Skip to main content
Log in

A Novel Spatial Analysis Method for Remote Sensing Image Classification

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

A new and efficient classification model is introduced in this paper. The proposed model enjoys the information of null space of within-class and range space of within-class. And the proposed model aims at defining a reliable spatial analysis criterion for the remote sensing image, taking advantage of the differences in different areas. Finally, by incorporating fisher linear discriminant analysis and support vector machine (or K-nearest neighbor) classifier among image pixels, the model obtained more accurate classification results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gong P, Howarth PJ (1992) Frequency-based contextual classification and gray-level vector reduction for land-use identification. Photogramm Eng Remote Sens 58(4):423–437

    Google Scholar 

  2. Kontoes C, Wilkinson GG, Burrill A, Goffredoa S, Megier J (1993) An experimental system for the integration of GIS data in knowledge-based image analysis for remote sensing of agriculture. Int J Geogr Inf Syst 7(3):247–262

    Article  Google Scholar 

  3. Foody GM (1996) Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data. Int J Remote Sens 17(7):1317–1340

    Article  Google Scholar 

  4. San Miguel-Ayanz J, Biging GS (1997) Comparison of single-stage and multi-stage classification approaches for cover type mapping with TM and SPOT data. Remote Sens Environ 59(1):92–104

    Article  Google Scholar 

  5. Aplin P, Atkinson PM, Curran P (1999) Per-field classification of land use using the forthcoming very fine spatial resolution satellite sensors: problems and potential solutions. In: Atkinson PM, Tate NJ (eds) Advances in remote sensing and GIS analysis. Wiley, New York, pp 219–239

    Google Scholar 

  6. Stuckens J, Coppin PR, Bauer ME (2000) Integrating contextual information with per-pixel classification for improved land cover classification. Remote Sens Environ 71(3):282–296

    Article  Google Scholar 

  7. Franklin SE, Peddle DR, Dechka JA, Stenhouse GB (2002) Evidential reasoning with Landsat TM, DEM and GIS data for landcover classification in support of grizzly bear habitat mapping. Int J Remote Sens 23(21):4633–4652

    Article  Google Scholar 

  8. Pal M, Mather PM (2003) An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens Environ 86(4):554–565

    Article  Google Scholar 

  9. Gallego FJ (2004) Remote sensing and land cover area estimation. Int J Remote Sens 25(15):3019–3047

    Article  Google Scholar 

  10. Zhang R, Ma J (2008) An improved SVM method P-SVM for classification of remotely sensed data. Int J Remote Sens 29(20):6029–6036

    Article  Google Scholar 

  11. Melgani F, Serpico SB (2002) A statistical approach to the fusion of spectral and spatio-temporal contextual information for the classification of remote-sensing images. Pattern Recognit Lett 23(9):1053–1061

    Article  MATH  Google Scholar 

  12. Bardossy A, Samaniego L (2002) Fuzzy rule-based classification of remotely sensed imagery. IEEE Trans Geosci Remote Sens 40(2):362–374

    Article  Google Scholar 

  13. Bruzzone L, Cossu R (2002) A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps. IEEE Trans Geosci Remote Sens 40(9):1984–1996

    Article  MATH  Google Scholar 

  14. Hughes G (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 14(1):55–63

    Article  Google Scholar 

  15. Quan JJ, Wen XB, Xu XQ (2008) Multiscale probabilistic neural network method for SAR image segmentation. Appl Math Comput 205(2):578–583

    MathSciNet  MATH  Google Scholar 

  16. Zhang Y, Wu L, Neggaz N, Wang S, Wei G (2009) Remote-sensing image classification based on an improved probabilistic neural network. Sensors 9(9):7516–7539

    Article  Google Scholar 

  17. Yu J, Tao D, Wang M (2012) Adaptive hypergraph learning and its application in image classification. IEEE Trans Image Process 21(7):3262–3272

    Article  MathSciNet  Google Scholar 

  18. Yu J, Tao D, Li J, Cheng J (2014) Semantic preserving distance metric learning and applications. Inf Sci 281:674–686

    Article  MathSciNet  Google Scholar 

  19. Yu J, Rui Y, Tao D (2014) Click prediction for web image reranking using multimodal sparse coding. IEEE Trans Image Process 23(5):2019–2032

    Article  MathSciNet  Google Scholar 

  20. Yu J, Rui Y, Tang YY, Tao D (2014) High-order distance-based multiview stochastic learning in image classification. IEEE Trans Cybern. doi:10.1109/TCYB.2014.2307862

  21. Liu W, Tao D (2013) Multiview hessian regularization for image annotation. IEEE Trans Image Process 22(7):2676–2687

    Article  MathSciNet  Google Scholar 

  22. Liu W, Tao D, Cheng J, Tang Y (2014) Multiview hessian discriminative sparse coding for image annotation. Comput Vis Image Underst 118:50–60

    Article  Google Scholar 

  23. Jolliffe IT (2002) Principal component analysis. Springer, Berlin

    MATH  Google Scholar 

  24. Schölkopf B, Smola A, Muller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319

    Article  Google Scholar 

  25. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  26. Dianat R, Kasaei S (2010) Dimension reduction of remote sensing images by incorporating spatial and spectral properties. AEU-Int J Electron Commun 64(8):729–732

    Article  Google Scholar 

  27. Fauvel M, Chanussot J, Benediktsson JA (2012) A spatial-spectral kernel-based approach for the classification of remote-sensing images. Pattern Recognit 45(1):381–392

