Skip to main content
Log in

Unified and Coupled Self-Stabilizing Algorithms for Minor and Principal Eigen-pairs Extraction

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Neural network algorithms on principal component analysis (PCA) and minor component analysis (MCA) are of importance in signal processing. Unified (dual purpose) algorithm is capable of both PCA and MCA, thus it is valuable for reducing the complexity and the cost of hardware implementations. Coupled algorithm can mitigate the speed-stability problem which exists in most noncoupled algorithms. Though unified algorithm and coupled algorithm have these advantages compared with single purpose algorithm and noncoupled algorithm, respectively, there are only few of unified algorithms and coupled algorithms have been proposed. Moreover, to the best of the authors’ knowledge, there is no algorithm which is both unified and coupled has been proposed. In this paper, based on a novel information criterion, we propose two self-stabilizing algorithms which are both unified and coupled. In the derivation of our algorithms, it is easier to obtain the results compared with traditional methods, because it is not needed to calculate the inverse Hessian matrix. Experiment results show that the proposed algorithms perform better than existing coupled algorithms and unified algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev 2(4):433–459

    Article  Google Scholar 

  2. Chen LH, Chang S (1995) An adaptive learning algorithm for principal component analysis. IEEE Trans Neural Netw 6(5):1255–1263

    Article  Google Scholar 

  3. Chen T (1997) Modified oja’s algorithms for principal subspace and minor subspace extraction. Neural Process Lett 5(2):35–40

    Article  Google Scholar 

  4. Chen T, Amari SI (2001) Unified stabilization approach to principal and minor components extraction algorithms. Neural Netw 14(10):1377–1387

    Article  Google Scholar 

  5. Chen T, Amari SI, Lin Q (1998) A unified algorithm for principal and minor components extraction. Neural Netw 11(3):385–390

    Article  Google Scholar 

  6. Cirrincione G, Cirrincione M, Hérault J, Van Huffel S (2002) The MCA EXIN neuron for the minor component analysis. IEEE Trans Neural Netw 13(1):160–187

    Article  Google Scholar 

  7. Diamantaras KI, Kung SY (1996) Principal component neural networks: theory and applications. Wiley, New York

    MATH  Google Scholar 

  8. Diamantaras KI, Papadimitriou T (2009) Applying PCA neural models for the blind separation of signals. Neurocomputing 73(1):3–9

    Article  Google Scholar 

  9. Du KL, Swamy M (2014) Neural networks and statistical learning. Springer, Berlin

    Book  MATH  Google Scholar 

  10. Gao K, Ahmad MO, Swamy M (1992) Learning algorithm for total least-squares adaptive signal processing. Electron Lett 28(4):430–432

    Article  Google Scholar 

  11. Golub GH, Van Loan CF (2012) Matrix computations, vol 3. JHU Press, London

    MATH  Google Scholar 

  12. Griffiths J (1983) Adaptive array processing. a tutorial. IEE Proceedings F (Commun Radar Signal Process) 130(1):3

    Article  Google Scholar 

  13. Harmouche J, Delpha C, Diallo D (2012) Faults diagnosis and detection using principal component analysis and kullback-leibler divergence. In: 38th annual conference on IEEE industrial electronics society (IECON 2012), pp 3907–3912

  14. Harmouche J, Delpha C, Diallo D (2014) Incipient fault detection and diagnosis based on kullback-leibler divergence using principal component analysis: Part I. Signal Process 94:278–287

    Article  Google Scholar 

  15. Hasan M, et al (2007) Self-normalizing dual systems for minor and principal component extraction. In: IEEE international conference on acoustics, speech and signal processing, 2007 (ICASSP 2007), vol 4, pp IV–885

  16. Hasan MA (2005) Natural gradient for minor component extraction. In: IEEE international symposium on circuits and systems, 2005 (ISCAS 2005), pp 5138–5141

  17. Horn RA, Johnson CR (2012) Matrix analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Hou L, Chen TP (2006) Online algorithm of coupled principal (minor) component analysis. J Fudan Univ 45(2):158–169

