Skip to main content

Advertisement

Log in

An Evolutionary Radial Basis Function Neural Network with Robust Genetic-Based Immunecomputing for Online Tracking Control of Autonomous Robots

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper presents an evolutionary radial basis function neural network with genetic algorithm and artificial immune system (GAAIS-RBFNN) for tracking control of autonomous robots. Both the GAAIS-RBFNN computational intelligence and online tracking controller are implemented in one field-programmable gate array (FPGA) chip to cope with the optimal control problem of real-world mobile robotics. The hybrid GAAIS paradigm incorporated with Taguchi quality method is employed to determine the optimal structure of RBFNN. The control parameters of tracking controller are online tuned by minimizing the performance index using the proposed GAAIS-RBFNN to achieve trajectory tracking. Experimental results and comparative works are conducted to show the effectiveness and merit of the proposed FPGA-based GAAIS-RBFNN tracking controller using system-on-a-programmable-chip technology. This FPGA-based online hybrid GAAIS-RBFNN intelligent controller outperforms the existing bio-inspired RBFNN controllers using individual GA and AIS algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Broomhead DS, Lowe D (1988) Multivariable functional interpolation and adptive networks. Complex Syst 2:321–355

    MathSciNet  MATH  Google Scholar 

  2. Guillén A, Rojas I, González J, Pomares H (2007) Output value-based initialization for radial basis function neural networks. Neural Proc Lett 25:209–225

    Article  Google Scholar 

  3. Jin N, Liu D (2008) Wavelet basis function neural networks for sequential learning. IEEE Trans Neural Netw 19(3):523–528

    Article  Google Scholar 

  4. Khosravi H (2012) A novel structure for radial basis function networks–WRBF. Neural Proc Lett 35:177–186

    Article  Google Scholar 

  5. Hong GH, Wu XL, Qiao JF (2013) Real-time model predictive control using a self-organizing neural network. IEEE Trans Neural Netw Learn Syst 24(9):1425–1436

    Article  Google Scholar 

  6. Tsai CC, Huang HC, Lin SC (2010) Adaptive neural network control of a self-balancing two-wheeled scooter. IEEE Trans Ind Electron 57(4):1420–1428

    Article  Google Scholar 

  7. Wai Y, Fang J, Zhao P, Liu S, Wen J (2013) TCSC nonlinear adaptive damping controller design based on RBF neural network to enhance power system stability. J Electr Eng Technol 8(2):252–261

    Article  Google Scholar 

  8. Zhong J, Feng Y, Ye C, Ou L, Li Z (2007) Artificial immune networks based radial basic function neural networks construction algorithm and application. In: International conference on natural computation, pp 104–107

  9. Guo L, Huang DS, Zhao W (2003) Combining genetic optimisation with hybrid learning algorithm for radial basis function neural networks. Electron Lett 39(22):1600–1601

    Article  Google Scholar 

  10. Cheng CH, Ye JX (2011) GA-based neural network for energy recovery system of the electric motocycle. Expert Syst Appl 38(4):3034–3039

    Article  Google Scholar 

  11. Taguchi G (1986) Introduction to quality engineering. Quality Resources, White Plains

    Google Scholar 

  12. Hasanien HM (2013) Design optimization of PID controller in automatic voltage regulator system using Taguchi combined genetic algorithm method. IEEE Syst J 7(4):825–831

    Article  Google Scholar 

  13. Yang CD, Luo CC, Liu SJ, Chang YH (2005) Applications of genetic-Taguchi algorithm in flight control designs. J Aerosp Eng 18(4):232–241

    Article  Google Scholar 

  14. Tsai JT, Chou JH, Liu TK (2006) Optimal design of digital IIR filters by using hybrid Taguchi genetic algorithm. IEEE Trans Ind Electron 53(3):867–879

    Article  Google Scholar 

  15. Huang HC (2012) FPGA-based hybrid GA-PSO algorithm and its application to global path planning for mobile robots. Przeglad Elektrotechniczny (Electr Rev) 7:281–284

