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Abstract The analysis of microscopic images of fish gonad cells (oocytes) is a useful tool
to estimate parameters of fish reproductive ecology and to analyze fish population dynamics.
The study of oocyte dynamics is needed to understand ovary development and reproduc-
tive cycle of fish. Oocytes go through different developmental states in a continuum temporal
sequence providing an interesting example of ordinal classification, which is not exploited by
the current oocyte analysis software. This promising paradigm of machine learning known as
ordinal classification or ordinal regression focus on classification problems where there exist
a natural order between the classes, thus requiring specific methods and evaluation metrics.
In this paper we compare 11 ordinal and 15 nominal state-of-the-art classifiers using oocytes
of three fish species (Merluccius merluccius, Trisopterus luscus and Reinhardtius hippoglos-
soides). The best results are achieved by SVMOD, an ordinal decomposition method of the
labelling space based on the Support Vector Machine, varying strongly with the number of
states for each specie (about 95 and 80 % of accuracy with three and six states respectively).
The classifiers designed specially for ordinal classification are able to capture the underlying
nature of the state ordering much better than common nominal classifiers. This is demon-
strated by several metrics specially designed to measure misclassification errors associated
to states far in the ranking scale.

Keywords Fish oocytes · Ordinal classification · Texture analysis · Reinhardtius
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1 Introduction

The assessment of oocyte development dynamic and fecundity is a fundamental topic in
the study of reproductive biology and population dynamics [19]. To estimate fecundity with
accuracy, only mature oocytes must be considered, which requires a reliable classification
of oocytes according to its state of development. The best method to classify oocytes is
histology, although experienced personnel is required. The main developmental states of
oocytes are: Primary Growth (PG), Cortical Alveoli (CA), Vitellogenic (VIT), Hydrated
(HYD) and Atretic (AT). The PG state corresponds to immature oocytes; CA, VIT and
HYD to mature ones; and AT corresponds to those mature oocytes that will be resorpted
(i.e., non-ovulated). Depending on the objective of the study, these main states could be
divided in sub-states. Specifically, the specie Reinhardtius hippoglossoides, also known as
Greenland halibut, presents some irregularities in the maturation processes [20,27] that could
suggest that individual spawning does not necessarily occur on an annual basis as for most
exploited fish. This specie presents a unique reproductive development pattern, with ovaries
simultaneously containing oocytes developing for the current and subsequent reproductive
seasons [22,30]. Four sub-levels of development within the VIT state have been identified
(VIT1, VIT2, VIT3 and VIT4) in this specie (see Fig. 1). When maturation begins, a group
of oocytes evolves from PG to CA and progresses until reach VIT2; then some oocytes
(called the leading cohort) continue the progression (VIT3-VIT4-HYD), while the rest of
mature oocytes (secondary cohort) remains in VIT2 (likely until the next spawning season)
or become AT. To analyze oocyte cohort dynamic and estimate egg production it is necessary
to classify correctly the VIT sub-states.

In a previous work [15] we developed Govocitos,1 an automatic image analysis software
which uses color texture classification to discriminate oocytes in the four main states of
development (CA, VIT, HYD and AT), although states VIT and AT could not be reliably dis-
tinguished. Govocitos achieves acceptable accuracies with oocytes of two gadiform species,
Merluccius merluccius and Trisopterus luscus, but it does not consider the VIT sub-levels
nor the temporal evolution of states, which limits its usefulness for understanding the oocyte
development. In this paper we solve this defficiency considering the whole time line of devel-
opmental states, using ordinal classifiers to fully capture the temporal evolution of states and
extending the study to species with more states, such as Reinhardtius hippoglossoides. Sev-
eral issues need to be taken into account in order to exploit the presence of this order structure.
First of all, the learner (classifier, in this case) could benefit from this implicit ordering in
order to construct more robust and fairer decision regions for the data, since the classifi-
cation errors to be minimized vary from the ones considered in the nominal classification
paradigm. Secondly, with the final aim of evaluating the performance of those classifiers,
different measures or metrics could be developed and used. Section 2 introduces the ordinal
classification setting and describes the most commonly used ordinal classifiers. Section 3
presents the experiments and discusses the results. Section 4 compiles some conclusions of
the work.

2 Ordinal Classification Methods

The classification of patterns into naturally ordered labels is usually referred to as ordi-
nal regression or classification. This paradigm is receiving much attention from the pattern

1 http://citius.usc.es/w/govocitos.
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Fig. 1 Examples of histological images of fish specie Reinhardtius hippoglossoides. The cell outlines were
manually annotated by experts using the Govocitos software tool. The color identifies the state of development
of the oocyte: black (PG), red (CA), pink (VIT1), cyan (VIT2), blue (VIT3), orange and green (VIT4)

recognition and machine learning communities, given its applicability to real world prob-
lems (economy, medicine, psychology and others). Ordinal classification is usually said to
lie between both classification and regression: as opposed to multinomial (or nominal) clas-
sification, there exists some ordering between the categories in the labelling space Y and
both standard classifiers and the common zero-one loss function do not capture and reflect
this ordering; in contrast to regression, Y is a finite set and a non-metric space (i.e. distances
between categories are unknown). More formally, the aim of ordinal classifiers is to learn
a prediction rule f : X → Y , where X ⊂ R

d corresponds to the input space and Y to the
labelling space. Therefore, f will assign an input pattern xi ∈ X to one of the K discrete
classes Ck, k ∈ {1, . . . , K }, Ck ∈ Y , where there exist a given ordering between the labels
(i.e., C1 ≺ C2 ≺ · · · ≺ CK , ≺ denoting this order information).

