pointed out in [43, 13], there exists a very elegant generic technique to enhance
many DR techniques with auxiliary information as provided by class labels:
instead of the original data and its underlying distance measure, we rely on a
distance measure which is induced by the Fisher information metric for the given
class labeling. This way, those aspects of the data are emphasized which are
relevant for the given classifier rather than directions parallel to the classifier’s
decision boundaries. Since decision boundaries can often be described as the
zero set of a function with a smooth parameterization, they correspond to a one-
co-dimensional topological manifold. Hence the data set measured in the Fisher
metric, which essentially restricts to directions orthogonal to the boundary, is
locally approximately one dimensional (in the vicinity of class boundaries), and
the task to visualize such data in two dimensions is well defined.

We will elaborate on this issue in the following and demonstrate the ben-
eficial effect of taking auxiliary information as provided by class labels into
account. Actually, there exist two different reasonable labelings if we address
the task of classifier visualization: the ground truth which is a labeling provided
by the data, and the labeling which is provided by the trained classifier. In par-
ticular for classifiers with low accuracy, a scenario where classifier inspection
might be particularly interesting, these labelings do not coincide. In such set-
tings, we would like to ‘see’” what causes the problems of the classifier. We will
discuss that both possible labelings provide different classifier visualizations, fo-
cusing on different aspects of the setting and different insights into the classifier
behavior. We will demonstrate this aspect in the following in examples. In sum-
mary, a powerful classifier visualization framework results which we will test for
different classifier types including a support vector machine, a learning vector
quantization scheme, and a decision tree classifier, and different DR techniques,
including t-SNE, SOM, GTM, and MVU.

All in all, we propose

e a general framework for the visualization of classifiers enabling to visu-
alize any classifier that provides a certainty measure of his decision. We
demonstrate this for a SVM, a LVQ and a decision tree classifier.

e We highlight the necessity to use discriminative DR which locally empha-
sizes the relevant dimensions and such guides the projection to focus on
those aspects of the data that are relevant for classification.

e We present examples for things that can be detected when visualizing
high-dimensional classifiers.

The organization of this article is as follows: First, we shortly review popular
dimensionality reduction methods and their extension towards explicit mapping
prescriptions on the one hand and the incorporation of auxiliary information by
means of the Fisher metric on the other hand. Afterwards, we present a general
framework how to visualize a given classifier. We demonstrate the framework
in a few illustrative examples, before testing its behavior as concerns different
DR techniques, different choices of auxiliary label information, and different
classification schemes to be visualized.
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2 Dimensionality Reduction

Dimensionality reduction techniques are concerned with the following problem:
given data points x € X = R? in a high dimensional feature space, how to
map these points to low dimensional counterparts m(x) =y € Y = R? in the
two-dimensional plane such that as much structure as possible is preserved. As
described in the recent overview [11] for example, one can distinguish parametric
and non-parametric DR techniques.

Parametric techniques specify a functional form m,p, : X — Vx = y =
Tpm (X) (we employ the subscript ,,, to emphasize that the mapping is para-
metric) with free parameters which determine the form of the mapping. Given a
set of examples x1, ..., X,, training takes place by optimizing these parameters
such that the examples are mapped as accurately as possible. Popular methods
include:

e Principle component analysis (PCA) defines 7, (x) = W'x as a linear
mapping with W € R?*2, The linear parameters W are determined
such that the squared reconstruction error of the given data is minimized,
resulting in an eigenvalue problem with an explicit solution. Due to the
particularly simple form, an approximate inverse is offered by the mapping
Tom 1Y 7 T (y) = Wy.

e One popular non-linear alternative is offered by the self-organizing map
(SOM), which maps the data to a two-dimensional regular grid (consist-
ing of notes ci) by means of a winner-takes-all function, where each po-
sition j in the grid is associated with one position w; € R? in the feature
space. Training takes place by Hebbian learning, thereby also respecting
the neighborhood of the lattice. This way, a locally constant projection of
the data to two dimensions, the lattice position of the winner, is defined:
Tpm(X) = ¢ with k& = argmin; d(x,w;). By means of local interpo-
lation, this mapping can easily be turned into a smooth function. By
construction, an inverse mapping is offered by mapping a position j in
the lattice to the position w; of the associated place in the feature space:
ﬂ;,}l (y) = wg with k£ = argmin; d(y, ¢;). Again, this simple function is lo-
cally constant, but can easily be turned into a smooth mapping by means
of local interpolation.

e We will also consider the generative topographic mapping (GTM) as a
probabilistic counterpart of SOM. Essentially, GTM relies on data being
generated by a constraint mixture of Gaussians. The centers of the Gaus-
sians are generated by a smooth mapping from regular lattice positions
in a two dimensional latent space which can be used for data visualiza-
tion. GTM training can be derived from a maximization of the data log
likelihood function. Due to its probabilistic modeling which allows to com-
pute probabilities of lattice points having generated a given data, a smooth
mapping of data to its low dimensional projection 7y, (x) = >, crp(ck|x)
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and vice versa 7, (y) = >_; w;é(y) (where the basis function ¢ are often

Gaussian kernels with predefined centers) is directly provided by GTM.

