Skip to main content
Log in

Constrained Self Organizing Maps for Data Clusters Visualization

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

High dimensional data visualization is one of the main tasks in the field of data mining and pattern recognition. The self organizing maps (SOM) is one of the topology visualizing tool that contains a set of neurons that gradually adapt to input data space by competitive learning and form clusters. The topology preservation of the SOM strongly depends on the learning process. Due to this limitation one cannot guarantee the convergence of the SOM in data sets with clusters of arbitrary shape. In this paper, we introduce Constrained SOM (CSOM), the new version of the SOM by modifying the learning algorithm. The idea is to introduce an adaptive constraint parameter to the learning process to improve the topology preservation and mapping quality of the basic SOM. The computational complexity of the CSOM is less than those with the SOM. The proposed algorithm is compared with similar topology preservation algorithms and the numerical results on eight small to large real-world data sets demonstrate the efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. North East.

References

  1. Arous N (2010) On the search of organization measures for a kohonen map case study: speech signal recognition. Int J Digit Content Technol Appl 4(3):75–84

    Article  Google Scholar 

  2. Bauer HU, Pawelzik K (1992) Quantifying the neighborhood preservation of self-organizing feature maps. IEEE Trans Neural Netw 3(4):570–579

    Article  Google Scholar 

  3. Bernd F (1995) Growing grid—a self-organizing network with constant neighborhood range and adaptation strength. Neural Process Lett 2:9–13

    Google Scholar 

  4. Chen N, Ribeiro B, Vieira A, Chen A (2013) Clustering and visualization of bankruptcy trajectory using self-organizing map. Exp Syst Appl 40(1):385–393

    Article  Google Scholar 

  5. Cheung YM, Law LT (2007) Rival-model penalized self-organizing map. IEEE Trans Neural Netw 18(1):289–295

    Article  Google Scholar 

  6. Fiannaca A, Fatta G, Gaglio S, Rizzo R, Urso A (2007) Improved som learning using simulated annealing. In: Artificial Neural Networks AI ICANN 2007, Lecture Notes in Computer Science, vol 4668., Springer, Berlin Heidelberg, pp 279–288

  7. Fiannaca A, Di Fatta G, Rizzo R, Urso A, Gaglio S (2011) Simulated annealing technique for fast learning of som networks. Neural Comput Appl 22(5):1–11

    Google Scholar 

  8. Fritzke B (1995) A growing neural gas network learns topologies. Advances in neural information processing systems, vol 7. MIT Press, Cambridge, pp 625–632

    Google Scholar 

  9. Goncalves ML, de Andrade Netto ML, Zullo J (1998) A neural architecture for the classification of remote sensing imagery with advanced learning algorithms. In: Neural networks for signal processing vol VIII, Proceedings of the 1998 IEEE signal processing society workshop, pp 577–586

  10. Gorricha J, Lobo V (2012) Improvements on the visualization of clusters in geo-referenced data using self-organizing maps. Comput Geosci 43:177–186

    Article  Google Scholar 

  11. Haese K (1998) Self-organizing feature maps with self-adjusting learning parameters. IEEE Trans Neural Netw 9(6):1270–1280

    Article  Google Scholar 

  12. Hsu A, Halgamuge SK (2008) Class structure visualization with semi-supervised growing self-organizing maps. Neurocomputing 71(16–18):3124–3130

    Article  Google Scholar 

  13. Jin H, Shum WH, Leung KS, Wong ML (2004) Expanding self-organizing map for data visualization and cluster analysis. Inf Sci 163(1–3):157–173

    Article  MathSciNet  Google Scholar 

  14. Johnson R, Wichern D (2002) Applied multivariate statistical analysis. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  15. Kohonen T (2001) Self-organizing maps. Springer series in information sciences. Springer, Berlin

    MATH  Google Scholar 

  16. Kovács A, Abonyi J (2002) Vizualization of fuzzy clustering results by modified sammon mapping. In: Proceedings of the 3rd international symposium of hungarian researchers on computational intelligence, pp 177–188

  17. López-Rubio E (2013) Improving the quality of self-organizing maps by self-intersection avoidance. IEEE Trans Neural Netw Learn Syst 24(8):1253–1265. http://ieeexplore.ieee.org

  18. Martinetz T, Schulten K (1991) A “Neural-Gas” network learns topologies. Artif Neural Netw I:397–402

    Google Scholar 

  19. Murphy (2008) UCI machine learning repository. http://aiweb.techfak.uni-bielefeld.de/~content/bworld-robot-control-software/

  20. Nikkilä J, Törönen P, Kaski S, Venna J, Castrén E, Wong G (2002) Analysis and visualization of gene expression data using self-organizing maps. Neural Netw 15(8–9):953–966

    Article  Google Scholar 

  21. Rauber A, Merkl D, Dittenbach M (2002) The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Trans Neural Netw 13(6):1331–1341

    Article  MATH  Google Scholar 

  22. Reinelt G (1991) TSPLIB—a traveling salesman problem library. ORSA J Comput 3(4):376–384

    Article  MathSciNet  MATH  Google Scholar 

  23. Sammon J (1969) A nonlinear mapping for data structure analysis. IEEE Trans Comput C–18(5):401–409

    Article  Google Scholar 

  24. Scholz M, Kaplan F, Guy CL, Kopka J, Selbig J (2005) Non-linear pca: a missing data approach. Bioinformatics 21(20):3887–3895

    Article  Google Scholar 

  25. Sirola M, Talonen J (2011) Self-organizing map in process visualization. In: Koenig A et al (eds) Knowlege-based and intelligent information and engineering systems. Springer, New York, pp 196–202

    Chapter  Google Scholar 

  26. Theodoridis Y (1996) Spatial datasetsan unofficial collection. http://www.dias.cti.gr/~ytheod/research/datasets/spatial.html

  27. Vesanto J, Himberg J, Alhoniemi E, Parhankangas J (2000) Self-organizing map in matlab: the som toolbox. In: Proceedings of the matlab DSP conference, pp 35–40

  28. Vidaurre D, Muruzabal J (2007) A quick assessment of topology preservation for som structures. IEEE Trans Neural Netw 18(5):1524–1528

    Article  Google Scholar 

  29. Wang H, Zheng H, Azuaje F (2007) Poisson-based self-organizing feature maps and hierarchical clustering for serial analysis of gene expression data. IEEE/ACM Trans Comput Biol Bioinform 4(2):163–175

    Article  Google Scholar 

  30. Wu S, Chow TWS (2005) PRSOM: a new visualization method by hybridizing multidimensional scaling and self-organizing map. IEEE Trans Neural Netw 16(6):1362–1380

    Article  Google Scholar 

  31. Yang L, Ouyang Z, Shi Y (2012) A modified clustering method based on self-organizing maps and its applications. Proced Comput Sci 9:1371–1379

    Article  Google Scholar 

  32. Yen GG, Wu Z (2008) Ranked centroid projection: a data visualization approach with self-organizing maps. IEEE Trans Neural Netw 19(2):245–259

    Article  Google Scholar 

  33. Yin H (2002) ViSOM—a novel method for multivariate data projection and structure visualization. IEEE Trans Neural Netw 13(1):237–243

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Mohebi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebi, E., Bagirov, A. Constrained Self Organizing Maps for Data Clusters Visualization. Neural Process Lett 43, 849–869 (2016). https://doi.org/10.1007/s11063-015-9454-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-015-9454-1

Keywords

Navigation