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Reference Curves Estimation Using Conditional Quantile

and Radial Basis Function Network with Mass Constraint

M.-Anas Knefati · Pierre E. Chauvet ·

Sylvie N’Guyen · Bassam Daya

Abstract This paper focuses on the improvement of reference curves building Y = q(X)

using a fast algorithm, robust against outliers. Our method consists in plugging a radial basis

function neural network in the local linear quantile regression estimation proposed by Yu and

Jones (QYJ). This neural network (QRBFc) is designed with a constructive algorithm, intro-

ducing a constraint on its integral over the input space. After explaining the different models

and algorithms, we compare the QYJ and QRBFc estimators with the quantile regression

neural network (QRNN) implemented by A. J. Cannon through simulations with a known

underlying model using the R software. We observe that the QRBFc estimator reduces the

mean absolute deviation error obtained with other estimators by about 16 %, the introduction

of the constraint allowing to lower the number of neurons and therefore the computation time.

Finally, using a database of 416 electroencephalograms recorded on preterm infants, we com-

pare the QYJ, QRBFc and QRNN models for the building of brain maturation curves which

are based on the dependence of the mean duration of interburst intervals (called IBIs—periods

of quiescence between periods of normal electrical activity) with the age. The pathological

infants represent 12 % of the total population. Denoting by SA the set of individuals whose

coordinates (age, mean IBI length) are above the 90 %-quantile curve, the QRBFc network

M.-A. Knefati (B)

Département de Mathématiques, P2MI Université de Poitiers, 86962 Futuroscope-Chasseneuil, France

e-mail: maknefati@hotmail.com

P. E. Chauvet

LUNAM Université, Université Catholique de l’Ouest and LARIS EA 4094, 3 place André-Leroy,

BP 10808, 49008 Angers, France

e-mail: pierre.chauvet@uco.fr

S. N’Guyen

LUNAM Université, Child Neurology Unit University Hospital and LARIS EA 4094, 4 rue Larrey,

49000 Angers, France

e-mail: sylvie.nguyenthe@gmail.com

B. Daya

IUT Saida, B.P 813, Saida, Lebanon

1



improves by 16.5 % the number of pathological infants in SA compared to QYJ, when QRNN

proved to be too unstable.

Keywords Quantile regression · Radial basis function neural network · Reference curve ·
Brain maturation

1 Motivation

The reference curves are part of the basic tools of the physician practices, in that they can

decide on the vulnerability of an individual against a certain disease. Their construction,

which is based on measurements made on a given set of individuals, shows a partition

between normal and at risk individuals. It was during a project in pediatric neurology that we

have developed a general method for construction of reference curves based on conditional

quantiles and Radial basis function networks (RBFN). Because cerebral injury in newborns

tends to be clinically silent, tools and techniques for neurological evaluation are essential.

The electroencephalogram (EEG) is such a bedside, non-invasive and low cost technique.

The EEG consists in recording the spontaneous electrical activity of the brain through several

electrodes placed on the scalp. In preterm infants, the normal background EEG activity has

the unique characteristic of being spontaneously discontinuous with periods of electrical

activity alternating with periods of quiescence - called interburst intervals (IBIs). Figure 1

illustrates this phenomenon, which is normal in infancy. The diagnostic and prognostic value

of neonatal EEG abnormalities in the preterm infant are well established and the IBI duration

have been shown to be related to abnormal brain maturation in preterm infants [14]. In a

recent study comparing maturation of cerebral activity and cortical folding, IBI duration was

the only parameter significantly linked to morphologic brain maturation [1].

We have developed inside a dedicated web portal a Java application allowing the physician

to extract automatically all the IBIs from an EEG. In this area, artificial neural networks

are used generally for features extraction and classification, particularly for brain computer

Fig. 1 Normal discontinuous EEG tracing in a preterm infant at 26 weeks of gestationnal age consisting in

burst of electrical activities separated by interburst intervals (IBI)
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interfaces (see for example [12,13]). In this work, the features (IBIs) are already detected

and the objective is to build reference curves for brain maturation using these data, easy to

recalculate from new sets of EEG and robust against artefacts and entry mistakes (e.g. age).