In contrast to these parametric techniques, non-parametric mappings rely
on a mapping of a given set of data x; to their low dimensional counterparts
yi only, but no explicit functional form m,, : X — Y is priorly specified.
Training takes place by tuning the projections y; such that a certain criterion
is optimized: usually, the structure in the data space as defined by x; and the
structure of the projections y; are measured and compared using some suitable
cost function. An overview about a generic formalization of different popular
non-parametric DR techniques as cost function optimization can be found in
[3]. We will exemplarily investigate the following three popular techniques:

e Jsomap is based on the objective to preserve distances in the data space
and the projection space as measured in a least squares error. Thereby,
the distances in the original data space are taken along the data manifold
as so-called geodesic distances. Since the exact manifold is not available,
a simple numeric approximation scheme is taken: local neighborhoods of
a given data point to its closest k neighbors are approximated by the
euclidean distance; on a global scale, shortest paths in this neighborhood
graph are considered.

e Mazimum variance unfolding (MVU) relies on a similar idea, by first con-
structing a local neighborhood graph connecting every point to its k closest
exemplars. Then, projection takes place by unfolding the data as much
as possible in two dimensions (i.e. maximizing its covariance) thereby re-
specting the neighborhood structure of the constructed graph.

o T-distributed stochastic neighbor embedding (t-SNE) defines local neigh-
borhoods in a probabilistic sense by using Gaussians based on pairwise
distances in the feature space and student-t distributions induced by eu-
clidean distances in the projection space. Training takes place by a min-
imization of the error in between these distributions as measured by the
Kullback Leibler divergence. Unlike MVU, the resulting cost function can
have local optima resulting in different possible visualizations.

2.1 Dimensionality reduction mapping

While parametric mappings provide an explicit functional form, non-parametric
mappings such as t-SNE, MVU, or Isomap have in common that no direct out-
of-sample extension is available. In [13] a general way how to extend these
prescriptions to a parametric form has been proposed by means of an interpo-
lation by Gaussian kernels. We specify a functional form 7, of the mapping

as follows:
>, ok (x,x;)

> ki) @

X = Tpm (X) =
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where a; € Y are parameters corresponding to points in the projection space
and the data x; are taken as a fixed sample, usually j runs over a small subset
X'’ sampled from the data {x1,...,x,}. k is the Gaussian kernel parameterized
by the bandwidth o7

kj(x,%;) = exp(—0.5]x — x;(1*/(c7)?) (2)

The idea is to determine the parameters of this mapping such that the data
x; and their projections y; obtained with the considered projection technique
are matched as far as possible. Note that the mapping has a generalized linear
form such that training can be done in a particularly simple way provided a
set of samples x; and y; is available. The parameters o; can be analytically
determined as the least squares solution of the mapping: Assume A is the matrix
of parameters o, K is the normalized Gram matrix with entries

(K);; = kj(xivxj)/zkl(xiaxl) (3)
l
and Y denotes the matrix of projections y;, Then, a minimum of the least

squares error
D lyi = mp(xi)|? (4)
i

with respect to the parameters a; has the form
A=Y K (5)

where K1 refers to the pseudo-inverse of K.

The bandwidth o of the mapping constitutes a critical parameter since it
determines the smoothness and flexibility of the resulting kernel mapping. We
use a principled approach to determine this parameter as follows: ¢ is chosen
as a multiple of the distance of x; from its closest neighbor in X’, where the
scaling factor is typically taken as a small positive value. We determine this
factor automatically as the smallest value in such a way that all entries of K are
within the range of representable numbers (respectively a predefined interval).
This technique allows us to extend any given non-parametric mapping to an
explicit parametric form.

2.2 Discriminative dimensionality reduction based on the
Fisher metric

We are interested in mapping a given set of data points x; and the classification
boundary of an underlying classifier f to low dimensions. This problem is in
general ill-posed since data dimensionality is typically larger than two, hence
a faithful projection of data to two dimensions is not possible. More severely,
the decision boundary as defined by a given classifier is also high dimensional
and cannot be visualized together with the data points in a two-dimensional
projection. Hence the actual visualization of the data points depends on the
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chosen projection paradigm, and it is not clear how to map the class boundaries
to this visualization in a meaningful way.

Therefore, we propose to consider a variation of DR techniques which takes
auxiliary information into account, this way specifying which parts of the data
should be visualized. This severely reduces the relevant dimensionality of the
data and class boundaries and hence enables a meaningful visualization. Dealing
with classifiers, we will rely on discriminative DR, techniques which add given
label information to the setting. The task is to visualize only those aspects of the
data which are relevant for the given class labeling — hence only the information
which is also relevant for the given classifier is taken into account.

A variety of different discriminative DR techniques has been proposed, such
as Fisher’s linear discriminant analysis (LDA), partial least squares regression
(PLS), informed projections [7], global linear transformations of the metric
[14, 4], or kernelization of such approaches [25, 2]. A general idea which we
will use in our approach is to locally modify the metric [28, 12] by defining a
Riemannian manifold which takes into account auxiliary information of the data
and which measures the effect of data dimensions in the feature space on this
auxiliary information. This modified metric can then be plugged into any DR
technique which relies on distances only (such as the ones specified above). This
can be done by replacing the commonly used Euclidean distance by the Fisher
distances, as has been done for the SOM and t-SNE in [28, 13].

Basic definition

We assume that class information c assigned to x is available where c is one of a
finite number of different classes. This information can locally be incorporated
into the distance computation by setting the quadratic form of the tangential
space at x as a' J(x)b where a and b are elements of the tangential space of
the data manifold at x and J(x) is the local Fisher information matrix

J(x) = Epeix) { (a% 10gp(CIX)> (a% 10gp(CIX)> T} : (6)

Thereby, p(c|x) denotes the probability of the class information ¢ conditioned
on x. This local positive semidefinite bilinear form has the effect that only
those dimensions are relevant for the distance computation on the data manifold
which affect the given label c. Dimensions which are locally irrelevant do not
contribute. These local measures can be extended to the entire manifold by
taking minimum path integrals along the manifold: the distance of two points
x and x’ on the manifold is measured as

dyv(x,x') = i%f/o \/P/(t)T J(P(t))P'(t)dt (7)

where the infimum is over all differentiable paths P : [0,1] — X with P(0) = x
and P(1) = x/, the integral describing the standard path lengths of P measured
using the Fisher information matrix. This integral is well defined since the
derivative P’(t) is element of the tangential space.
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Approximation of the integral

This integral, however, is usually computationally intractable, hence approx-
imations are used; a description of approximations with their corresponding
advantages and disadvantages can be found in [28]. A popular approach is to
limit paths to the straight line from x to x’ only, and to approximate the integral
by T piecewise constant terms induced by equidistant points on the line from
x to x’. Assume x; =x+ (t — 1)/T - (x' — x). Additionally approximating the
integral as the sum, the exact distance on the manifold dj; can be approximated
by

dr(,x) = 3\ (eer —x0) T (xe) (xes1 — o). (8)

The Fisher information matrix can be directly included into all DR techniques
as specified above by substituting the distances by these Fisher distances.