In the current paper, the classes correspond to the states of development of oocytes, which
are naturally ordered by its growing along the time. This natural order requires to penalize
differently the misclassification errors: it is less wrong e.g. to assign a oocyte in state 1 to
state 2 than to state 5, because the oocyte developments are more similar between states 2
and 1 than between states 5 and 1. Concerning ordinal problems, a common (although not
correct) approach is to use nominal classifiers (obviating the ordinal information) or regressors
(assuming that the distances between different categories are known and equal). Contrarily to
these approaches, ordinal classifiers have been shown to achieve better performance (in terms
of the class ordering) for multiple ordinal classification problems [16]. In the current paper,
we test this hypothesis comparing the most outstanding ordinal classifiers (described briefly
in the following subsections) and nominal classifiers in the classification of developmental
states of fish oocytes.
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2.1 Threshold Methods

Thresholds models assume that an underlying, unobservable real-valued outcome (the latent
variable) exists for ordered crisp classes. These methodologies estimate: (1) a function f (x)
to predict the nature of the latent variable, i.e., a projection that maintains the classes ordered
according to their rank; and (2) a vector of thresholds b = (b1, b2, . . . , bK−1) ∈ R

K−1

(where K is the number of classes) to represent the intervals in the range of f (x), where
b1 ≤ b2 ≤ . . . ≤ bK−1. In our problem, a threshold model would try to uncover the latent
variable related to the actual level of development of an oocyte, and the thresholds would
divide this latent variable into the states of development considered. The first method in this
category is the proportional odds model (POM) [26], a reformulation of Logistic Regression
for ordinal classification, wich links the cumulative probabilities to a linear predictor f
and imposes a stochastic ordering of the input space. The ordinal version of discriminant
learning, called Kernel discriminant learning ordinal regression (KDLOR) [33], constraints
the classes to be ordered according to their ranking in the projection to optimize. Finally, the
support vector ordinal regression with implicit constraints (SVORIM) is a reformulation of
the Support Vector paradigm [7] which seeks for K − 1 parallel separating hyperplanes to
divide the data.

2.2 Decomposition Methods

These techniques rely on the idea of decomposing the original ordinal problem into sets of
simpler binary classification tasks [11,34], which can be solved either by a single model or
by a set of models. The subproblems are defined by a very natural methodology, considering
whether a pattern x belongs to a class greater than a fixed k and combining the binary pre-
dictions in a unique ordinal class [24]. This idea has demonstrated very powerful for ordinal
classification, in the same way as one-vs-one and one-vs-all approaches for nominal multi-
class classification. The first decompositionmethod [11] computes K−1 binary classification
models and relabels the dataset considering whether a pattern belongs to a class greater than a
fixed k (which ranges from 1 to K −1). The posteriori output probabilities of each model are
then fused to provide a unique ordinal prediction. Originally, the C4.5 decision tree classifier
was used as the base binary methodology, but it has been recently demonstrated [34] that the
SVM paradigm also leads to good performance for this purpose. Furthermore, it has been
shown that the use of different weights per pattern (derived from the distances to the class
k) helps to improve the performance. The combination of decomposed labels, weights per
pattern and SVM base methodology will be referred in the experimental section as SVM
with ordinal decompositions (SVMOD). A reformulation of the extreme learning machine,
called extreme learning machine for ordinal regression (ELMOR) [9], uses the one-of-K
coding matrix for the outputs (commonly used with artificial neural networks) and considers
whether a pattern belongs to a class greater than a fixed k. Finally, the ensemble learning for
ordinal regression with product combiner and SVM (EPSVM) combines binary and ternary
classification tasks, trying to distinguish each class from the previous and subsequent ones
and making use of a probability fusion function [29].

2.3 Reduction Methods

These methods can also be seen as decomposition techniques, although with slight differ-
ences. TheREDuctionSVM(REDSVM) [24] transforms the training data (xi , yi ) to extended
data (xki , y

k
i ), 1 ≤ k ≤ K − 1, in such a way that xki = (xi , k), yki = 2�k < yi � − 1, being
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�·� a Boolean test which is 1 if the inner condition is true, and 0 otherwise, and using spe-
cific misclassification weights: wyi ,k = |cyi ,k − cyi ,k+1|, where C is a cost matrix, with
cyi ,k−1 ≥ cyi ,k if k ≤ yi and cyi ,k ≤ cyi ,k+1 if k ≥ yi . Then, a binary classifier f is used with
the extended data generating probabilistic values which are used to give an output prediction.
The data replication method in [4], that will be referred as ordinal neural network (ONN),
represents a similar framework, except that it is based on a multi-layer perceptron (MLP)
neural network instead of SVM, being also less flexible because it assumes the absolute cost
for the C matrix.

2.4 Ensemble Based Techniques

Opposed to the previousmethods, some efforts have beenmade to derive aBoosting algorithm
for ordinal regression by using thresholded ensemble models, with robustness for approx-
imating complex labelling spaces [25]. This model is composed of confidence functions,
and their weighted linear combination is used as the projection for the data. We tested two
different approaches, ordinal regression boosting (ORBoost) and ordinal regression boosting
using perceptrons (ORBoostP), which use MLP neural networks and single perceptrons as
base learners respectively.