Our paper is structured as follows. First we start by reviewing the state of the art in Sect. 2.

Then, after a few reminders about the basics of conditional quantile, we introduce in Sect. 3

the RBFN modeling of the conditional quantile curve; the learning algorithm is based on a

constructive approach with a control of the integral of the model over its input domain (its

mass), and the coupling with the conditional quantile estimator of Yu and Jones (QYJ), to

obtain the so-called QRBFc model. Experiments are carried out in Sect. 4, where we compare

on simulated data with known properties the QYJ, the QRBFc, the quantile regression neural

network models (QRNN), and the possible improvements of the mass constraint. Finally we

present and discuss in Sect. 5 the brain maturation reference curves obtained with the different

models, based on the correlation between the mean length of interburst intervals in the new-

born EEG and its age. We conclude this work in Sect. 6, providing our future work directions.

2 State of the Art

Conditional quantile regression has gained particular attention during the recent three decades

due to their useful applications in various disciplines, such as finance, economics, medicine,

and biology. See for exemple Fan and Gijbels [9] and Cai and Wang [3]. Of particular

interest is the conditional median which is more explainable and more robust than the mean

regression function for asymmetric conditional distributions. For τ ∈ (0, 1), the quantile

regression function gives the τ th quantile qτ (x) in the conditional distribution of a response

variable Y given X = x . It measures the effect of covariates not only in the center of the

population, but also in the lower and upper tails. For x varying in a given real interval, qτ (x)

is a reference curve that predicts vulnerability of an individual with the probability τ or 1−τ

as its associated measured pair (X = x, Y = y) is below or above the curve. A classical

approach to evaluate the conditional quantile function from a sample (X i , Yi ) on a discrete

finite set is the local linear quantile regression method from Yu and Jones (denoted QYJ) in

[16]. As its name suggests, qτ (x) is approximated by a piecewise linear curve, resulting is a

broken line that emphasizes local fidelity to the detriment of regularity, difficult to interpret

as a reference chart.

Cannon [2] developed in R the QRNN package (for Quantile Regression Neural Network)

based on the work from Taylor [11] in the field of time series forecasting. J. W. Taylor used a

one hidden-layer feedforward neural network (FNN) to fit a non-local quantile model. FNN

where successfully used in several domains like robotics and image processing (see for exam-

ple [6,7]) as non linear parametric models. FNN realizes a global approximation of the data,

and by varying the number of neurons it is possible to slide between high/low precision and

smoothness of the quantile modelling. However, standard non-linear FNN with sigmoid trans-

fer functions does not allow local settings on some parts of the data, and the learning process

can be very slow. RBFN has the advantage to allow a faster constructive approach since each

neuron puts emphasis on local data: neurons can be added iteratively, as in Chen et al. [4].

3 The RBFN Modeling of the Conditional Quantile

In this section, we first start with an overview of the conditional quantile. Next, the RBFN

model is presented by mentioning its parameters which are the centers and the weights, and
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we explain how to calculate them introducing constraint on the weights. Finally, we end this

section by explaining our method to improve the estimation of the conditional quantile with

a RBFN network, leading to the QRBFc method.

3.1 An Overview of the Conditional Quantile

Let (X, Y ) be a bivariate random variable, F(y|x) the conditional distribution function of Y

given X = x , and τ ∈ (0, 1). The τ th conditional quantile, noted by qτ (x), is given by

qτ (x) = inf{y ∈ R : F(y|x) ≥ τ } ≡ F−1(τ |x) (1)

or equivalently, by

qτ (x) = arg min
θ

E{ρτ (Y − θ)|X = x}, (2)

where ρτ is the “check function” ρτ (u) = 0.5(|u| + (2τ − 1)u).

The building of predictive intervals is an important application of quantile regression.