    MathSciNet  MATH  Google Scholar 

  19. Hyvärinen A, Karhunen J, Oja E (2004) Independent component analysis. Wiley, New York

    Google Scholar 

  20. Jolliffe I (2005) Principal component analysis. Wiley Online Library, Hoboken

    Book  MATH  Google Scholar 

  21. Kambhatla N, Leen TK (1997) Dimension reduction by local principal component analysis. Neural Comput 9(7):1493–1516

    Article  Google Scholar 

  22. Klemm R (1987) Adaptive airborne MTI: an auxiliary channel approach. IEEE Proc F (Commun Radar Signal Process) 134:269–276

    Article  Google Scholar 

  23. Kong X, An Q, Ma H, Han C, Zhang Q (2012) Convergence analysis of deterministic discrete time system of a unified self-stabilizing algorithm for PCA and MCA. Neural Netw 36:64–72

    Article  MATH  Google Scholar 

  24. Kong X, Hu C, Han C (2010) On the discrete-time dynamics of a class of self-stabilizing MCA extraction algorithms. IEEE Trans Neural Netw 21(1):175–181

    Article  Google Scholar 

  25. Kong X, Hu C, Han C (2010) A self-stabilizing MSA algorithm in high-dimension data stream. Neural Netw 23(7):865–871

    Article  Google Scholar 

  26. Kong X, Hu C, Han C (2012) A dual purpose principal and minor subspace gradient flow. IEEE Trans Signal Process 60(1):197–210

    Article  MathSciNet  Google Scholar 

  27. Kong X, Hu C, Ma H, Han C (2012) A unified self-stabilizing neural network algorithm for principal and minor components extraction. IEEE Trans Neural Netw Learn Syst 23(2):185–198

    Article  Google Scholar 

  28. Lai Z, Jin Z, Yang J, Sun M (2012) Dynamic transition embedding for image feature extraction and recognition. Neural Comput Appl 21(8):1905–1915

    Article  Google Scholar 

  29. Luo FL, Unbehauen R (1997) A generalized learning algorithm of minor component. In: 1997 IEEE international conference on acoustics, speech, and signal processing (ICASSP-97), vol 4, pp 3229–3232

  30. Luo FL, Unbehauen R, Cichocki A (1997) A minor component analysis algorithm. Neural Netw 10(2):291–297

    Article  Google Scholar 

  31. Lv JC, Tan KK, Yi Z, Huang S (2010) A family of fuzzy learning algorithms for robust principal component analysis neural networks. IEEE Trans Fuzzy Syst 18(1):217–226

    Article  Google Scholar 

  32. Manton JH, Helmke U, Mareels IM (2005) A dual purpose principal and minor component flow. Syst Control Lett 54(8):759–769

    Article  MathSciNet  MATH  Google Scholar 

  33. Mathew G, Reddy VU (1994) Development and analysis of a neural network approach to pisarenko’s harmonic retrieval method. IEEE Trans Signal Process 42(3):663–667

    Article  Google Scholar 

  34. Miao Y, Hua Y (1998) Fast subspace tracking and neural network learning by a novel information criterion. IEEE Trans Signal Process 46(7):1967–1979

    Article  Google Scholar 

  35. Möller R (2004) A self-stabilizing learning rule for minor component analysis. Int J Neural Syst 14(01):1–8

    Article  Google Scholar 

  36. Möller R, Könies A (2004) Coupled principal component analysis. IEEE Trans Neural Netw 15(1):214–222

    Article  Google Scholar 

  37. Nguyen TD, Takahashi N, Yamada I (2013) An adaptive extraction of generalized eigensubspace by using exact nested orthogonal complement structure. Multidimens Syst Signal Process 24(3):457–483

    Article  MathSciNet  MATH  Google Scholar 

  38. Nguyen TD, Yamada I (2013) Adaptive normalized quasi-Newton algorithms for extraction of generalized eigen-pairs and their convergence analysis. IEEE Trans Signal Process 61(6):1404–1418