3 Experimental Work

Subsamples of fixed ovaries were embedded in paraffin, sectioned at 3.5 μm and stained
with Haematoxylin-Eosin standard protocol. We used Leica2 hardware and software: a DRE
research microscope to digitalize the histological sections, connected to a DFC320 digital
camera with IM50 software, and theApplication Suite v.4.1 software to create mosaic images.
The exposure time and color balance were set automatically. The spatial resolution at which
the images were captured was 1.095μm per pixel for species Merluccius merluccius (MC)
and Trisopterus luscus (TL), and 3.943μm per pixel for Reinhardtius hippoglossoides (RH).
The outline of cells wasmanually drawn and classified by expert technicians using theGovoc-
itos software. Color texture analysis relates the chromatic and textural information of images,
providing good results in the classification of three states of development (CA, HYD and
VIT/AT) for species MC and TL using nominal classifiers [15]. Govocitos uses a 25-length
color-texture feature vector with 10 grey level texture features and 15 chromatic features.
Grey level texture descriptors model the spatial relationship of a pixel and its neighbors, pro-
viding information of the image structure such as smoothness and regularity, among others.
Specifically, we used the Local Binary Patterns [28], taking the uniform patterns with radius
R = 1 and 8 neighbors. The chromatic features provide information about the distribution
of the levels on each RGB channel, including the mean, variance, third an fourth statistical
moments and entropy. The input patterns are preprocessed to have zero-mean and standard
deviation one before being fed to the classifier (the mean and deviation values are calculated
using only the training set).

3.1 Validation Methodology

The data include patterns from three species. The first one is Merluccius merluccius, with
1022 patterns with 3 states of development (classes): CA (25.3 % of the total patterns),

2 http://www.leica.com.
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HYD (6.0 %) and VIT/AT (68.7 %). We also have 912 patterns of specie Trisopterus lus-
cus with the same 3 states: CA (57.6 %), HYD (1.5 %) and VIT/AT (40.9 %). We use the
same experimental methodology for both species: the data are divided in equal-sized training
and validation sets (with 511 and 456 training and validation patterns for Merluccius and
Trisopterus respectively), and for each classifier we selected the values of the tunable para-
meters with the lowest mean absolute error (MAE, see Sect. 3.3) on the validation set. Using
these best values, the test stage uses 5-fold cross validation (the available data are divided in
5 folds, averaging the performance over the 5 trials: in each trial, 4 folds are used for training
and the remaining one for test). The third species is Reinhardtius hippoglossoides, with 16
images (one image per individual, see Fig. 1) with 7915 cells and 6 states: PG (37.6 %), CA
(18.8%), VIT1 (20.8%), VIT2 (11.6%), VIT3 (8.0%) and VIT4 (3.2%).We performed first
a leave-one-image-out (LOIO) validation, with 16 trials, one for each image. In each trial,
a training and a validation set (with 600 and 300 patterns respectively) are created selecting
100 training and 50 validation patterns, respectively, of each state from 15 images, excluding
one image wich is used for test (this image is different in each trial). The values of the tunable
parameters are selected to minimize the MAE on the validation set. Using this best value,
the classifier is trained using the training and validation sets (900 patterns), and tested using
the excluded image (whose number of patterns is different for each trial). The performance
is averaged over the 16 trials. Additionally, we developed a second experiment with mixed
images (MIX) randomly selecting 10 trios of training (600 patterns), validation (300 patterns)
and test sets (600 patterns), where 100, 50 and 50 patterns respectively belong to each of the
six states. The patterns are extracted from all the 16 images. The training and validation sets
are used for parameter tuning as in LOIO, and the test performance is averaged over the 10
test sets. In both methodologies LOIO and MIX, the training, validation and test data are the
same for all the classifiers. The whole data set is publically available.3

3.2 Tested Methods

Eleven ordinal approaches, described in the Sect. 2, are tested: the linear method POM; dif-
ferent methods based on SVM: SVORIM, SVMOD, REDSVM and EPSVM; one method
based on Discriminant Analysis: KDLOR; two methods based on Artificial Neural Networks
concepts: ELMOR and ONN; and two ensemble models: ORBoost and ORBoostP. Addi-
tionally, we also compare to the well-known technique Support Vector Regression (SVR) in
order to analyze whether a pure regression perspective could be suitable. All the SVM-based
ordinal or nominal methods use LibSVM [6], tuning the regularization parameter C and the
inverse γ of the kernel spread with values in {2i }14−5 and {2i }8−16 respectively. We use the sig-
moidal activation function for ELMOR, ONN, ORBoost and ORBoostP, tuning the number
of nodes in the hidden layer with values {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. For ONN
andORBoost, the number of hidden neuronswas adjusted in the range {5, 10, 15, 20, 30, 40}.
As proposed by [25], the number of ensemble members in ORBoost was 25 and 2000 for
ORBoostP. The range of ε for ε-SVR was {10i }30. These ordinal methods are compared to
the following thirteen nominal classifiers, selected among the classifiers which exhibited the
best behavior in the comprehensive study developed in [10]:

1. ABRAdaboost.M1 ensemble of classification trees [12] implemented in the R language4

(boosting function in the adabag package [1]).

3 https://wiki.citius.usc.es/datasets/fish_ovary.
4 http://www.r-project.org.
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2. ABW AdaBoostM1 ensemble of decision stump classifiers (one-node decision trees)
implemented in Weka [17]. The percentage of weight mass for base training is tuned
with values 25, 50, 75 and 100 %.