Suppose the observations can be modelled as Yi = m(X i ) + γ ǫi where m(.) is an unknown

function, γ is unknown reel parameter and the residual ǫi are uncorrelated random variables

with zero mean and one variance. Then the quantile function can be written as

qτ (x)) = m(x) + γ F−1
ǫ (τ ), (3)

where Fǫ(.) denotes the distribution function of ǫ. A predictive interval is an interval that

predicts, with certain coverage probability, the future value of the response variable Y for

a given covariate X = x . The pairs of extreme conditional quantiles qin f (x) and qsup(x)

map out a conditional prediction interval within which one expects the majority of individual

points to lie. These “reference curves” are popular in medicine (see, e.g, Cole in [5]) and

have provided a stimulus for much of the recent statistical work in this area.

Parametric techniques for estimating conditional quantile can be efficient if the underlying

functions are correctly specified. But a misspecification may cause serious bias, and model

constraint may distort the underlying distribution. Therefore, we will concentrate in this

article on the nonparametric quantile regression, with the advantage that little or no restrictive

prior information on functionals is needed.

Nonparametric estimation of conditional Quantile has been tackled by several authors,

with direct and indirect methods. Direct methods use the “check” function ρτ , taking roots in

definition (2). See, for instance, Fan et al. [8] and Yu and Jones [16] for a local linear estimate

of conditional quantiles. Indirect methods, inspired from (1), are performed in two steps: the

estimation of the conditional distribution is performed first, then the inverse of the obtained

estimator is used to estimate the desired conditional quantile. Examples of indirect methods

are provided by Cai and Wang [3]. Our work is based on the direct estimator proposed by Yu

and Jones [16], because of its robustness in the y direction. The idea is to approximate the

unknown τ th conditional quantile qτ (x) by the linear function

qτ (z) = qτ (x) + q ′
τ (x)(z − x) ≡ a + b(z − x)

for z in the neighborhood of x . This motivated us to define an estimator by setting q̂τ (x) =
â(x), with

(

â(x), b̂(x)

)

= arg min
(a,b)∈R2

n
∑

i=1

ρτ (Yi − a − b(X i − x)) × K (
x − X i

h
), (4)

where K is a kernel density function and h is the smoothing (also called bandwith) parameter,

which is a nonnegative number controlling the size of the local neighborhood. Yu and Jones
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have proposed a “rule-of-thumb” for selecting h:

hτ = hmean

(

τ(1 − τ)

φ(Φ−1(τ ))2

) 1
5

, (5)

where hmean is the optimal choice of h for regression mean estimation, φ and Φ are the

standard normal density and distribution functions. They recommended to use the technique

proposed by Ruppert et al. [10] for selecting hmean.

The solution of the problem (4) can be obtained by using the iteratively reweighted least

squares algorithm, see for exemple Yu [15]. We will denote by QYJ this algorithm (as well as

the resulting quantile curves) used in conjunction with the rule-of-thumb from Yu and Jones

in what follows.

3.2 The RBFN Neural Network Model

A RBFN can be viewed as a FNN with a specific structure that allows an easier constructive

approach. It has one hidden layer in which each neuron computes its output using a radial

basis function (RBF) receiving the inputs, and an output layer which builds a linear weighted

sum of hidden neuron outputs and supplies the network’s response.

An RBF function is a function φ : [0,∞) → R that depends only on the distance from

some point c, called a center, so that it has the form φ(‖x − c‖). In other words, a radial

basis function is radially symmetric with respect to a given norm. We generally choose the

Gaussian function φ(‖x − c‖) = e− ‖x−c‖2

2 .

Because our goal is to produce reference curves, i.e. real functions, we use RBFN with

only one output neuron. Its model is given by:

f̂ (x) =
N

∑

j=1

ω jφ(‖x − c j‖), (6)

where x ∈ R
d , N is the number of hidden neurons, ω j (1 ≤ j ≤ N ) are the weights of

network output layer, c j (1 ≤ j ≤ N ) is the center of the j th hidden neuron, φ(x) is a

gaussian RBF function and ‖.‖ denotes the distance function that is taken, in general, to be

the Euclidean norm. In this work we use the Mahalanobis distance, because it takes into

account the correlations inside the data set and is scale-invariant; in our case, it contributes

to a better adjustment of the neurons width with the data. This distance is defined as

‖x − c‖ =
√

(x − c)tΣ−1(x − c), (7)

where Σ is the covariance matrix of (x1, . . . , xn), and xi ∈ R
d (i = 1,…, n) are the training

data input.