    Article  MathSciNet  Google Scholar 

  39. Nguyen TD, Yamada I (2013) A unified convergence analysis of normalized past algorithms for estimating principal and minor components. Sig Process 93(1):176–184

    Article  Google Scholar 

  40. Ouyang S, Bao Z, Liao GS, Ching P (2001) Adaptive minor component extraction with modular structure. IEEE Trans Signal Process 49(9):2127–2137

    Article  Google Scholar 

  41. Ouyang S, Ching P, Lee T (2002) Quasi-Newton algorithm for adaptive minor component extraction. Electron Lett 38(19):1142–1144

    Article  Google Scholar 

  42. Peng D, Yi Z, Lv JC, Xiang Y (2008) A stable MCA learning algorithm. Comput Math Appl 56(4):847–860

    Article  MathSciNet  MATH  Google Scholar 

  43. Peng D, Yi Z, Lv J, Xiang Y (2008) A neural networks learning algorithm for minor component analysis and its convergence analysis. Neurocomputing 71(7):1748–1752

    Article  Google Scholar 

  44. Peng D, Yi Z, Xiang Y (2009) A unified learning algorithm to extract principal and minor components. Digit Signal Process 19(4):640–649

    Article  Google Scholar 

  45. Qiu J, Wang H, Lu J, Zhang B, Du KL (2012) Neural network implementations for PCA and its extensions. ISRN Artif Intell 2012:1–19

  46. Smith LI (2002) A tutorial on principal components analysis. Cornell Univ USA 51:52

    Google Scholar 

  47. Wang R, Yao M, Cheng Z, Zou H (2011) Interference cancellation in GPS receiver using noise subspace tracking algorithm. Signal Process 91(2):338–343

    Article  MATH  Google Scholar 

  48. Xu L, Oja E, Suen CY (1992) Modified Hebbian learning for curve and surface fitting. Neural Netw 5(3):441–457

    Article  Google Scholar 

  49. Yang J, Chen X, Xi H (2013) Fast adaptive extraction algorithm for multiple principal generalized eigenvectors. Int J Intell Syst 28(3):289–306

    Article  Google Scholar 

  50. Ye M, Fan XQ, Li X (2006) A class of self-stabilizing MCA learning algorithms. IEEE Trans Neural Netw 17(6):1634–1638

    Article  Google Scholar 

  51. Ye M, Yi Z, Lv J (2005) A globally convergent learning algorithm for PCA neural networks. Neural Comput Appl 14(1):18–24

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge that this work is supported in part by National Natural Foundation of China under Grant 61174207, 61374120, 61074072 and 11405267.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Kong.

Appendices

Appendix 1: Derivation of Coupled System

Suppose that \(\bar{\mathbf{W}}\) contains all eigenvectors of C in its columns \((\mathbf{w}_1, \ldots ,\mathbf{w}_n)\), coincides with eigenvalues \(\lambda _1 < \cdots < \lambda _n\). \(\bar{\varvec{\Lambda }}\) is a diagonal matrix containing all eigenvalues of C, which is, \(\bar{\varvec{\Lambda }}=\text {diag} (\lambda _1, \ldots , \lambda _n)\) . Suppose that \(\mathbf{e}_1=(1,0,\ldots ,0)^T\), then it holds that \(\mathbf{C}=\bar{\mathbf{W}}\bar{\varvec{\Lambda }}\bar{\mathbf{W}}^T\), \(\bar{\mathbf{W}}{} \mathbf{e}_1=\mathbf{w}_1\) and \(\bar{\mathbf{W}}^{-1}=\bar{\mathbf{W}}^T\) [11]. We have

$$\begin{aligned} \mathbf{C}-\lambda \mathbf{I}=\bar{\mathbf{W}} \left( \bar{\varvec{\Lambda }} -\lambda \mathbf{I}\right) \bar{\mathbf{W}}^T. \end{aligned}$$
(59)