Approximation of the probabilities

A central part of this modified distance computation consists in the estimation
of the probability p(c|x) of information ¢ given a data point x. In our setting,
there are two essentially different possibilities how to choose this information:

(a) We can use the given class labels ¢; := [; for data point x;, respectively,
as provided in the training set. This choice emphasizes the given 'ground
truth’ of the data. In consequence, the visualization of the classifier will
show in which regions the obtained classification is simple or complex as
compared to this ground truth.

(b) We can use the labeling as provided by the trained classifier ¢ := f(x).
This choice emphasizes aspects of the data which are regarded by the
classifier as interesting. Hence, those aspects of the data are visualized
which influence the trained classification; as an example one can detect
regions of the data where points are regarded as virtually identical by the
classifier.

Apart from the different semantic meaning, this choice has consequences on
the possibilities how to compute the probability p(c|x). The Fisher matrix is
based on the local change of the probability distribution p(c|x), the latter of
which is usually unknown and needs to be approximated. A common way to do
this is to use the Parzen window non-parametric estimator as proposed in [28].
Essentially, computation takes place by estimating class probabilities as

e, (=05 ]x — xil/(07)?)
Db = 08l — /(o)) )

The Fisher information matrix based on the Parzen window estimator becomes

J(x) = ﬁEﬁ(c‘x) {b(x,c)b(x,c)"} (10)
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where
b(x,¢) = Ee(ijx,c){Xi} — Eegijx){Xi} (11)

o de exp(-05 ]~ x[2/(0))
S0 = = e (—0.5]% — 3 2/ (0)?) (12)
exp(~0.5x — x.[[2/(c7)?)
5 exp(—0.5]% — x|/ (07 )P)

FE denotes the empirical expectation, i.e. weighted sums with weights depicted
in the subscripts. If large data sets or out-of-sample extensions are dealt with,
a subset of the data only is usually sufficient for the estimation of J(x).

This yields a correct estimation of the probability density but is computa-
tionally expensive, i.e. O(N?) for N data points. For finite data sets, the result
depends on the chosen bandwidth! ¢? of the estimator. The resulting estimator
is differentiable and the derivatives are reported in [28], for example.

As an alternative, provided the class labels f(x) given by a function are of
interest, it is often possible to rely on the explicit functional form f as provided
by the classifier if the latter yields probabilities for the class labels.

§(ilx) =

(13)

2.3 Inverse dimensionality reduction mapping

Having extended a non-parametric projection to an explicit mapping prescrip-
tion, the question occurs whether an inverse mapping can also be determined.
An explicit inverse would equip us with a bijective identification of the data
manifold and its projection, eventually enabling us to map decision boundaries
of classifiers together with the data itself.

Note that, in general, a direct inversion of a projection mapping 7 : X — Y
is not possible since the projection 7 is usually many to one. Many parametric
techniques nevertheless provide explicit inverse mappings which find a suitable
inverse of the projections to the data manifold, such as discussed for PCA, SOM,
and GTM above. For non-parametric mappings a picewise linear mapping is
developed in [9], where the parameters have to be recomputed for each point.
We propose a similar trick as before which is based on a similar interpolation
idea as in [9] but being fixed and continuous.

We assume that points x; € X and projections 7(x;) = y; € R? are available.
For an inverse projection, we assume the following functional form

> Biki(y,y;)
o ki(y,yi)

where 3, € X are parameters of the mapping and k;(y,y;) = exp(—0.5]y —
yill?/(07)?) constitutes a Gaussian kernel with bandwidth determined by o7
The bandwidth is determined in the same way as for the forward projection.

Summation is over a random subset Y” of the given data projections y; = m(x;),

Y - Xy~ (14)

1\We use the estimator hrot provided in the literature to specify this parameter, see e.g.
[37].
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or over codebooks resulting from a previously run vector quantization on the
Yi-

Depending on the choice of these data and the bandwidth, the problem of
determining the parameters 3; can constitute an underdetermined system. One
particular problem is given by the fact that the inverse mapping 7! of 7 is not
well defined: since the intrinsic data dimensionality is usually larger than two,
the inverse x of a given projection y is ambiguous. Data dimensions which are
not relevant for the projection 7w can be arbitrary. Thus a challenge is the task
to find a suitable inverse projection of m which tolerates such invariances.

We solve this problem by optimization of the following costs with respect to
the parameters 3;

E = Z (d1 (Xi,ﬂ'il()’i))Q) = Z (xi — ﬂfl(yi))TJ(xi) (xi — ﬂfl(yi)) (15)

i

where the matrix J refers to the Fisher information matrix. In contrast to a
standard Euclidean error function, this function has the advantage that those
dimensions in X which are locally relevant for the classification are emphasized.
Invariances of the projection m due to the given class labeling are tolerated in
the inverse projection. We utilize the distance dr with T' = 1 in order to save
computational time. This local approximation works usually well since in the
course of optimization the points x; and 7~ !(y;) will get close to each other.
Minimization of these costs with respect to the parameters 3; takes place by
gradient descent.