We use in this work an iterative design of the network: neurons are added one at a time

until the mean sum-squared error (MSE) falls beneath an error goal or a maximum number

of neurons has been reached. The choice of the number N of neurons on the hidden layer

of FNN and RBFN networks is crucial. A low number means a very poor performance, or

fidelity, of the network. Instead, a large number of neurons will allow the network to fit

exactly all the data (resulting in a very low MSE), including noise and biased observations:

its regularity will be low. Because N is an integer defining the structure of the network, it

cannot be adjusted like the synaptic weights. It exists for FNN some meta-heuristics (like

genetic algorithms) to adjust N , but this is a slow process. Unlike FNN, RBFN authorizes
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a faster constructive approach because of the locality of the radial basis transfer function in

the hidden layer.

Let xi ∈ R
d be the training data inputs and yi ∈ R be the training data outputs for

i = 1,…, n. We now explain our RBFN learning algorithm.

3.2.1 Computation of the Centers

The algorithm for computation of the centers can be stated as follows:

– Provide the error threshold (err) and the maximum number of neurons Nmax (Nmax ≤
n).

– Initialize N to 0: the initial network does not have any radial functions.

– Store the output vector (y1, ..., yn) in an other vector (y∗
1 , ..., y∗

n ).

– While the total error ( 1
n

∑n
i=1( f̂ (xi ) − yi )

2) is greater than err and N < Nmax do:

– calculate the network output f̂ (xi ) using (6) for each input and the error ri = | f̂ (xi )−
y∗

i | for i =1, . . ., n;

– find the input xl that causes the greatest error, with l = arg maxi∈{1,...,n} ri ;

– add a radial basis function whose center is this entry (cN = xl , N = N + 1);

– recalculate the weight vector W = (ω1, ..., ωn);

– recalculate f̂ (xi ), i =1,...,n;

– initialize to 0 the output value that causes the greatest error, i.e. y∗
l = 0 and f̂ (xl) = 0,

so it will not be chosen again.

We determined here the number of hidden neurons N and the centers c j . We explain in the

next section the computation of the weights.

3.2.2 Computation of the Weights

Due to the fact that the mapping from hidden layer to output layer is linear, the weights

computation becomes a linear problem. Minimization of the MSE yields to the well-known

least square solution:

W = (Φ tΦ)−1Φ t Y, (8)

where Y = (y1, ..., yn)t and

Φ =

⎛

⎜

⎝

φ(x1 − c1) · · · φ(x1 − cN )
...

... · · ·
...

φ(xn − c1) · · · φ(xn − cN )

⎞

⎟

⎠

A first possibility for a robust calculation of the weights is to use Tikhonov regularization

(also called ridge regression). Another suggestion to avoid possible numerical difficulties

due to a singular or near-singular matrix, is to use the pseudo-inverse of a matrix which

generalizes the inverse of a squared matrix. Any matrix can be factored using its singular

value decomposition (SVD) from which its Moore-Penrose or generalized inverse can be

obtained.