In the vicinity of the stationary point \((\mathbf{w}_1, \lambda _1)\), by approximating \(\mathbf{w} \approx \mathbf{w}_1, \lambda \approx \lambda _1 \ll \lambda _j\ (2 \le j \le n)\), it holds that

$$\begin{aligned} \bar{\varvec{\Lambda }}-\lambda \mathbf{I} \approx \bar{\varvec{\Lambda }}-\lambda \mathbf{e}_1 \mathbf{e}_1^T. \end{aligned}$$
(60)

Then we have

$$\begin{aligned} \mathbf{C} - \lambda \mathbf{I} \approx \bar{\mathbf{W}}\left( {\bar{\mathbf \Lambda }} - \lambda \mathbf{e}_1 \mathbf{e}_1^T \right) \bar{ \mathbf{W}}^T\approx \mathbf{C} - \lambda \mathbf{w}{} \mathbf{w}^T . \end{aligned}$$
(61)

In this case, (10) and (11) change to

$$\begin{aligned} \left( \mathbf{C} - \lambda \mathbf{w}{} \mathbf{w}^T \right) \dot{\mathbf{w}} - \mathbf{w}\dot{\lambda }&= - \left( \mathbf{C} - \lambda \mathbf{w}{} \mathbf{w}^T \right) \mathbf{w} \end{aligned}$$
(62)
$$\begin{aligned} -2\mathbf{w}^T\dot{\mathbf{w}}&= \mathbf{w}^T\mathbf{w} - 1, \end{aligned}$$
(63)

which equals to

$$\begin{aligned} \mathbf{C}\dot{\mathbf{w}} - \lambda \mathbf{w}{} \mathbf{w}^T\dot{\mathbf{w}} - \mathbf{w}\dot{\lambda }&= - \mathbf{C}{} \mathbf{w} + \lambda \mathbf{w}{} \mathbf{w}^T \mathbf{w} \end{aligned}$$
(64)
$$\begin{aligned} \mathbf{w}^T\dot{\mathbf{w}}&= \frac{1}{2}(1-\mathbf{w}^T\mathbf{w}). \end{aligned}$$
(65)

Substituting (65) into (64), it yields

$$\begin{aligned} \mathbf{C}\dot{\mathbf{w}} - \mathbf{w}\dot{\lambda }= - \mathbf{C}{} \mathbf{w} + \frac{1}{2}\lambda \mathbf{w}\left( \mathbf{w}^T \mathbf{w}+1\right) . \end{aligned}$$
(66)

Premultiplying both side of (66) by \(\mathbf{w}^T\mathbf{C}^{-1}\), then we get

$$\begin{aligned} \mathbf{w}^T\dot{\mathbf{w}} - \mathbf{w}^T \mathbf{C}^{-1}{} \mathbf{w}\dot{\lambda }= - \mathbf{w}^T\mathbf{w} + \frac{1}{2}\lambda \mathbf{w}^T \mathbf{C}^{-1}{} \mathbf{w}\left( \mathbf{w}^T \mathbf{w}+1\right) . \end{aligned}$$
(67)

Substituting (65) into (67) and after some manipulations, we have that

$$\begin{aligned} \dot{\lambda } = \frac{\mathbf{w}^T \mathbf{w}+1}{2}\left( \frac{1}{\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w}}-\lambda \right) . \end{aligned}$$
(68)

Substituting (68) into (66), we can get

$$\begin{aligned} \dot{\mathbf{w}} = \frac{ \left( \mathbf{w}^T \mathbf{w}+1 \right) \mathbf{C}^{-1}{} \mathbf{w}}{2\mathbf{w}^T\mathbf{C}^{-1} \mathbf{w}}-\mathbf{w}. \end{aligned}$$
(69)

Then, the coupled dynamical system (12)–(13) is obtained.