3. AvNN ensemble of five MLP neural networks, from the Caret5 package in R, trained
with different randomweight initializations, tuning the number of hiddenneurons and the
learning decaywith values {1, 3, 5} and {0, 0.1, 10−4} respectively, values recommented
in the caret documentation.

4. BAG Bagging ensemble of decision trees [2] (bagging function, ipred package in
R).

5. ELM Extreme learning machine, using publically availableMatlab code.6 Following the
recommentations found in the literature [18,35] and in the software documentation, we
selected the best activation function among sine, sign, hardlimit, triangular, radial basis
and sigmoid functions, and the best number of hidden neurons using 33 values between
3 and 5000, and we scaled the inputs between −1 and +1.

6. GELM Gaussian kernel extreme learning machine using Matlab code from the same
previous location. The parameters C and γ are tuned similarly to LibSVM (see above).

7. GSVM Support vector machine (SVM) with Gaussian kernel, implemented using Lib-
SVM as the remaining SVM-based methods (see above).

8. LBR LogitBoost ensemble of decision stumps [13] (LogitBoost function, caTools
package in R) with 200 Boosting iterations.

9. LBW LogitBoost ensemble of decision stumps implemented in Weka [17], with the
100%ofweightmass to train, five runs for internal cross-validation, shrinkage parameter
H = 1 and 10 iterations.

10. LDA The classical Linear Discriminant Analysis [31] (lda function, MASS package in
R).

11. MLP-T Multi-Layer perceptron neural network, tuning the number of hidden neurons
with values {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}, implemented in R (mlp function, RSNNS
package) and accessed via the Caret package) with the default parameters (standard
Backpropagation, 100 training epochs, topological order for weight update and learning
rate between 0.1 and 1).

12. MLP-R the same MLP network from the RNNS package, but used directly from R
without Caret: 1000 training epochs are used, tuning the number of hidden neurons as
MLP, and selecting the training algorithm between 8 methods: Standard Backpropaga-
tion (BP), Batch BP, Chunk BP, Momentum BP, BP with weight decay, Resilient BP,
Quickprop and Scaled Conjugate Gradient. The Fig. 2 (left panel) reports an example
of Sum of Squared Errors versus training epoch for the MLP-R and species Trisopterus
luscus.

13. MLP-PSO Multi-Layer perceptron trained using particle swarm optimization (PSO),
using the Matlab PSO Research Toolbox7 [14] and the Neural Network add-in for
PSORT.8 The number of particles is tuned in the set {5, 10, 50, 20, 25, 30} and the
number of hidden neurons with the same values as the MLP. The Fig. 2 (right panel)
reports an example of performance vs. the training epoch for the MLP-PSO and species
Trisopterus luscus.

5 http://caret.r-forge.r-project.org.
6 http://www.extreme-learning-machines.org.
7 http://www.georgeevers.org/pso_research_toolbox.htm.
8 http://www.mathworks.com/matlabcentral/fileexchange/29565-neural-network-add-in-for-psort.
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Fig. 2 Evolution of the sum of squared errors (SSE) during training for the MLP-R (left panel) and evolution
of the performance for the MLP-PSO for specie Trisopterus luscus

14. MLRMMultinomial logistic regressionmodel [23], using theLogistic class inWeka,
with unlimited iterations and log-likelihood ridge 10−8.

15. RF Random forest [3] ensemble of 500 trees (randomForest function in the R
homonym package), tuning the parameter mtry with values {2, 4, 7, 9, 12, 14, 17,
19, 22, 25}.

Any parameter value or configuration setting not specified in the previous list has been
set to its default value, specified by the classifier documentation.

3.3 Evaluation Metrics

The first measure used to evaluate the previous classifiers is the well-known Classifier
Accuracy (Acc, in %), the percentage of agreements between the desired and real classes
without considering the class ordering. The Cohen Kappa (κ , in %), is based on Acc but
discarding the probability of success by chance [5]. We also used other metrics specially
designed for ordinal classification [8,16]. The mean absolute error (MAE) is defined by
MAE = 1

N

∑N
i=1

∣
∣r(y∗

i ) − r(yi )
∣
∣, being y∗

i and yi the predicted and the true class respec-
tively for pattern i , and r(y) the rank of y (its position in the ordinal scale), being N the number
of patterns. The MAE value ranges from 0 to K − 1 (maximum deviation in the number of
ranks between two labels). The last two metrics measure the correlation between predicted
targets and true targets: the Kendall tau rank correlation coefficient (τ ) measures the asso-

ciation between predicted and true class [21] as τ =
(∑

i j c
∗
i j ci j

) (∑
i j c

∗2
i j

∑
i j c

2
i j

)−1/2
,

where i, j ∈ {1, . . . , N }, ci j = +1 if yi > y j (in the ordinal scale), being ci j = 0 when
yi = y j , and ci j = −1 when yi < y j (the same for c∗

i j using y∗
i instead of yi ). The τ values

range from −1 (maximum disagreement between prediction and true label), to 0 (no correla-
tion between them) and to 1 (maximum agreement). Finally, the Spearman rank correlation
coefficient (ρ) is the Pearson correlation coefficient between the ranked predicted and true
class [32], taking values in [−1, 1] with the same significate as τ .