After testing these two methods we finally prefer the pseudo-inverse method, that provides

the same results with far less computation time.
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3.2.3 Computation of the Weights using a Mass Constraint

The objective in this section is to modify the previous algorithm to control the mass c of the

RBFN model (its integral over the input domain). This is easier than controlling the energy of

the RBFN (integral of the squared function), since we will be able to bring a linear constraint

on the weights. In the case where the model is positive for all x , the mass of the model is

equivalent to its norm L1, and c appears as a global smoothing parameter. We calculate the

weights of the model (6) such that it satisfies
∫

Rd f̂ (x)dx = c. We have

∫

Rd

f̂ (x)dx =
N

∑

j=1

α jω j ,

where α j =
∫

Rd φ(
‖x−cx j

‖
σ j

)dx for j = 1, ..., N . In our case, φ(‖x−cx j
‖) = exp(− ‖x−cx j

‖2

2
)

is a Gaussian function, then α j = α = (
√

π)d for all j = 1, ..., N . Therefore, for calculating

the weights under the assumption that
∫

Rd f̂ (x)dx = c we obtain the linear constraint:

α
∑N

j=1 ω j = c, with α = (
√

π)d . To solve this least squares constrained problem, let

introduce the Lagrange function given by

L(W, λ) = 1

2

n
∑

i=1

(

yi − f̂ (xi )

)2
+ λ

⎛

⎝α

N
∑

j=1

ω j − c

⎞

⎠

= 1

2

n
∑

i=1

⎛

⎝yi −
N

∑

j=0

ω jφi j

⎞

⎠

2

+ λ

⎛

⎝α

N
∑

j=1

ω j − c

⎞

⎠ ,

where λ is the Lagrange multiplier, φi j = φ(
‖xi −cx j

‖
2

) and W is the vector of weights.

The necessary conditions for optimality are

∂L(W, λ)

∂W
= 0 ⇒ −

n
∑

i=1

⎛

⎝yi −
N

∑

j=1

φi jω j

⎞

⎠φik + d0λ = 0

and

∂L(W, λ)

∂λ
= 0 ⇒ α

N
∑

j=1

ω j − c = 0.

Thus, we have to solve the N + 1 following equations with N + 1 variables:
{

∑N
j=1

(∑n
i=1 φi jφik

)

ω j + αλ =
∑n

i=1 φik yi , k = 1, ..., N

α
∑N

j=1 ω j = c

Like in paragraph III-B2, we use the SVD method to solve these equations.

3.3 Improvement of Conditional Quantile Estimation with a RBFN Network

We explain below our algorithm to improve the QYJ estimator using the RBFN model.

Let (X1, Y1), ..., (Xn, Yn) be a random sample from (X, Y ), and assume the homoscedastic

model:

Yi = m(X i ) + γ ǫi , i = 1, ..., n, (9)
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where m(.) is an unknown function, γ unknown reel parameter and the residuals ǫi are uncor-

related random variables of known distribution with zero mean and one variance. Therefore

the conditional quantile function is defined by:

qτ (x) = m(x) + γ F−1
ǫ (τ ). (10)

The proposed algorithm is explained as follow :

– Estimate first the conditional quantile function qτ (x) using the QYJ estimator with the

Yu and Jone method to select its smoothing parameter; we get q̂
QY J
τ (x).

– From (10), we have

m̂ QY J (xk) = q̂ QY J
τ (xk) − γ̂ F−1

ǫ (τ ),

where γ̂ 2 is the variance of the data outputs, and xk , k = 1, ..., n0 are either regularly

spaced values along x-axis or the values (X1, ..., Xn) taken in the random sample itself.

– Use the RBFN model with entries xk and yk = m̂ QY J (xk) to approximate the unknown

function m(x) to obtain m̂ Q RB F (x).

– Plug-in m̂ Q RB F (x) and γ̂ in (10) to get the improved RBFN conditional quantile esti-

mator:

q̂ Q RB F
τ (x) = m̂ Q RB F (x) + γ̂ F−1

ǫ (τ ) (11)

for all x in the input space.

We denote by QRBF (when we do not use the mass constraint) and QRBFc (when using

the mass constraint) this algorithm and the resulting quantile curves in what follows.

4 Simulations with a Known Underlying Model

The following applications have been made using the R software, with the package “quantreg”

from Koenker [17] for our implementation of the QYJ algorithm and the QRNN R-package

implemented by Cannon [18].