3 General Framework

In the last section we have reviewed the following important aspects of dimen-
sionality reduction:

e Parametric extension of non parametric dimensionality reduction tech-
niques: We can optimize a projection of the data and map additional
data points efficiently after the training.

e Supervised projections based on the Fisher metric: We can obtain a su-
pervised projection of the data which focuses particularly on the label
information.

e Parametric inverse dimensionality reduction: Having obtained a projec-
tion of the data, we can investigate interesting regions in the projection
space by mapping data points back to the original data space.

In this section, we are in the position to put these pieces together towards a
general framework for classifier visualization. We assume the following scenario:
a data set including points x; € X is given. Every data point is labeled with
l; € L belonging to a finite set of different labels L. In addition, a classifier
f: X — L has been trained on the given training set, such as a support vector
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machine, a classification tree or a learning vector quantization network. The
standard way to evaluate the performance of the classifier f is by inspecting the
classification error of the function on the given training set or a hold out test set.
This gives us an indication whether the classifier is nearly perfect, corresponding
to 100% accuracy, or whether errors occur. However, the classification error
does not give us a hint about the geometric distribution of the errors (are they
equally distributed in the space, or do they accumulate on specific misclassified
regions), whether errors are unavoidable (due to overlapping regions of the data
or outliers), whether the class boundaries are complex (e.g. due to multiple
modes in the single classes), etc. A visualization of the given data set and the
classifier would offer the possibility to visually inspect the classification result
and to answer such questions. We propose a general framework how to visualize
a classifier and a given data set such as the training set of the classifier.

We extend DR methods as introduced above to also visualize the class bound-
aries of the classifier f. For this purpose, we assume that the label f(x) is ac-
companied by a nonnegative real value r(x) € R which scales with the distance
from the closest class boundary. As an example this could be the activation of
a linear classifier such as SVM, or it could be the class probability if a proba-
bilistic classifier such as robust soft learning vector quantization or a Bayesian
classifier is considered. Note that most classifiers offer a natural way to equip
the mere class output with a smooth value which correlates to the distance to
the decision boundary. Since we do not assume a specific scaling of this output,
any such value will do.

3.1 Naive approach

Assuming a nonlinear dimensionality reduction method is given, a naive ap-
proach to classifier visualization could be like follows:

e Sample the full data space X by points z;.

e Project these points nonlinearly to two dimensional points 7(z;) using
some nonlinear dimensionality reduction technique.

e Display the data points 7(x;) and the contours induced by the sampled
function (7 (z;),r(z;)), the latter approximating the boundaries of the clas-
sifier.

This simple method, however, fails unless X is low dimensional because of two
reasons:

e Sampling X sufficiently requires an exponential number of points, hence
it is infeasible for high dimensional X.

e It is impossible to map a full high dimensional data set faithfully to low
dimensions, hence topological distortions are unavoidable when projecting
the class boundaries.
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The problem lies in the fact that this procedure tries to visualize the class
boundaries in the full data space X. It would be sufficient to visualize only
those parts of the boundaries which are relevant for the given training data x;
and the underlying classification behavior as measured using the Fisher metric.

3.2 Our proposed approach

Therefore, we propose to sample in the projection plane instead of the original
data manifold, and we propose to use a discriminative DR technique to make
the problem of data projection well-posed (since the Fisher metric makes the
data space locally low-dimensional the projection can find a compromise, at
least locally). Together with the techniques presented in the last chapter, this
leads to the following feasible procedure for classifier visualization (see Fig. 1):

e Project the data x; using a nonlinear discriminative DR technique (for
instance utilizing Fisher distances calculated with (8)) guided by the labels
l; leading to points 7(x;) € Y.

e Sample the projection space Y in a regular grid leading to points {z;}" ;.

Determine points z; in the data space X which are projected to these
points 7(z;) &~ z, by training an inverse mapping 7! (minimize (15)) for
these point, relying on the Fisher metric to make it well posed.

e Visualize the training points x; together with the contours of the given
classifier which are induced by the sampled pairs (z;, 7(z;)) and (2}, f(z;)),
where the function value r is provided by the classifier f.

Unlike the naive approach, sampling takes place in R? only and, thus, it is fea-
sible. Further, only those parts of the space X are considered which correspond
to the observed data manifold x;, i.e. the class boundaries are displayed only
as concerns these training data. Note that two different labelings can be used
in this context: the labeling as provided by the function f, or the labeling as
given by labels from the training set, i.e. the ground truth. Depending on which
labeling is used to determine 7 and its inverse 7!, we obtain a visualization of
the classifier which respects invariances of the underlying ground truth label-
ing, or which respects invariances of the observed classifier, allowing different
insights into its behavior as we will demonstrate in the following. Per default,
we will refer to the labels of the classifier unless stated otherwise.

3.3 Evaluation measure

In order to evaluate the quality of a visualization of a classifier, we employ the
following scheme:

e Use the trained classification model to assign to each point x; a label
l; = f(x;) and a certainty value r; = r(x;).
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Figure 1: Principled procedure how to visualize a given data set and a trained
classifier. The example displays a SVM trained in 3D.
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e Utilize the visualized classifier (as described by the classified samples z})
in order to assign to each low-dimensional point y; a class label I} and a cer-
tainty value r;. More precisely, assume that the function findNN(y;, {z}}_)
finds the nearest neighbor of the point y; among the points {z}7_,. Then

l=f (71'_1 (ﬁndNN(yi, {z; ;‘:1))) andr, =r (7'('_1 (ﬁndNN(yi, {z; ;‘:1)))

e Calculate and return the percentage of the accordance of [; and I;. Further,
estimate the accordance of r; and r} with the Pearson correlation.

This procedure provides two quality estimates. The first measure is based on the
labels and describes how many points lie on the same side of a class boundary
as compared to their original positions. Such it yields a measure to how far the
visualization of the classifier can be trusted. The second measure evaluates to
what extend the estimated contours of the classifier are correct.