3.4 Results and Discussion

Table 1 reports the selected values for each classifier and experiment. For those classifiers
with hidden neurons (ELMOR, ONN, avNNet, ELM, MLP-T, MLP-R and MLP-PSO), this
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Table 1 Selected values for those classifiers with tunable parameters, for each specie and experiment

Classifier Parameter Merluccius Trisopterus Reinhardtius

LOIO MIX

KDLOR γ 2−7 2−7 23 23

SVORIM C 26 27 28 29

γ 2−4 2−7 2−7 2−7

SVMOP C 28 210 211 211

γ 2−4 2−7 2−7 2−7

ELMOR #hid 80 100 70 70

EPSVM C 26 23 26 27

γ 2−5 2−4 2−7 2−7

REDSVM C 28 210 28 211

γ 2−4 2−8 2−7 2−6

ONN #hid 90 10 10 5

SVR C 23 28 210 26

γ 2−10 2−10 2−7 2−10

ξ 10 100 1000 100

ELM activ.funct. triang. sigmoid sign sine

#hid 170 110 110 116

GELM C 212 211 211 211

γ 8 8 7.8 8.4

GSVM C 213 29 212 211

γ 2−7 2−8 2−6.9 2−7.2

MLP-T #hid 15 11 15.4 14

MLP-R train func. Resil. BP Std. BP Resil. BP (6) Chunk. BP (4)

#hid 7 11 8.1 12.4

MLP-PSO #part 5 5 6.2 7.0

#hid 5 3 4.2 4.0

RF mtry 2 8 6.0 6.0

For speciesReinhardtius andLOIOandMIXexperiments, the average values of the selected values are reported
(the most selected train function and its number of trials for classifier MLP-R). The parameter P of ABW did
not influenced the results. The AvNNet used decay = 0.1 and 5 hidden neurons in all the experiments

value is relatively stable among classifiers in the same family: 70–100 for ELMOR and 110
for ELM; 5 for AvNNet because it is an ensemble of MLPs; more variable for ONN, between
5 and 90; 11–15 for MLP-T, 7–12 for MLP-R and 3–5 for MLP-PSO. The classifiers with
Gaussian kernels also exhibit similar values of spread γ : about 2−7 for SVORIM, SVMOP,
EPSVM, REDSVM, SVR and GSVM; about 8 for GELM; and very variable in KDLOR
(2−7-8). The parameter C also varies between 26 and 213 for SVORIM, SVMOP, EPSVM,
REDSVM, SVR, GELM and GSVM. Finally, the mtry values of RF are also relatively stable
in the range 2–8. Tables 2 and 3 report the results in terms of classification accuracy (Acc,
%), κ , MAE, Kendall τ and Spearman ρ rank correlation coefficients for species MC and TL
(Table 2) and for specie RH with LOIO and MIX methodologies (Table 3). The classifiers

123



M. Pérez-Ortiz et al.

Table 2 Classification results: accuracy and Cohen κ (both in %), MAE, Kendall τ and Spearman ρ for
species Merluccius merluccius and Trisopterus luscus with 3 states (CA, HYD, VIT/AT)