Consider the model

Yi = exp(−X i ) + exp
(

−4(X i − 1)2
)

+ ǫi

for i = 1, ..., n, where {ǫi } are independent and identically N (0, 1) random variables, and

{X i } are exponential random variables with mean 1 independent from {ǫi }. Then the true

conditional quantile function is given by

qτ (x) = exp(−x) + exp
(

−4(x − 1)2
)

+ F−1
ǫ (τ ),

where Fǫ is the cumulative N (0, 1) distribution function.

First, we compare for different sample sizes n and different quantile values τ the per-

formance of the QRBF estimator without constraint with the QYJ estimator and the QRNN

estimator with 5 neurons on the hidden layer (after several tries, 5 neurons appear to be a

good compromise between the error goal and the calculation speed). For this purpose, we ran

100 replications per experiment for several combination of the parameters values n and τ . We

also demonstrate the performance of the estimators in terms of the mean absolute deviation

error (MADE):

M ADE = 1

n0

n0
∑

j=1

|q̂τ (x j ) − qτ (x j )|,

where x j , j = 1, ..., n0 are regularly spaced values between 0 and 3.5.
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τ = 0.1
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τ = 0.9

Fig. 2 Mean absolute deviation error boxplots obtained for sample sizes n = 300 and n = 500, with the

two quantile values τ = 0.1 and τ = 0.9. QY Ji denotes the Yu and Jones QYJ estimator, Q RB Fi its QRBF

improvement, and Q RN Ni denotes the QRNN estimator, where i equals 1 for size 300 and 2 for size 500

Table 1 Median for 100 values of N , Nc and M ADE with mass constraint c

Sample

size

τ = 0.9 N̄ N̄1 N̄5 N̄10 N̄20 N̄50 N̄100 N̄500 N̄1000 N̄5000

n = 300 Neurons 82 80 78 58 56 59 76 100 100 100

MADE 0.242 0.238 0.24 0.24 0.24 0.24 0.24 0.284 0.329 2.962

n = 500 Neurons 102 87 92 62 51 59 88 166 166 166

MADE 0.197 0.196 0.199 0.198 0.198 0.198 0.199 0.218 0.254 0.757

N̄ denotes the median number of neurons on the RBFN hidden layer with no mass constraint and N̄c this same

median number using a mass constraint equals to c

We can see on Fig. 2 the boxplots of the 100 MADE values for the QYJ, QRBF and QRNN

estimators, with τ = 0.1 and τ = 0.9. The QRBF estimator is better than its Yu and Jones

counterpart and the QRNN estimator : (i) the MADE median of QRBF is lower than QYJ and

QRNN; (ii) the MADE spread of QYJ and QRBF is smaller than QRNN. The computation

time for the QRNN model is an average of 3 times that of QRBF and QYJ.

We then studied the impact of the mass constraint on the MADE median and on the

number N of neurons in the hidden layer. We denote Nc the number of hidden neurons

obtained by the constructive learning method under the constraint
∫

R
f̂ (x)dx = c. We ran

100 replications for each simulation with different values of c. We found that the median

of Nc values is smaller than the median of N values for all values of τ and some values

of c.

In the Table 1, we see the median of M ADE , N and Nc obtained for several values of c, in

the case of τ = 0.9 and sample sizes equal to 300 and 500, after 100 simulations. It appears

clearly that controlling the RBFN mass (i.e calculating weights under constraint) uses, for

some values of c, less neurons and the MADE obtained is nearly the same one obtained from

RBFN without constraint. In our example, we can see from the Table 1 that c = 10 or c = 20

could be a suitable choice, but we think, according to this table, that an optimal choice should

exist. This is the center of our actuel research.
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Fig. 3 Boxplot of the number of hidden neurons in the QRBF estimator for both cases: computing the weights

without constraint (N ) and with constraint (Nc with c = 10). First row: sample size equals to 300; second

row: sample size equals to 500

Table 2 cfor the different estimators; QYJ denotes the classical Yu and Jones linear quantile estimator, QRBF

its improvement using the RBFN without mass constraint, QRBFc the RBFN with mass constraint, and QRNN

denotes the quantile regression feedforward neural network from A. J. Cannon (τ = 0.9 and sample size:

n = 500)

QRNN QYJ QRBF QRBF10

Error 0.237 0.237 0.198 0.198

Time 2.69 0.91 1.385 1.01

The Fig. 3 illustrates, also, this fact for five quantile values, two sample sizes and three

values of c. We think that the mass constraint act like a smoothing or regularization parameter

and it would reduce the variance of the RBFN estimator by keeping, nearly, the same MADE

error obtained by RBFN without constraint.