4 Experiments

In this section we demonstrate our approach for various data sets and scenarios.
In the first experiments, we exemplarily visualize SVMs while later we also apply
our approach to probabilistic LVQ models and classification trees.

In 4.1, we utilize two data sets addressing the user cases 1 and 2 and we
investigate the influence of DR techniques on the visualization of classifiers.
First, we apply PCA (being the most simple and straight forward method)
and show it’s limitations. Further, we compare the SOM (suggested in the
literature) to non-parametric projections. In section 4.2, we perform a sanity
check by visualizing classifiers based on different labellings of the same data.
Here, we also address the previously specified user case 3. In section 4.3 we
empirically analyze the effect of including supervised information and in section
4.4 we consider two types of supervision: given by the original labeling and by
the labels assigned to by the classifier. Additionally, we investigate properties
of the prototype based classifier, thus addressing user case 5. In the last section
4.5 we visualize two other classifiers: a classification tree and a Robust Soft
LVQ model.

Now follows a short description of the classifiers we utilize in our experiments.

e The Support Vector Machine (SVM) [41] trains an optimal linear clas-
sifier in a feature space. The descision function has the form f(x) =
sign (WT(b(X) + b), where w and b are optimized by the method. For the
SVM, we can directly compute the distance from the descision boundary
by 7(x) = (W' ¢(x) +b)/Vw ' w.

Originally, the SVM solves only two-class problems. If more classes are
available we employ a “one versus one” classification scheme (i.e. training
a two-class SVM for each pair of two classes) with a subsequent majority
vote for classification. For this approach, the class boundaries of the re-
sulting SVM mostly coincide with the boundaries of the two-class SVMs,
which is not the case for the “one versus all” scheme (see [23] for more
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Figure 2: Toy data set 1 (left). Note the potential outlier point of class 1 in the
upper right part of the data set. The right image shows toy data set 2.

details). Hence, in the case of more then two classes we specify the over-
all value r(x) to be the minimum distance of x to the class boundary
of each two-class SVM containing the class of x. This “one versus one”
scheme is also employed by the LIBSVM toolbox [6] which we utilize in
the following.

e The Robust Soft LVQ (RSLVQ) classification scheme [35] learns a pro-
totype based probabilistic model for the data such that the likelihood of
correct classification is optimized. A Gaussian mixture is employed as the
probabilistic model, which directly provides probability estimates for r(x).

e (lassification Trees divide the input space into several regions, thereby
using axis aligned decision boundaries. They typically work in a greedy
way, subdividing regions if they contain too many points form different
classes. For this splitting step of cells we use the Gini index. See [22] for
an review of Classification Trees. A probabilistic output for the certainty
of the classification can be provided using the distribution of data points
inside such cells.

4.1 Toy data examples with different DR mappings

We utilize two three-dimensional artificial data sets in order to provide an ex-
ample for our approach and to demonstrate the user tasks 1,2 and 4 as defined
in the introduction. Both data sets consist of two classes and are shown in Fig.
2. For both data sets we train SVMs.

Data set 1 (left) is intrinsically two-dimensional and consists of a plate sur-
rounded by a circle. Each object represents a class. Note that one point of class
1 lies apart from the other samples of that class and close to samples of class
2. We train two SVM models for this data set: a complex one with small RBF
kernels and one with larger RBF kernels. Using PCA for dimensionality reduc-
tion we obtain the two visualizations of the data together with the underlying
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Figure 3: Visualization of two different SVMs trained on data set 1 with PCA.

Figure 4: Visualization of two different SVMs trained on data set 1 with SOM.

classifier shown in Fig. 3.

The left image depicts the complex SVM. It can be directly observed that
the class boundaries are rather complex and that the outlier is classified cor-
rectly, yielding potential generalization disadvantages. The right hand side of
the figure shows the less complex SVM. Here, the rather smooth class bound-
aries are directly visible and a good generalization can be expected due to the
large margin - at the cost of one miss-classification, however. Observing the
complexity of the class boundaries might be very interest, for instance if one is
addressing the bias variance dilemma of the classifier. This is an example how
the user tasks 2 and 4 can be addressed with our proposed framework.

SVMV [44] uses the SOM for dimensionality reduction and yields a very
similar result as can be seen for both SVMs in Fig. 4. The two SVMs can be
distinguished here as well, although, the margin of the classifier is not displayed
so well. This is an effect of the SOM since it is related to vector quantization
and, hence, usually doesn’t place nodes in regions without data (except it has
to due to the neighborhood function, which is the reason for the class boundary
being shown in this example at all).
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Figure 5: Visualization of data set 2 with PCA (left) and the according inverse
projected samples (right).

The quality of the visualization as measured by the accordance of the class
labels assigned to points by the classifier and the labeling that would be assigned
to by the visualization of the classifier amounts to 100% for all visualizations
shown in Figures 3 and 4. The evaluation of the contours describing the cer-
tainty of the classifier amounts to over 0.99.

Data set 2 consists of three clusters. One cluster corresponds to class 2 and it
is surrounded by the other two clusters belonging to class one (see Fig. 2, right).
The topmost two clusters are flat disks while noise is added to the lowest one,
yielding that the lowest two clusters are closer to each other. Furthermore, for
all clusters, the variance along the first two dimensions is higher then along the
third one. This data set is an example for user task 1.

We use this data set to show the drawbacks of PCA and SOM visualizations.
We train a SVM classifier and visualize it with PCA in Fig. 5. The accuracy
of this visualization as concerns the labels amounts only to 42%, accordance of
the contours only to 0.04. As can be verified in Fig. 5 (left), PCA maps the
three clusters on top of each other, making a proper visualization of the classifier
impossible. In these visualizations, we mark the points for which the classifier is
displayed incorrectly with white circles. The right image shows the projections
of the samples from the two-dimensional space into the original data space (this
image is zoomed in on the Z-axis). In this case, the points are mapped to the
first two principal components showing also how the dimension reduction from
three to two dimensions has worked.