    Google Scholar 

  16. Gutiérrez PA, Hervas-Martinez C, Martínez-Estudillo FJ (2011) Logistic regression by means of evolutionary radial basis function neural networks. IEEE Trans Neural Netw 22(2):246–263

    Article  Google Scholar 

  17. Nie R, Yue J (2008) A GA and particle swarm optimization based hybrid algorithm. In: IEEE congress on evolutionary computation, pp 1047–1050

  18. Zhu WH, Lamarche T, Dupuis E, Jameux D, Barnard P, Liu G (2013) Precision control of modular robot manipulators: the VDC approach with embedded FPGA. IEEE Trans Robot 29(5):1162–1179

    Article  Google Scholar 

  19. Tsai CC, Huang HC, Lin SC (2011) FPGA-based parallel DNA algorithm for optimal configurations of an omnidirectional mobile service robot performing fire extinguishment. IEEE Trans Ind Electron 58(3):1016–1026

    Article  Google Scholar 

  20. Shao X, Sun D (2007) Development of a new robot controller architecture with FPGA-based IC design for improved high-speed performance. IEEE Trans Ind Inform 3(4):312–321

    Article  Google Scholar 

  21. Johnson-Williams NG, Miyaoka RS, Li X, Lewellen TK, Hauck S (2011) Design of a real time FPGA-based three dimensional positioning algorithm. IEEE Trans Nuclear Sci 58(1):26–33

    Article  Google Scholar 

  22. Jianting M, Kharboutly H, Benali A, Ben A, Bouzit M (2014) Design of omnidirectional mobile platform for balance analysis. IEEE/ASME Trans Mech 19(6):1872–1881

    Article  Google Scholar 

  23. Watanabe K, Shiraishi Y, Tzafestas S, Tang J, Fukuda T (1998) Feedback control of an omnidirectional autonomous platform for mobile service robots. J Intell Robot Syst 22:315–329

    Article  Google Scholar 

  24. Kim H, Kim BK (2014) Online minimum-energy trajectory planning and control on a straight-line path for three-wheeled omnidirectional mobile robots. IEEE Trans Ind Electron 61(9):4771–4779

    Article  Google Scholar 

  25. Kim KB, Kim BK (2011) Minimum-time trajectory for three-wheeled omnidirectional mobile robots following a bounded-curvature path with a referenced heading profile. IEEE Trans Robot 27(4):800–808

    Article  Google Scholar 

  26. Wong CC, Wang HY, Li SA, Cheng CT (2007) Fuzzy controller designed by GA for two-wheeled mobile robots. Int J Fuzzy Syst 9(1):22–30

    Google Scholar 

  27. Lin CT, Jou CP (1999) Controlling chaos by GA-based reinforcement learning neural network. IEEE Trans Neural Netw 10(4):846–859

    Article  Google Scholar 

  28. Lopez IL, Willigenburg LG, Straten GV (2003) Efficient differential evolution algorithms for multimodal optimal control problems. Appl Soft Comput 3(2):97–122

    Article  Google Scholar 

  29. Benedetti M, Azaro R, Franceschini D, Massa A (2006) PSO-based real-Time control of planar uniform circular arrays. IEEE Antennas Wirel Propag Lett 5(1):545–548

    Article  Google Scholar 

  30. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  31. de Castro LN, Timmis JI (2003) Artificial immune systems as a novel soft computing paradigm. Soft Comput 7:526–544

    Article  Google Scholar 

  32. Lin SW, Chen SC (2011) Parameter tuning, feature selection and weight assignment of features for case-based reasoning by artificial immune system. Appl Softing Comput 11:5042–5052

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Ministry of Science and Technology, Taiwan, R.O.C., under Grant MOST 103-2221-E-197-028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsu-Chih Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, HC., Chiang, CH. An Evolutionary Radial Basis Function Neural Network with Robust Genetic-Based Immunecomputing for Online Tracking Control of Autonomous Robots. Neural Process Lett 44, 19–35 (2016). https://doi.org/10.1007/s11063-015-9452-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-015-9452-3

Keywords

Navigation