In Table 2, we put the median of MADE and computation time for every estimator, with

the sample size equals to 500 and the quantile order equals to 0.9. According to this table we

can see that the QRBF estimator (with or without mass constraint) reduces in this example

the relative error by about 16 % for QRNN and for QYJ. Moreover, introducing the mass

constraint in the QRBF estimator improves its computation time by reducing significantly

its number of neurons. For this reason, we recommend to calculate the RBFN weights using

the mass constraint as explained in paragraph (3.2.3), as we reduce the error against the QYJ

estimator while we improve the speed against other neural network estimators.
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5 Application to the Building of Brain Maturation Reference Curves

The next results were obtained from the automatic analysis of 416 EEG recorded between

years 2003 and 2004 on newborn infants, with relative informations such that the infant

outcome, age (from birthday and gestational), other neurological evaluations, etc. Moreover,

each EEG in this database was visually analyzed and categorized as “artefact”, “normal”,

“doubtful” or “pathological”. A specific algorithm was built during this research to detect

IBIs using an approach mimicking visual analysis. The algorithm is designed to study on

each channel the variation of the signal estimated variance between contiguous short time-

windows. An IBI on one channel is detected if this variation is lower than a given threshold

and EEG (global) IBIs are finally computed as the intersection of channel’s IBIs. More

precisely, our algorithm is described by the following sequence of operations:

– each channel is filtered at 50Hz (that corresponds to frequency of electricity supply within

European Union) with a second order Butterworth designed IIR filter;

– each channel is smoothed with a moving window using the simple average;

– each channel is processed to produce an estimate of the standard deviation on overlapped

windows, a standard deviation series.

– this is a two steps operation; (i) for each resulting standard deviation series, if the dif-

ference between two successive values is lower than a given VT threshold (in μV ) the

corresponding time intervals are aggregated and an IBI is defined by an aggregated time

interval if it lasts at least m1 seconds; (iii) finally, IBIs separated by less than m2 seconds

are regrouped.

– the intersection of IBIs between all the EEG channels is computed, and only the IBIs of

a length greater than m3 seconds are retained.

By comparisons between the IBIs marked by the specialist and the IBIs detected by this

algorithm, we set the parameter values to VT = 15 μV , m1 = 1 s, m2 = 0.5 s and m3 = 1 s.

For each EEG the mean IBI length is computed and plotted versus the gestational age

of the infant. From the couple (age , mean IBI length) we have traced the reference curves

using the QRNN, the QYJ and the QRBFc estimators. Figures 4 and 5 shows the results

obtained with two levels of the quantile (0.1 and 0.9). It clearly appears that the improved

Fig. 4 Brain maturation

reference curve for age in days

(quantile levels τ = 0.1 and

τ = 0.9) obtained with the

improved QRBF10 estimator

using a regular grid with 100

points and the automatic IBI

analysis of 416 EEG recorded in

2003–2004
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Fig. 5 Brain maturation reference curves obtained with the QRNN (left) and the QYJ (right) estimators

Table 3 Mean IBI’s length and

age in each EEG set; the T otal

row is the initial set of 416 EEG

EEG set Mean IBI length (s) Mean age (days)

Total 13.3369 216.0832

QYJ

SA 39.4740 202.9307

SI N 9.1188 219.2450

SU 2.5125 218.0835

QRBF

SA 40.4922 216.1256

SI N 11.9003 215.1669

SU 1.1202 222.3292

QRBFc estimator (Fig. 4) produces smoother curves, easier to use, than the QYJ estimator.