The same classifier is visualized by the SOM in Fig. 6. Although, the pro-
jection is much better (99% of the data points are assigned to the correct class
by the map and contours agree with to the value of 0.98) it fails to show the
three distinct clusters. On the contrary, it suggests that there exist two clusters
of class 2. The right hand side of Fig. 6 shows again the inverse samples. Due
to the fact that the inverse mapping 7—! for the SOM is the assignment of a
point to a high-dimensional prototype, these shown samples coincide with the
location of the self-organizing map. The position of this SOM grid explains how
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Figure 6: Visualization of data set 2 with SOM (left) and the according SOM
map (right).

Figure 7: Visualization of data set 2 with t-SNE (left) and the according inverse
projected samples (right).

the projection of the data emerged.

Using t-SNE we obtain the visualization shown in Fig. 7. Here, the three
distinct clusters are visible and, further, it is shown that the class boundary
between the blue cluster and one of the red clusters is more complex. The
quality of the visualization of the classifier amounts to 99% and 0.98 for the
labels and contours, respectively. The right hand side of Fig. 7 shows again the
projected samples. The shown manifold lies smoothly in the data clouds.

Calculating the SOM on the Fisher metric (we use the relational batch SOM
[15] in our experiments for this purpose) we obtain the visualization shown in
Fig. 8. The projection displays much better the original data characteristics
hence it shows that two regions of class one are separated by samples from class
two. So for this data set, the integration of the Fisher metric yields a major
improvement to the approach SVMV. However, the margin of the classifier is
still not visible. The quality evaluation yields the values 99% and 0.99 for the
accordance of labels and certainty.
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Figure 8: Visualization of data set 2 with Fisher SOM (left) and the according
inverse projected samples (right).

Replacing the standard Euclidean metric by the Fisher metric seems to be
advantageous for showing the class sensitive properties of the data. Whether
this generalizes also to other data sets and whether it is also beneficial for the
visualization of classifiers is investigated in section 4.3.

4.2 Visualizing classifiers for different class distributions
of the same points

In this section we demonstrate the suitability of our approach for another ar-
tificial setting: We randomly generate data {x;}_, for n = 500 on a three-
dimensional filled cube and generate three sets of labels for two class problems.
With these experiments, we address the user tasks 1 and 3. The labels are
generated as follows:

1. The first class distribution consists of two clearly separated classes defined
by a linear plane. We refer to the according labels by {I}1}7 ;.

2. For the second labelling {IZ}? ; we employ two parallel separation planes.

3. Here we utilize a random assignment with labels {I3}7_;. An overlapping
class structure originates, thus addressing user task 3.

One thing that all these scenarios have in common is that, although the data
set is intrinsically three-dimensional and impossible to visualize adequately in
two dimensions, the class relevant structure is two dimensional, i.e. at each
point in the data space only one direction is relevant for classification. Further-
more, we believe that locally this property holds for all classifiers that utilize
continuous class boundaries.

Additionally, we project this data set with a random matrix to 10 dimensions.
In this 10-dimensional data space, we train one SVM for each set of labels. The
classification accuracies of these three classifiers are depicted in Table 1.
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Table 1: Classification accuracies of the three SVMs, each trained on a different
label assignment.

I 2 3
training set | 100% 96.5% 51.5%
test set 99.2% 95.2% 48.0%

Figure 9: Visualization of SVMs trained on the 10-dimensional data set with
the labels I} (left), (? (middle) and [3 (right).

We utilize our approach to visualize these classifiers. Thereby, we rely on
Fisher t-SNE to project the data set {x;}?_,, while each time employing different
labels and hence yielding different visualizations of the data. The three resulting
visualizations of the classifiers are depicted in Figure 9.

The accuracy of the three visualizations as measured by the method intro-
duced in section 3.3 based on the labels yields an accordance of 98.6% for the
set {1}, (the left visualization), 96.0% for {I?}"_; (middle) and 100% for
set {I3}7_, (right). The quality based on the certainty yields 0.91 (left), 0.90
(middle) and 0.82 (right).

In addition to the high accordance of the labelling regions, in this case we
know the underlying class structure and, hence, can judge the visualization
qualitatively. The structure of the projected points and of the class regions
agrees largely to the labelling of the asociated case, i.e for case 1 two coherent
structures are present, for case 2 there are 4 coherent regions while for case 3
the labelling does not have any structure.

4.3 Evaluating discriminative dimensionality reduction tech-
niques for classifier visualization

In this section, we utilize the DR techniques t-SNE, Isomap, MVU, SOM and
GTM to visualize classifiers. Exemplarily, we use the SVM here (other classifiers
are visualized in sections 4.4 and 4.5). We apply these methods on the Euclidean
and on the Fisher metric and we use the prefix “Fisher” in front of the DR name
to indicate the latter.

In order to evaluate the effect this change of the metric has, we utilize three
benchmark data sets. Similarly as in [43], we use a randomly chosen subsample
of 1500 samples for each data set to save computational time.
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Figure 10: Empirical comparison of different DR techniques with and without
supervision.

e The letter recognition data set (referred to as letter in the following) com-
prises 16 attributes of randomly distorted images of letters in 20 different
fonts. The data set contains 26 classes and is available at the UCI Machine
Learning Repository [10].

e The phoneme data set (denoted phoneme) consists of phoneme samples
which are encoded with 20 attributes. 13 classes are available and the
data set is taken from LVQ-PAK [21].

e The U.S. Postal Service data set (abbreviated via usps) contains 16 x 16
images of handwritten digits, and hence comprises 10 classes. It can be
obtained from [30]. This data set has been preprocessed with PCA by
projecting all data samples on the first 30 principal components.