Next we analyze the approximation error of the coupled system. It is found that

$$\begin{aligned} \big |(\bar{\varvec{\Lambda }}-\lambda \mathbf{I}) - (\bar{\varvec{\Lambda }}-\lambda \mathbf{e}_1 \mathbf{e}_1^T)\big |=\big |-\lambda \mathbf{I} +\lambda \mathbf{e}_1 \mathbf{e}_1^T\big |=\lambda (\mathbf{I}- \mathbf{e}_1 \mathbf{e}_1^T), \end{aligned}$$
(70)

and hence

$$\begin{aligned} \bar{\mathbf{W}}[ \lambda (\mathbf{I} - \mathbf{e}_1 \mathbf{e}_1^T)]\bar{ \mathbf{W}}^T = \lambda (\mathbf{I}- \mathbf{w}{} \mathbf{w}^T). \end{aligned}$$
(71)

Substituting (71) into (10)–(11), we have that

$$\begin{aligned} \lambda (\mathbf{I}- \mathbf{w}{} \mathbf{w}^T)\Delta \dot{\mathbf{w}} - \mathbf{w}\Delta \dot{\lambda }&= - \lambda (\mathbf{I}- \mathbf{w}{} \mathbf{w}^T)\mathbf{w} \end{aligned}$$
(72)
$$\begin{aligned} -2\mathbf{w}^T\Delta \dot{\mathbf{w}}&= \mathbf{w}^T\mathbf{w} - 1, \end{aligned}$$
(73)

where \(\Delta \dot{\mathbf{w}}\) and \(\Delta \dot{\lambda }\) denote the approximation error of \(\dot{\mathbf{w}}\) and \(\dot{\lambda }\), respectively. Similarly, we can get that

$$\begin{aligned} \Delta \dot{\mathbf{w}}&= \frac{1}{2}{} \mathbf{w}\left( \frac{1}{\mathbf{w}^T\mathbf{w}}-1\right) \end{aligned}$$
(74)
$$\begin{aligned} \Delta \dot{\lambda }&= \frac{1}{2}\lambda \left( \frac{1}{\mathbf{w}^T\mathbf{w}}-\mathbf{w}^T\mathbf{w}\right) \end{aligned}$$
(75)

Since convergence analysis (see Sect. 4) shows that the coupled system (12)–(13) has the only stable stationary point \((\mathbf{w}_1,\lambda _1)\) and it holds that \(\mathbf{w}^T_1\mathbf{w}_1=1\). Substituting \(\mathbf{w}^T\mathbf{w}\approx 1\) into (74)–(75), it holds that \(\Delta \dot{\mathbf{w}}\approx \mathbf{0}\) and \(\Delta \dot{\lambda }\approx 0\). This means that the approximation error approaches to 0 in the vicinity of the stable stationary point.

Appendix 2: The Jacobian of fMCA

The Jacobian of coupled rule is defined as

$$\begin{aligned} \mathbf{J}(\mathbf{w},\lambda )=\left( \begin{array}{c|c} {\frac{\partial \dot{\mathbf{w}}}{\partial \mathbf{w}^T}} &{} {\frac{\partial \dot{\mathbf{w}}}{\partial \lambda }} \\ {\frac{\partial \dot{\lambda }}{\partial \mathbf{w}^T}} &{} {\frac{\partial \dot{\lambda }}{\partial \lambda }} \end{array} \right) . \end{aligned}$$
(76)

For fMCA, we have

$$\begin{aligned} \frac{\partial \dot{\mathbf{w}}}{\partial \mathbf{w}^T}&=\frac{\partial }{\partial \mathbf{w}^T}\frac{\mathbf{C}^{-1}{} \mathbf{w}{} \mathbf{w}^T\mathbf{w}}{2\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w}}+\frac{\partial }{\partial \mathbf{w}^T}\frac{\mathbf{C}^{-1}{} \mathbf{w}}{2\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w}}-\frac{\partial }{\partial \mathbf{w}^T}{} \mathbf{w}\nonumber \\&=\mathbf{A}(\mathbf{w})+\mathbf{B}(\mathbf{w})-\mathbf{I}, \end{aligned}$$
(77)