The QRNN estimator produces very different cuves from one try to another as the learning

algorithm is stochastic. The QRNN curves are generally less smooth, with sometimes a totally

flat curve for τ = 0.1, and other times an inversion between the lower and the higher curves.

The two curves define three areas allowing one to build three disjoint EEG sets denoted

SA, SI N and SU , by taking EEG whose coordinates (age, mean IBI length) are respectively

above the higher curve, between the two curves inclusively and under the lower curve. The

union of these three sets is equal the initial total set, and the population at risk is defined

by the set SA. To compare these sets we have first calculated for each one the mean of the

EEG mean IBI lengths and the mean of the ages (from birthday): the results are provided in

Table 3. One can see that the sets SA defined by QYJ and QRBFc have a longer mean IBI

length by about three times that of the total set. This is perfectly consistent with the following

clinical outcome: the higher the mean IBI length, the greater the risk of abnormal maturation

is important. The mean age of the population in SA is about 203 days for QYJ and 216 days

for QRBFc. Clinical studies have shown that the older the age, the less the IBIs must be long:

in an individual with normal cerebral development, the IBIs should disappear. Therefore the

QRBFc best defines the population at risk: its mean age is slightly higher than the mean age

of the total population, when QYJ provides a younger population for which it is less unusual

to have longer IBIs. We have computed too the percentages of EEG for each set in each

12



Table 4 Percentages of EEG in

categories “artefact”, “normal”,

“doubtful” or “pathological” for

each set; the T otal row is the

initial set of 416 EEG

EEG set Artefact Normal Doubtful Pathological

Total 1.9231 65.8654 20.1923 12.0192

QYJ

SA 0 33.3333 29.3333 37.3333

SI N 6.3291 84.8101 5.0633 3.7975

SU 1.1450 69.4656 22.1374 7.2519

QRBF

SA 0 25.6410 20.5128 53.8462

SI N 10.4167 75.0000 6.2500 8.3333

SU 0.9119 69.3009 22.1884 7.5988

category normal, doubtful and pathological (results in Table 4). The pathological individuals

represent 12 % of the total population, 37 % in the SA set defined by QYJ and 54 % in the

SA set defined by QRBFc. This confirms the improved ability of the QRBFc model to build

the population at risk.

6 Conclusion and Perspectives

Our approach to build reference curves is based on the nonparametric linear quantile regres-

sion from Yu and Jones. Its advantages are its robustness to outliers and measurement errors.

Moreover, the fact that it is non-parametric allows us to construct the reference curve without

a priori assumption. We improved ease of use and performance by reshaping the QYJ esti-

mator with a RBFN network. Indeed, the network is defined for all values of x in the input

space: whatever the input x presented by the user, the network produces a prediction without

going through all the steps of QYJ algorithm. Somehow, we constructed a parametric model

based on a non-parametric approach.

We have shown with simulations that the median (and to a lesser extent the spread) of the

mean absolute deviation error obtained for 100 replications with the QRBF estimator is less

than that obtained with the QYJ and QRNN estimators for different values of the quantile level

τ . We have also find in several simulations that the QRNN estimator is not stable specially

when n is small. We introduced in paragraph II-B3 a constraint on the “estimator’s mass”, i.e.

its integral value over the input space, that can act like a smoothing or regularization parameter

if the estimator is a positive function. This mass constraint becomes a linear constraint on the

weights that is easily integrated in the algorithm of the RBFN construction, with very low

additional computational cost. This constraint significantly reduces the number of hidden

layer’s neurons for a given range of the values of the constraint c: the computation time

for plug-in a RBFN neural network in the classical quantile regression approach becomes

marginal when the efficiency in term of error gains ground. Further work will be carried out

to improve the qualities of the QRBFc estimator by automating the settings of c.

Concerning the IBI curves reflecting the brain maturation, further studies are in progress

in order to establish the relationships between these values and the neurological outcome of

the infants. We ought to propose reference curves that could help the medical physician in

the assessment of the EEG and the neurological status of the preterm infants.
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