    Article  Google Scholar 

  28. Fauvel M et al (2013) Advances in spectral-spatial classification of hyperspectral images. Proc IEEE 101(3):652–675

    Article  Google Scholar 

  29. Liu J, Wu Z, Wei Z, Xiao L, Sun L (2013) Spatial-spectral kernel sparse representation for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 6(6):2462–2471

    Article  Google Scholar 

  30. Camps-Valls G, Bruzzone L (2005) Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens 43(6):1351–1362

    Article  Google Scholar 

  31. Gao J, Fan L (2011) Kernel-based weighted discriminant analysis with QR decomposition and its application face recognition. WSEAS Trans Math 10(10):358–367

    MathSciNet  Google Scholar 

  32. Gao J, Li L, Fan L, Xu L (2013) An application of weighted kernel fuzzy discriminant analysis. Adv Comput Math Appl 2(4):329–338

    MathSciNet  Google Scholar 

  33. Gao J, Fan L, Li L, Xu L (2013) A practical application of kernel-based fuzzy discriminant analysis. Int J Appl Math Comput Sci 23(4):887–903

    Article  MathSciNet  MATH  Google Scholar 

  34. Gao S, Tsang IWH, Chia LT (2010) Kernel sparse representation for image classification and face recognition, Computer Vision-ECCV 2010. Springer, Berlin, pp 1–14

  35. Gao J, Xu L, Shi A, Huang F (2014) A kernel-based block matrix decomposition approach for the classification of remotely sensed images. Appl Math Comput 228:531–545

    MathSciNet  Google Scholar 

  36. Ye J, Li Q (2005) A two-stage linear discriminant analysis via QR-decomposition. IEEE Trans Pattern Anal Mach Intell 27(6):929–941

    Article  Google Scholar 

  37. Chen L, Liao HM, Ko M, Lin J, Yu G (2000) A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognit 33(10):1713–1726

    Article  Google Scholar 

  38. Yu H, Yang J (2001) A direct LDA algorithm for high-dimensional data-with application to face recognition. Pattern Recognit 34(10):2067–2070

    Article  MATH  Google Scholar 

  39. Li X, Fei S, Zhang T (2009) Median MSD-based method for face recognition. Neurocomputing 72(16):3930–3934

    Article  Google Scholar 

  40. Gao J, Fan L, Xu L (2013) Median null (Sw)-based method for face feature recognition. Appl Math Comput 219(12):6410–6419

    MathSciNet  MATH  Google Scholar 

  41. Koç M, Barkana A (2011) A new solution to one sample problem in face recognition using FLDA. Appl Math Comput 217(24):10368–10376

    MathSciNet  MATH  Google Scholar 

  42. Pan Y, Wu J, Huang H, Liu J (2012) Spectral regression discriminant analysis for hyperspectral image classification. ISPRS-Int Arch Photogramm Remote Sens Spat Inf Sci 1:503–508

    Article  Google Scholar 

  43. Ghosh A, Mishra NS, Ghosh S (2011) Fuzzy clustering algorithms for unsupervised change detection in remote sensing images. Inf Sci 181:699–715

    Article  Google Scholar 

  44. Bandos TV, Bruzzone L, Camps-Valls G (2009) Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans Geosci Remote Sens 47(3):862–873

    Article  Google Scholar 

  45. Geva S, Sitte J (1991) Adaptive nearest neighbor pattern classification. IEEE Trans Neural Netw 2(2):318–322

    Article  Google Scholar 

  46. Cover TM, Hart FE (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory IT–13(1):21–27

    Article  MATH  Google Scholar 

  47. Cover TM (1965) Geometrical and statistical properties of systems of linear inequalities with application in pattern recognition. IEEE Trans Electron Comput 14(3):326–334

    Article  MATH  Google Scholar 

  48. Schölkopf B, Smola A (2002) Learning with kernels-support vector machines, regularization, optimization and beyond. MIT Press, Cambridge

    Google Scholar 

  49. Fauvel M, Benediktsson JA, Chanussot J, Sveinsson JR (2008) Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans Geosci Remote Sens 46(11):3804–3814

    Article  Google Scholar 

  50. Tuia D, Camps-Valls G (2011) Urban image classification with semisupervised multiscale cluster kernels. IEEE J Sel Top Appl Earth Obs Remote Sens 4(1):65–74

    Article  Google Scholar 

  51. Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens 66(3):247–259

    Article  Google Scholar 

  52. Sun C, Lam KM (2013) Multiple-kernel multiple-instance similarity features for efficient visual object detection. IEEE Trans Image Process 22(8):3050–3061

    Article  MathSciNet  Google Scholar 

  53. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  54. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machine http://www.csie.ntu.edu.tw/cjlin/libsvm

  55. IEEE, GRSS data fusion technical committee (2012) http://www.grss-ieee.org/community/technical-committees/datafusion/

Download references

Acknowledgments

The authors are very grateful to the editor and anonymous referees reviews for their valuable comments and helpful suggestions. In addition, this work is supported by National Natural Science Foundation of P.R. China (Grant No. 61271386), and the Graduates’ Research Innovation Program of Higher Education of Jiangsu Province of P.R. China (Grant No. CXZZ13-0239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Xu, L. A Novel Spatial Analysis Method for Remote Sensing Image Classification. Neural Process Lett 43, 805–821 (2016). https://doi.org/10.1007/s11063-015-9447-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-015-9447-0

Keywords

Mathematics Subject Classification

Navigation