where

$$\begin{aligned} \mathbf{A}(\mathbf{w})&=\frac{\partial }{\partial \mathbf{w}^T}\frac{\mathbf{C}^{-1}{} \mathbf{w}{} \mathbf{w}^T\mathbf{w}}{2\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w}}\nonumber \\&=\frac{\mathbf{C}^{-1}}{2} \frac{\partial }{\partial \mathbf{w}^T} \frac{\mathbf{w}{} \mathbf{w}^T\mathbf{w}}{\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w}}\nonumber \\&=\frac{\mathbf{C}^{-1}}{2} \left( \frac{\mathbf{w}^T\mathbf{w}{} \mathbf{I}+2\mathbf{w}{} \mathbf{w}^T}{\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w}}- \frac{2\mathbf{w}{} \mathbf{w}^T\mathbf{w}{} \mathbf{w}^T\mathbf{C}^{-1}}{(\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w})^2}\right) \nonumber \\&=\frac{\mathbf{C}^{-1}{} \mathbf{w}^T\mathbf{w}}{2\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w}}+\frac{\mathbf{C}^{-1}{} \mathbf{w}{} \mathbf{w}^T}{\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w}} -\frac{\mathbf{C}^{-1}{} \mathbf{w}{} \mathbf{w}^T\mathbf{w}{} \mathbf{w}^T\mathbf{C}^{-1}}{(\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w})^2} \end{aligned}$$
(78)

and

$$\begin{aligned} \mathbf{B}(\mathbf{w})&=\frac{\partial }{\partial \mathbf{w}^T}\frac{\mathbf{C}^{-1}{} \mathbf{w}}{2\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w}}\nonumber \\&=\frac{\mathbf{C}^{-1}}{2\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w}} - \frac{4\mathbf{C}^{-1}{} \mathbf{w}{} \mathbf{w}^T\mathbf{C}^{-1}}{(2\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w})^2}\nonumber \\&=\frac{\mathbf{C}^{-1}}{2\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w}}-\frac{\mathbf{C}^{-1}{} \mathbf{w}{} \mathbf{w}^T\mathbf{C}^{-1}}{(\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w})^2}. \end{aligned}$$
(79)

Similarly,

$$\begin{aligned} \frac{\partial \dot{\lambda }}{\partial \mathbf{w}^T}&=\frac{\partial }{\partial \mathbf{w}^T} \frac{\mathbf{w}^T\mathbf{w}+1}{2\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w}}- \frac{\partial }{\partial \mathbf{w}^T}\frac{\lambda }{2}\left( \mathbf{w}^T\mathbf{w}+1\right) \nonumber \\&=\frac{\mathbf{w}^T}{\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w}}-\frac{\left( \mathbf{w}^T\mathbf{w}+1\right) \mathbf{w}^T\mathbf{C}^{-1}}{(\mathbf{w}^T\mathbf{C}^{-1}{} \mathbf{w})^2} -\lambda \mathbf{w}^T. \end{aligned}$$
(80)

In the vicinity of the stationary point \((\mathbf{w}_1,\lambda _1)\), it holds that \(\mathbf{C}^{-1}{} \mathbf{w}_1\approx \lambda ^{-1}_1\mathbf{w}_1\), \(\mathbf{w}^T_1\mathbf{w}_1\approx 1\) and \(\mathbf{w}^T_1\mathbf{C}^{-1}{} \mathbf{w}_1\approx \lambda ^{-1}_1\). Then

$$\begin{aligned} \mathbf{A}(\mathbf{w})&\approx \frac{1}{2}\lambda _1\mathbf{C}^{-1}+\mathbf{w}_1\mathbf{w}^T_1-\mathbf{w}_1\mathbf{w}^T_1=\frac{1}{2}\lambda _1\mathbf{C}^{-1} \end{aligned}$$
(81)
$$\begin{aligned} \mathbf{B}(\mathbf{w})&\approx \frac{1}{2}\lambda _1\mathbf{C}^{-1}-\mathbf{w}_1\mathbf{w}^T_1. \end{aligned}$$
(82)