Classifier Merluccius merluccius Trisopterus luscus

Acc. κ MAE τ ρ Acc. κ MAE τ ρ

POM 87.8 73.1 0.164 0.800 0.834 92.0 83.7 0.140 0.856 0.865

KDLOR 85.4 71.1 0.160 0.832 0.870 84.8 72.9 0.166 0.854 0.894

SVORIM 89.5 78.6 0.132 0.839 0.874 94.7 89.1 0.095 0.902 0.908

SVMOD 94.1 86.9 0.110 0.856 0.858 94.9 89.7 0.097 0.900 0.901

ELMOR 93.2 85.4 0.116 0.848 0.859 91.5 83.0 0.152 0.842 0.850

EPSVM 89.0 74.0 0.161 0.777 0.828 92.3 84.2 0.143 0.855 0.858

REDSVM 89.1 77.0 0.140 0.834 0.861 93.8 87.4 0.112 0.886 0.890

ONN 86.8 73.6 0.162 0.810 0.853 91.5 83.8 0.112 0.889 0.911

ORBoost 90.1 79.0 0.124 0.854 0.882 93.1 86.5 0.096 0.905 0.922

ORBoostP 90.2 78.9 0.125 0.851 0.878 93.3 86.7 0.098 0.902 0.917

SVR 84.8 69.7 0.186 0.792 0.818 84.2 71.4 0.190 0.832 0.862

Mean 89.1 77.0 0.144 0.827 0.856 91.5 83.5 0.127 0.875 0.889

ABR 93.1 85.1 0.130 0.832 0.835 94.5 88.8 0.109 0.887 0.888

ABW 81.4 59.1 0.309 0.671 0.688 79.8 56.6 0.388 0.610 0.615

AvNN 93.6 86.1 0.115 0.851 0.854 95.6 91.1 0.088 0.909 0.910

BAG 91.8 81.8 0.148 0.806 0.811 91.0 81.5 0.179 0.815 0.815

ELM 93.5 85.8 0.119 0.845 0.849 94.6 89.0 0.105 0.892 0.893

GELM 93.8 86.4 0.119 0.845 0.847 95.2 90.1 0.093 0.904 0.906

GSVM 92.8 84.2 0.134 0.823 0.826 95.5 90.9 0.087 0.911 0.912

LBR 91.4 82.3 0.164 0.790 0.795 92.6 87.1 0.148 0.830 0.835

LBW 91.1 80.7 0.162 0.789 0.794 90.3 80.3 0.188 0.805 0.807

LDA 92.5 83.8 0.128 0.829 0.835 93.1 85.9 0.134 0.861 0.863

MLP-T 93.8 86.5 0.129 0.834 0.837 95.6 91.1 0.088 0.909 0.910

MLP-R 91.6 81.6 0.156 0.800 0.804 94.3 88.4 0.113 0.883 0.883

MLP-PSO 72.5 48.2 0.308 0.688 0.722 68.2 47.3 0.395 0.633 0.668

MLRM 93.3 85.4 0.127 0.835 0.837 93.4 86.8 0.127 0.869 0.871

RF 93.1 84.9 0.128 0.831 0.835 93.5 86.7 0.133 0.862 0.862

Mean 90.6 80.1 0.158 0.805 0.811 91.1 82.8 0.158 0.839 0.843

Ordinal (resp. nominal) classifiers are in the upper (resp. lower) half of the table. The best and second best
results are in bold and italics respectively

are divided into ordinal (upper part) and nominal (lower part). The highest Acc, κ , τ and
ρ, and the lowest MAE, are highlighted for each specie and experiment (the second best
value is italized). The mean values for the whole set of ordinal and nominal methods are also
included. From the application point of view, almost all of the results are very promising
both in Acc and MAE: for species MC and TL we achieve Acc = 94.1%, MAE = 0.110
and Acc = 95.6%, MAE = 0.087 respectively (this MAE value means that each state is
misclassified with neighbor states less than 10%). For specie RH the best results are slightly
worse in terms ofAcc (67.8 and 80.4% forLOIOandMIXexperiments), κ andMAE, but very
similar for the τ and ρ correlation coefficients, where indeed the results are outstanding. This
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Table 3 Classification results for the specieReinhardtius hippoglossoideswith 6 states (PG, CA, VIT1, VIT2,
VIT3, VIT4) using the Leave-one-image-out (LOIO) and mixed images (MIX) methodologies

Classifier Leave-one-image-out Mixed images

Acc. κ MAE τ ρ Acc. κ MAE τ ρ

POM 63.9 49.5 0.394 0.770 0.851 70.5 64.6 0.310 0.879 0.940

KDLOR 66.7 52.9 0.360 0.789 0.856 78.9 74.7 0.222 0.912 0.957

SVORIM 67.2 53.5 0.354 0.788 0.858 79.0 74.8 0.222 0.911 0.957

SVMOD 67.8 54.6 0.352 0.796 0.861 80.1 76.2 0.215 0.912 0.957

ELMOR 62.7 49.0 0.418 0.762 0.831 77.5 73.0 0.247 0.898 0.948

EPSVM 66.9 53.5 0.358 0.798 0.860 75.6 70.7 0.259 0.897 0.950

REDSVM 67.2 53.4 0.362 0.789 0.856 78.7 74.4 0.225 0.910 0.957

ONN 63.7 49.4 0.393 0.768 0.851 74.3 69.1 0.276 0.890 0.945

ORBoost 64.5 50.2 0.376 0.772 0.849 77.6 73.1 0.232 0.909 0.957

ORBoostP 64.4 50.2 0.378 0.772 0.848 77.5 73.0 0.233 0.909 0.956

SVR 66.1 52.3 0.363 0.785 0.855 79.1 74.9 0.218 0.914 0.959

Mean 65.6 51.7 0.373 0.781 0.852 77.2 72.6 0.242 0.904 0.953

ABR 51.8 34.4 0.597 0.748 0.799 77.8 73.3 0.255 0.891 0.941

ABW 30.8 10.5 0.895 0.572 0.619 32.8 19.4 0.771 0.710 0.805

AvNN 53.0 37.8 0.626 0.772 0.822 79.3 75.2 0.229 0.905 0.952

BAG 50.6 35.0 0.675 0.714 0.771 70.7 64.8 0.382 0.824 0.889

ELM 64.4 50.2 0.424 0.750 0.808 78.3 73.9 0.249 0.894 0.942

GELM 65.6 51.7 0.400 0.766 0.821 80.1 76.1 0.221 0.908 0.953

GSVM 67.4 53.7 0.363 0.790 0.647 80.4 76.5 0.212 0.913 0.785

LBR 45.7 33.1 0.801 0.600 0.663 71.6 70.9 0.433 0.801 0.865

LBW 56.3 40.6 0.592 0.679 0.737 72.3 66.8 0.338 0.851 0.912

LDA 53.5 39.0 0.578 0.785 0.839 77.5 72.9 0.248 0.897 0.948

MLP-T 52.3 36.0 0.599 0.768 0.824 79.0 74.9 0.234 0.903 0.950

MLP-R 51.4 35.1 0.613 0.769 0.827 76.8 72.2 0.265 0.888 0.940

MLP-PSO 32.0 16.6 0.907 0.516 0.582 36.7 24.1 0.757 0.700 0.816

MLRM 66.1 53.0 0.372 0.794 0.848 78.3 73.9 0.237 0.903 0.951

RF 52.6 36.8 0.639 0.748 0.802 78.2 73.8 0.254 0.891 0.940

Mean 52.9 37.6 0.605 0.718 0.761 71.3 65.9 0.349 0.859 0.906

result could indicate that the states are properly ordered from a purely ranking perspective, but
the predictions might be displaced one or two values (recall that the correlation coefficients
τ and ρ consider for example whether a pattern belonging to class C2 is ranked higher than
a pattern belonging to class C1 but it does not consider whether they actually are included in
this two states in the prediction, i.e. the pattern belonging to C2 could be predicted to belong
to C3 and the one belonging to C1 to C2). The average MIX accuracy and κ are 11 and 21
points, respectively, above their LOIO counterparts (see theMean row), because in the MIX
experiments the oocytes of each image may be selected for the training or test set. Therefore,
implicit information about the sample acquisition and processing is included in the training
and test sets, which justifies better results compared to LOIO experiments (more realistic
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from the application point of view), where any information about an individual fish in the
testing set is not included in the training set.

