Skip to main content

Advertisement

Log in

Motor Imagery Electroencephalograph Classification Based on Optimized Support Vector Machine by Magnetic Bacteria Optimization Algorithm

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, an optimized support vector machine (SVM) based on a new bio-inspired method called magnetic bacteria optimization algorithm method is proposed to construct a high performance classifier for motor imagery electroencephalograph based brain–computer interface (BCI). Butterworth band-pass filter and artifact removal technique are combined to extract the feature of frequency band of the ERD/ERS. Common spatial pattern is used to extract the feature vector which are put into the classifier later. The optimization mechanism involves kernel parameters setting in the SVM training procedure, which significantly influences the classification accuracy. Our novel approach aims to optimize the penalty factor parameter C and kernel parameter g of the SVM. The experimental results on the BCI Competition IV dataset II-a clearly present the effectiveness of the proposed method outperforming other competing methods in the literature such as genetic algorithm, particle swarm algorithm, artificial bee colony, biogeography based optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces: a review. Sensors (Basel) 12:1211–1279. doi:10.3390/s120201211

    Article  Google Scholar 

  2. Wolpaw JR, McFarland DJ, Vaughan TM (2000) Brain-computer interface research at the Wadsworth Center. IEEE Trans Rehabil Eng 8(2):222–226. doi:10.1109/86.847823

    Article  Google Scholar 

  3. Blankertz B, Losch F, Krauledat M et al (2008) The Berlin brain–computer interface: accurate performance from first-session in BCI-naïve subjects. IEEE Trans Biomed Engi 55(10):2452–2462. doi:10.1109/TBME.2008.923152

    Article  Google Scholar 

  4. Pfurtscheller G, Neuper C, Müller GR et al (2003) Graz-BCI: state of the art and clinical applications. IEEE Trans Neural Syst Rehabil Eng 11(2):177–180. doi:10.1109/TNSRE.2003.814454

    Article  Google Scholar 

  5. Hortal E, Planelles D, Costa A et al (2015) SVM-based brain–machine Interface for controlling a robot arm through four mental tasks. Neurocomputing 151:116–121

    Article  Google Scholar 

  6. Siuly Li Y (2014) A novel statistical algorithm for multiclass EEG signal classification. Eng Appl Artif Intell 34:154–167

    Article  Google Scholar 

  7. Jrad N, Congedo M, Phlypo R et al (2011) sw-SVM: sensor weighting support vector machines for EEG-based brain–computer interfaces. J Neural Eng 8:056004. doi:10.1088/1741-2560/8/5/056004

    Article  Google Scholar 

  8. Fu K, Qu J, Chai Y, Dong Y (2014) Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM. Biomed Signal Process Control 13:15–22

    Article  Google Scholar 

  9. Joshi V, Pachori RB, Vijesh A (2014) Classification of ictal and seizure-free EEG signals using fractional Linear prediction. Biomed Signal Process Control 9:1–5

    Article  Google Scholar 

  10. Farina D, Nascimento OF, Lucas M-F, Doncarli C (2007) Optimization of wavelets for classification of movement-related cortical potentials generated by variation of force-related parameters. J Neurosci Methods 162:357–363

    Article  Google Scholar 

  11. Dhiman R, Saini JS, Priyanka (2014) Genetic algorithms tuned expert model for detection of epileptic seizures from EEG signatures. Appl Soft Comput 19:8–17

    Article  Google Scholar 

  12. Liu C, Wang H, Lu ZG (2013) EEG classification for multiclass motor imagery BCI. 2013 25th Chinese control and decision conference (CCDC). pp. 4450–4453

  13. Subasi A (2013) Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Comput Biol Med 43:576–586

    Article  Google Scholar 

  14. Aydin I, Karakose M, Akin E (2011) A multi-objective artificial immune algorithm for parameter optimization in support vector machine. Appl Soft Comput 11:120–129

    Article  Google Scholar 

  15. Fei SW (2010) Diagnostic study on arrhythmia cordis based on particle swarm optimization-based support vector machine. Expert Syst Appl 37:6748–6752

    Article  Google Scholar 

  16. Mo HW (2012) Research on magnetotactic bacteria optimization algorithm. The 5th international conference on advanced computational intelligence (ICACI 2012), Nanjing, 423–427. doi:10.1109/ICACI.2012.6463198

  17. Mo HW, Xu LF (2013) Magnetotactic bacteria optimization algorithm for multimodal optimization. IEEE symposium on swarm intelligence (SIS), Sinpore, pp. 240–247

  18. Mo HW, Liu LL, Xu LF, Zhao YY (2014) Performance research on magnetotactic bacteria optimization algorithm based on the best individual. The 6th international conference on bio-inspired computing (BICTA2014), Wuhan, pp. 318-322. doi:10.1007/978-3-662-45049-9_52

  19. Mo HW, Geng MJ (2014) Magnetotactic bacteria optimization algorithm based on best-rand scheme. 6th Naturei and biologically inspired computing (NaBIC), Porto Portugal, pp. 59–64

  20. Mo HW, Liu LL (2014) Magnetotactic bacteria optimization algorithm based on best-target scheme. International conference on nature computing and fuzzy knowledge, Xiamen, pp. 103–114: doi:10.1109/ICNC.2014.6975877

  21. Mo HW, Liu LL, Xu LF (2014) A power spectrum optimization algorithm inspired by magnetotactic bacteria. Neural Comput Appl 25(7–8):1823–1844. doi:10.1007/s00521-014-1672-3

    Article  Google Scholar 

  22. Mo HW, Liu LL, Geng MJ (2014) A new magnetotactic bacteria optimization algorithm based on moment migration. 2014 International conference on swarm intelligence, Hefei, pp. 103–114. doi:10.1007/978-3-319-11857-4_12

  23. Nasihatkon B, Boostani R, Jahromi MZ (2009) An efficient hybrid linear and kernel CSP approach for EEG feature extraction. Neurocomputing 73:432–437

    Article  Google Scholar 

  24. Golberg DE (1989) Genetic algorithms in search optimization and machine learning. Wesley, Reading

    Google Scholar 

  25. Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE international conference on neural networks. Piscataway, pp. 1942–1948

  26. Tereshko V (1917) Reaction–diffusion model of a honeybee colony’s foraging behaviour. In: Schoenauer M (ed) Parallel problem solving from nature VI, lecture notes in computer science. Springer, Berlin, pp 807–816

  27. Simon D (2008) Biogeography-based optimization. IEEE Trans on Evol Comput 12:702–713

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Mo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, H., Zhao, Y. Motor Imagery Electroencephalograph Classification Based on Optimized Support Vector Machine by Magnetic Bacteria Optimization Algorithm. Neural Process Lett 44, 185–197 (2016). https://doi.org/10.1007/s11063-015-9469-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-015-9469-7

Keywords

Navigation