Thus

$$\begin{aligned} \frac{\partial \dot{\mathbf{w}}}{\partial \mathbf{w}^T}=\lambda _1\mathbf{C}^{-1}-\mathbf{w}_1\mathbf{w}^T_1-\mathbf{I}, \end{aligned}$$
(83)

and

$$\begin{aligned} \frac{\partial \dot{\lambda }}{\partial \mathbf{w}^T}=-2\lambda _1\mathbf{w}^T. \end{aligned}$$
(84)

It is also found that

$$\begin{aligned} \frac{\partial \dot{\mathbf{w}}}{\partial \lambda }=0 \end{aligned}$$
(85)

and

$$\begin{aligned} \frac{\partial \dot{\lambda }}{\partial \lambda }=-\frac{\mathbf{w}^T\mathbf{w}+1}{2}=-1. \end{aligned}$$
(86)

To sum up, we get

$$\begin{aligned} \mathbf{J}(\mathbf{w}_1,\lambda _1)=\left( \begin{array}{c|c} {\mathbf{C}^{-1}\lambda _1-\mathbf{I}-\mathbf{w}_1\mathbf{w}_1^T} &{} {\mathbf{0}} \\ {-2\lambda _1\mathbf{w}_1^T} &{} {-1} \end{array} \right) . \end{aligned}$$
(87)

Appendix 3: Proof of \(\lambda (k) > 0\)

The proof of aMCA, fMCA and aPCA are similar, thus we only take aMCA as an example. Suppose that C has the smallest eigenvalue \(\lambda _1\) and the largest eigenvalue \(\lambda _n\). We have proved that \(\mathbf{w}(k)\) is self-stabilized, or in other words, the norm of \(\mathbf{w}(k)\) converges to 1 automatically. In this case, we can approximate \(\mathbf{w}^T\mathbf{w}=1\) in each step. We have

$$\begin{aligned} \lambda _1\le \frac{\mathbf{w}^T\mathbf{C}{} \mathbf{w}}{\mathbf{w}^T\mathbf{w}}=\mathbf{w}^T\mathbf{C}{} \mathbf{w}\le \lambda _n, \end{aligned}$$
(88)

which is the property of Rayleigh quotient [17]. From (23) we conclude that \(\mathbf{Q}=\mathbf{C}^{-1}\) has the smallest eigenvalue \(1/\lambda _n\) and the largest eigenvalue \(1/\lambda _1\). Thus

$$\begin{aligned} \frac{1}{\lambda _n}\le \frac{\mathbf{w}^T\mathbf{Q}{} \mathbf{w}}{\mathbf{w}^T\mathbf{w}}=\mathbf{w}^T\mathbf{Q}{} \mathbf{w}\le \frac{1}{\lambda _1}, \end{aligned}$$
(89)

or in other words

$$\begin{aligned} \lambda _1\le \frac{1}{\mathbf{w}^T\mathbf{Q}{} \mathbf{w}}\le \lambda _n. \end{aligned}$$
(90)

Since \(\lambda (0)>0\) and \(0<\gamma (k)<1\) hold for all \(k \ge 0\), we can verify (21) as

$$\begin{aligned} \lambda (k+1)&=(1-\gamma (k))\lambda (k)+\gamma (k)\frac{1}{\mathbf{w}^T(k)\mathbf{Q}(k)\mathbf{w}(k)}\nonumber \\&\ge (1-\gamma (k))\lambda (k)+\gamma (k)\lambda _1\nonumber \\&\ge \cdots \nonumber \\&\ge \prod _{i=0}^k(1-\gamma (i))\lambda (0)+\lambda _1\sum _{i=0}^k\left[ \gamma (i)\prod _{j=i+1}^k(1-\gamma (j))\right] \nonumber \\&> 0 \end{aligned}$$
(91)

for all \(k\ge 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Kong, X., Ma, H. et al. Unified and Coupled Self-Stabilizing Algorithms for Minor and Principal Eigen-pairs Extraction. Neural Process Lett 45, 197–222 (2017). https://doi.org/10.1007/s11063-016-9520-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-016-9520-3

Keywords

Navigation