From the classifiers perspective, Tables 2 and 3 identify some outstanding methods:
SVMOD (ordinal, the best for species MC and RH-LOIO and very near to the best in RH-
MIX) and GSVM (nominal, very near to the best for specie TL and the best for RH in MIX
experiments). Furthermore, the measures MAE, τ and ρ show the real difference between
ordinal and nominal more clearly than Acc and κ . A general conclusion from this table is that,
although any ordinal or nominal classifier has chance of obtaining the best result, in general,
ordinal classifiers perform better in mean in terms of measures (MAE, τ , ρ) that consider the
ordinal nature of the dataset, sometimes at the expense of lower Acc values. TheMean rows
show that for specie MC (3 states), the average Acc and κ are better for nominal classifiers
(which do not consider the state order), although for specie TL the ordinal classifiers are
better, while MAE, τ and ρ are better for ordinal classifiers and both species. However, in
species RH (6 states) the five measures are better for the ordinal classifiers. This suggests
that the superiority of ordinal with respect to nominal classifiers increases with the number
of states, being this superiority not so clear (at least, for non-ordinal quality measures) with
fewer states. In fact, with 3 states is not probable for a nominal classifier to assign a pattern to
a non-neighbor state, because 4 of 6 possible errors (corresponding to non-diagonal elements
in the 3-order square confusion matrix) respect the state ordering. However, in specie RH
(6 states) the probability of non-ordinal errors is biggest (20 of 30 possible errors involve
non-neighbor states), enhancing the difference between ordinal and nominal clasifiers.

Table 4 reports the ranking results obtained for each method and metric (averaged over
all experiments) ordered by increasing MAE: the SVMOD performs properly for all the
metrics, obtaining promising mean ranking values, as well as SVORIM, which also obtains
competitive results in terms of MAE, τ and ρ, while the nominal method GSVM obtains
good ranking results for Acc, κ and MAE. Since GSVM uses the one-vs-one paradigm,
which is not designed to specifically minimise the ordinal errors, it presents a good general
performance, but in terms of ordinal metrics it is generally worse. The last column of Table 4
shows the p value of the T test comparing the mean MAE value obtained by SVMOD to
each one of the other classifiers: SVMOD is significantly better than 7 classifiers (REDSVM,
MLRM, EPSVM, ONN, POM, ABW and MLP-PSO, whose p-value is in bold), with high
p-values (lower difference) for AvNN, MLP-T, MLP-R, GELM, SVORIM, ABR, RF and
LDA. TheMLP-Tworks slightly better than theMLP-R, showing that the more sophisticated
setup of MLP-R (tuning of training algorithm and more epochs than MLP-T, accessed via
Caret) does not achieve better performance. The MLP-PSO achieves the worst results, being
not competitive for any specie, number of classes and experiment type.

Figure 3 plots the mean MAE values of the classifiers for each experiment ordered by
increasing MAE in RH-LOIO. Considering the LOIO plot (blue), the best accuracies are
achieved by the ordinal classifiers (names in bold), which occupy most of the places in
the left half of the horizontal axis. The nominal classifiers are in the right part of the axis,
except GSVM andMLRM (7th and 8th positions respectively). There are clearly two groups:
classifiers SVMOD to ELM (MAE about 0.35–0.40), and the remaining ones (LDA and
following, MAE about 0.6 and higher). In the MIX experiments (green) many ordinal and
nominal classifiers are below 0.25, and just a few are sub-optimals (EPSVM, ONN, POM,
LBW,BAG and LBR). In specieMC (red) SVMOD is the best, followed byGELM, ELMOR,
ELM and AvNNet, while SVR, ONN, POM, LBW, BAG and LBR achieve bad results. In
specie TL (magenta) the bests are GSVM, avNNet, MLP, GELM, SVORIM and SVMOD.
TheMLP-T is slightly better thanMLP-R in all the species and experiments, beingMLP-PSO
the worst one except for RH-MIX.
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Table 4 Ranking results
averaged over all the experiments
(ordinal classifiers are in bold),
ordered by increasing MAE
ranking, and p-values of the T
test comparing the best classifier
(SVMOD) and the remaining
ones (significant differences for
p < 0.05 are in bold face)