As described previously, we employ SVMs with a “one versus one” classifi-
cation scheme for the following data sets with more then two classes.

For each data set we apply the ten DR methods to project all points from
that set. Afterwards, we utilize a ten-fold cross-validation scheme to evaluate
the inverse mapping 7 ~*: The data set is randomly divided into ten parts, where
nine subsets are used to train 7~ ! and the remaining subset is used for evaluation
with our scheme proposed in section 3.3. This procedure is repeated ten times
yielding a mean and standard deviation shown in Fig. 10 for all methods and
all data sets.

For each data set and each DR projection the supervised variant achieves a
better performance for the purpose of classifier visualization. This also holds for
the SOM projection, yielding an improvement to the SVMV method. Further,
the methods Fisher t-SNE, Fisher SOM and Fisher GTM yield the best results

in our experiments.
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Example visualizations of the SVM trained on the phoneme data set are
shown in Fig. 11 and 12. In both, the left column displays the unsupervised
visualizations and the right one the supervised ones. In the right column, the
cluster structure is better visible and, hence, allows a better visualization of the
class boundaries.

4.4 Utilizing supervised information based on a trained
classifier

In this section we apply supervised projections based on the Fisher information
metric which is based on the conditional class probability p(c|x). We illustrate
the difference between estimating p(c|x) from the given labeling ¢ := [ (i.e. from
the ground truth) and estimating p(c|x) from the labels of the classification
model ¢ := f(x), i.e. the difference between using p(I|x) and p(f(x)|x) for the
estimation of the local Fisher information matrix. Both can be done with the
Parzen window estimator. If a probabilistic model is available and if it provides
differentiable probabilities p(f(x)|x), however, an alternative for the latter is to
utilize p(f(x)|x) directly to compute the local Fisher information matrices.

In this section we do the latter, and for this purpose utilize the Robust Soft
LVQ (RSLVQ) classifier which has been briefly summarized in the beginning of
this section. With this classifier, we can demonstrate the user task 5, i.e. how
did the RSLVQ algorithm choose the prototype positions in order to solve the
task.

We create an artificial data set (referred to as data set 3) which is intrin-
sically three-dimensional and, hence, cannot be projected to two dimensions
without information loss. The data points are uniformly sampled in a filled
ball. A posterior labeling is assigned to them such that a nonlinear class struc-
ture emerges. This set is shown in Fig. 13 from two perspectives. Class two
(shown in blue) consists of a continuous tube which is, however, separated by a
gap. Further, there is a distinct noisy region.

An unsupervised projection of this data set with t-SNE is shown in Fig.
14. As expected, the projection distorts the continuous class structure since in
an unsupervised scenario no information about the labeling is available. This
illustrates that unsupervised visualization techniques might not always be well
suited if intrinsically high-dimensional data should be projected to low dimen-
sions. In this example, the displayed information looks almost arbitrary.

For the training of the classifier, we use only four prototypes per class,
which is small considering the complexity of the data set. The trained clas-
sifier achieves a classification accuracy of 90%. Now, a typical use case for the
classifier visualization method occurs: How did the classification method solve
this problem? Which simplifications of the data did the classifier use and which
data points are regarded as similar by the classifier?

In order to answer these questions we visualize the classifier using Fisher
t-SNE build on the original class labels I; on the one hand and on the provided
classification f(x;) on the other hand. We build the visualization of the classifier
on top of these two projections. The two resulting visualizations are depicted
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Figure 11: Visualization of the phoneme data set with the methods t-SNE,
Fisher t-SNE, Isomap, Fisher Isomap, MVU and Fisher MVU.
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Figure 12: Visualization of the phoneme data set with the methods SOM, Fisher
SOM, GTM and Fisher GTM.
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Figure 13: The three-dimensional data set 3 shown from two different perspec-
tives.

in Fig. 15. The left visualization is based on the Parzen window estimator
for the class labels p(l|x): Basically, two clusters of points from class blue are
shown and these are distinct from each other. The visualization quality of
the classifier amounts to 92%. Interestingly, albeit this is not yet perfect, the
visualization looks much more reasonable than direct unsupervised t-SNE on the
data. The right visualization shows the same classifier, but this time based on
the discriminative projection obtained by using the probabilities p(f(x)|x) of the
classifier itself. The data from class two form again two clusters, but this time,
they are close to each other. The quality is estimated to 95%. Furthermore,
the shape of the class boundaries resembles more the expected shape of the
classifier, the latter usually being related to convex regions. In the visualization
based on the ground truth, the original spherical shape of the data is much more
pronounced.

The Parzen window estimator used in the left visualization estimates the
probability density accurately and finds the gap in the blue class tube. In his
part of the data space, the class distribution changes rapidly and, therefore,
the distances in this region grow large, which can directly be observed in the
visualization. The prototype distribution does not fit very well to the visualized
classifier, since in one region of the blue class there are three prototypes of that
class on top of each other and in another region there are none. But since the
visualized class distribution is correct as concerns a large part of the points, we
can see from this visualization that the largest part of the blue class tube is
classified correctly.

In the right visualization which is based on the labeling of the classifier, the
two parts of the tube lie close together. This suggests that the labeling of the
classifier does not change much in this region, i.e. that the data lying in this
gap of the tube are classified incorrectly. This can also be seen directly in the
visualization. For few points the visualization of the classifier is inaccurate, but
these lie close to the class boundary, i.e. imply only small inaccuracies. The



Preprint of the publication [34], as provided by the authors. 27

Figure 14: Projection of data set 3 with t-SNE.

most points (95%) are displayed in the correct region of the classifier. This
time, the location of the prototypes is plausible in relation to the data: the
prototypes of the blue class are surrounded by those of the red class. Such a
constellation is plausible in the original data space.

From the latter visualization we can deduce more information as regards
potential errors as compared to the previous one; we see directly the source of
the remaining classification error: the classifier is not powerful enough and is
not able to classify this gap in the data correctly. Furthermore, there are a few
points from the blue class which lie in the cluster of points from the red class.
From the perspective of this visualization we would deduce that these are either
overlapping regions or too complex regions for our classifier (both aspects are
probably correct: in the high-dimensional data we can see that there is indeed
a region of overlapping classes).

For this toy example we can verify our interpretation by visualizing the po-
sitions of the prototypes in the original data space. Fig. 16 depicts the original
data set in conjunction with the prototypes of the classifier. The same posi-
tioning of the prototypes as in the low-dimensional visualization emerges: the
prototypes of the blue class are surrounded by those of the red class.

4.5 Visualize different classification models

In this section we demonstrate our approach on the real world benchmark data
set USPS for the two classifiers Robust Soft LV(Q and Classification Tree.
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Figure 15: Two visualization of the same RSLVQ classification model: The
projection methods Fisher t-SNE based on the original labeling (left) and Fisher
t-SNE based on the labels from the trained classifier (right) are applied.

Visualization of a Classification Tree

We train a Classification Tree on the USPS data set used in the previous section.
The resulting classifier obtains a classification accuracy of 89% on the training
set and 66% on the test set.

Fig. 17 shows two Fisher SOM visualizations of this classifier: For the left
we employ the Fisher information defined by the labels of the classifier and for
the right one we utilize the original labels for the Fisher information (we use the
Parzen window estimator in both cases). Due to this choice the left visualization
rather shows the ’“view of the classifier” on the data while the right one shows
the true distribution. However, the first one can be better suited to interpret
the trained classification model. In this case the quality of the left visualization
of the classifier is 92.3% and the quality of the right one is 87.8%.

In the left visualization we can see that in the region of class 9 some instances
of class 8 are mixed. In the right visualization this is not the case. Therefore,
we can deduce that the separation of class 8 and 9 is particularly hard for the
given classifier. Further, the classes 5 and 3 seem to overlap (left visualization).
However, these two classes only have very little overlap in the right visualization.
This indicates that the classifier is not complex enough in this region of the data
space, as well.

Furthermore, we re-plot both visualizations with from Fig. 17 in Fig. 18
with the labeling assigned to by the classifier. The visual impression of the two
images shown in Fig. 18 agrees with the result of the formal evaluation measure
suggesting that the left one visualizes the classifier more accurately.
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Figure 16: Data set 3 together with the prototypes of the trained RSLV(Q model.

Visualization of a Robust Soft LVQ model

As a next step, we train a RSLVQ classifier with two prototypes per class on the
USPS data set. The trained model obtains a classification accuracy of 97,2%
on the training and of 87.3% on the test set.

Using the Fisher information as defined by the labels of the classifier and the
Fisher SOM technique, the visualization shown in Fig. 19 (left) results. This
visualization of the classifier has an accordance of 97.9%. The high classification
accuracy can be observed in this visualization, as well. In addition, we can see
directly which classes are mixed up the most time. For example, there are a few
instances of class 7 classified as class 9. Having this knowledge, we could improve
our classifier by increasing the complexity of the class boundary between these
two classes (in this case we could employ more prototypes for these classes).
On the other hand, the visualization suggests that the classes are unimodal.
Furthermore, some prototypes of the same class seem to be located close to
each other (e.g. those of class 0).

In order to obtain another view on the data, we project the classifier also with
Fisher t-SNE (shown on the right of Fig. 19). This method tends to show clus-
tering information (in contrast to the SOM, which doesn’t show gaps between
clusters). The Fisher t-SNE projection indicates further that the complexity of
the model could be reduced without loosing much accuracy, since many proto-
types lie on top of each other. More precise, for all except three classes (1,3
and 5) the two prototypes are positioned on top of each other. We examine this
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Figure 17: Two Fisher SOM visualization of the same Classification Tree
classier. The left visualization is based on labeling provided by the classifier
and the right on the original labels.

hypotheses by training a RSLVQ classifier with only one prototype per class.
Indeed, this model has only a slight accuracy loss: the model classifies 95,1% of
the training set and 86.9% of the test set correct (using the same training/test
set partition as before).

5 Discussion

In this paper we present a general framework to visualize nonlinear classifiers
trained on potentially high-dimensional data sets. This framework makes it
possible to visualize arbitrary classifiers, with the only restriction that they have
to provide some measure of certainty for the classification. We demonstrate
this for Support Vector Machines, Classification Trees and probabilistic LVQ
classifier.

We utilize ten dimensionality reduction methods to visualize classifiers and
state experimentally that among them, supervised DR techniques are particu-
larly well suited for this task.

Further, we demonstrate that a visualization of a trained classifier can give
insights into the classification process. Hence, it can also help to improve the
process itself.

This framework is general, such that it allows to combine arbitrary classifiers
with arbitrary projection methods. As such, it also includes methods from the
literature, as for instance SVMYV. Furthermore, we combine SOM with the Fisher
metric, yielding an improvement of this approach.

The evaluation of these visualized classifiers is currently based on the clas-
sification and certainty accordance of the projected and original classifier. Al-
though we also evaluate the generalization of such visualizations to new points,
other properties of the classifier are not evaluated, yet. Such include the topo-
logical structure of the class boundaries and the size of the margin. These
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Figure 18: Fisher SOM visualization of the Classification Tree where the data
points are labeled according to the classifier. The same projections as shown in
Fig. 17 are utilized.

aspects will be the focus of future work.

Another source for potential improvement comprises the complexity of this
approach. Many non-parametric methods such as t-SNE require squared com-
putational time. Fortunately, approximations in log-linear time have been pro-
posed, recently [46, 38]. Such ideas could also help to reduce the number of
Fisher matrices to be estimated.
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