Position Classifier Acc. κ MAE τ ρ p-value

1 SVMOD 1 1 1 1 4.5 –

2 GSVM 2 2 2 4.5 23 0.519

3 SVORIM 6 6 3 2 3 0.261

4 ORBoost 9 11 4 3 1 0.083

5 GELM 3 3 5 7 9 0.287

6 ORBoostP 8 10 6 6 2 0.064

7 REDSVM 7 7 7 8 6 0.041

8 MLRM 4 4 8 10 11 0.004

9 ELM 5 5 9 12 14 0.133

10 KDLOR 18 20 10 11 4.5 0.120

11 EPSVM 11 13 11 19 12 0.038

12 ELMOR 10 8 12 16 16 0.058

13 ONN 17 18 13 15 7 0.024

14 SVR 20 23 14 20 13 0.137

15 POM 19 21 15 21 15 0.018

16 MLP-T 13 12 16 9 10 0.331

17 AvNN 12 9 17 4.5 8 0.372

18 LDA 16 15 18 13 17 0.210

19 ABR 15 16 19 14 18 0.249

20 MLP-R 21 17 20 17 19 0.197

21 RF 14 14 21 18 20 0.235

22 LBW 22 22 22 23 22 0.052

23 BAG 23 24 23 22 21 0.094

24 LBR 24 19 24 24 24 0.132

25 ABW 25 25 25 25 26 0.022

26 MLP-PSO 26 26 26 26 25 0.021

Table 5 reports the average confusion matrix, sensitivities (Se) and positive predictivities
(PP) achieved by SVMOD and GSVM on specie RH with LOIO experiments (matrices for
species MC and TL are not reported due to their low numbers of states). In both matrices
the diagonal values are the highest in each row and column, and only the PP of state CA is
below 50 %, due to the overlap between states PG and CA (the largest non-diagonal values
correspond to these two neighbor states). The only high non-diagonal values are adjacent to
the diagonal, corresponding to patterns assigned to a state neighbor to the right one. Compar-
ing SVMOD and GSVM, the latter achieves higher values outside the diagonal, excepting
the (PG,CA) and (PG,VIT1) values, learning worse the ordinal information (remember from
Table 3 that SVMOD wins GSVM with specie RH and LOIO experiments not only in Acc.
and κ but also in MAE, κ and ρ). Besides, GSVM achieves lower Se and PP for all the
states excepting PG, because it assigns more patterns CA to PG than SVMOD. In fact, the
sensitivity of SVMOD is above 60 % for all the states, while GSVM is below 55 % for states
CA and VIT3. Regarding PP, the SVMODwins GSVM in all the states except CA, with high
difference in states VIT1-VIT3.
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Fig. 3 MAE values achieved by each classifier (ordinal classifiers are in bold) for species RH (LOIO and
MIX experiments), MC and TL, ordered by increasing the MAE for RH-LOIO

Table 5 Confusionmatrices and sensitivities/positive predictivities for each state (in%) achieved by SVMOD
(upper) and GSVM (lower) for specie RH and LOIO experiments

SVMOD PG CA VIT1 VIT2 VIT3 VIT4 Se (%) PP (%)

PG 22.29 10.15 0.94 0.37 0.03 0.00 66.0 80.6

CA 5.00 11.32 2.29 0.09 0.01 0.00 60.5 45.3

VIT1 0.37 3.47 14.23 2.12 0.05 0.10 70.0 74.0

VIT2 0.00 0.04 1.68 7.16 0.92 0.15 71.9 68.3

VIT3 0.00 0.01 0.08 0.60 6.00 2.14 68.0 71.0

VIT4 0.00 0.00 0.02 0.14 1.44 6.78 80.9 74.0

GSVM PG CA VIT1 VIT2 VIT3 VIT4 Se (%) PP (%)

PG 24.51 7.66 1.17 0.29 0.14 0.00 72.5 80.3

CA 5.41 10.36 2.79 0.15 0.01 0.00 55.4 48.4

VIT1 0.58 3.35 14.29 2.02 0.03 0.08 70.2 71.6

VIT2 0.01 0.04 1.63 7.00 1.05 0.22 70.3 64.3

VIT3 0.00 0.00 0.05 1.23 4.68 2.88 53.0 62.5

VIT4 0.00 0.00 0.03 0.19 1.57 6.59 78.6 67.5
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4 Conclusions

This paper uses 11 ordinal and 15 nominal approaches to classify states of development
of fish oocytes from histological microscopy images. Twenty-five features are extracted
from every oocyte, including 10 grey level texture (Local Binary Patterns) and 15 statistical
color features. Three fish species are considered: Merluccius merluccius and Trisopterus
luscus, which present 3 states of biological interest, and Reinhardtius hippoglossoides, with
6 states with and without leaving one image out. The experiments demonstrate that ordinal
classifiers exhibit improved robustness and performance compared to nominal methods for
all the species considered: SVMOD achieves accuracies about 94 and 95 % for species MC
andTL and 67–80% for specie RHwith andwithout leave one image out respectively. Several
standard nominal techniques can also obtain promising results for some cases (GSVM for
specie RH, without leave one image out, and AvNNet for specie TL). However, SVMOD
has the best Friedman rank for all the five measures considered (Accuracy, Cohen κ , Mean
Averaged Error, Kendall τ and Spearman ρ), and SVORIM is the second for the last three
measures, which consider the ordinal nature of the classification problem (althoughGSVM is
the second for Acc, κ andMAE). The difference between ordinal and nominal techniques has
been shown to behigherwhen the number of states increases, being clearly reflected byordinal
quality measures (Kendall τ and Spearman ρ). The confusion matrix of SVMOD shows that
the ordinal classifiers locate their errors in states near to the true ones, with sensitivities and
positive predictions above 60 % for almost all the states. On the whole, it can be said that
ordinal regression techniques should be preferred to regression andmultinomial classification
methods when dealing with datasets that present an ordinal nature. This also motivates the
improvement of the current techniques in the ordinal classification literature, which, given
the novelty of the topic, are still in constant development.
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