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Abstract A pseudo-marginal Markov chain Monte Carlo (PMCMC) method is proposed
for nonnegative matrix factorization (NMF). The sampler jointly simulates the joint pos-
terior distribution for the nonnegative matrices and the matrix dimensions which indicate
the number of the nonnegative components in the NMF model. We show that the PMCMC
sampler is a generalization of a version of the reversible jump Markov chain Monte Carlo
(RJMCMC). An illustrative synthetic data was used to demonstrate the ability of the pro-
posed PMCMC sampler in inferring the nonnegative matrices and as well as the matrix di-
mensions. The proposed sampler was also applied to a nuclear magnetic resonance (NMR)
spectroscopy data to infer the number of nonnegative components.

Keywords Pseudo-marginal Markov Chain Monte Carlo · Nonnegative Matrix Factoriza-
tion · Reversible Jump Markov Chain Monte Carlo · Importance Sampling

1 Introduction

Given a data matrix X ∈ RN×D, the NMF problem is to represent X as a product of two
unknown nonnegative matrices U ∈ RN×M

+ and VT ∈ RM×D
+ , where T denotes the transpose

of a matrix, plus a noise matrix E ∈ RN×D, which can be conveniently represented as the
following model:

X = UVT +E (1)

Note that M,N, and D are positive integers, and in this paper we assume that M ≤ N < D.
Particularly, the column of the noise matrix follows a Gaussian distribution with zero mean
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and an unknown diagonal covariance matrix Λ = diag(λ1,λ2, · · · ,λN). In this model, the
data matrix X is not necessary nonnegative. For recent approaches to NMF, please see [12];
NMF is also an important approach to dimensionality reduction [3, 19]. It is well known that
the matrix dimension M (i.e., the number of nonnegative components) is unknown; even if
M is known, without imposing constrains on the model, the solution is not unique. In this
paper, we aim to infer M, U, V and Λ simultaneously by devising a PMCMC sampler.

Given M, Gibbs samplers have been proposed for sampling the matrices U, V and the
noise variances λn [20, 16]. However, it is a difficult task to estimate M, which is essentially
a model selection problem. For estimating M, the key task is to compute the analytically
intractable integration p(X|M) =

∫
p(X|θ ,M)p(θ |M)dθ where θ = {U,V,Λ}. Thermody-

namic integration (TI) [8] and Chib method [5] have been applied to compute this integration
[16, 21]. It has been shown that Chib method often has numerical problems in computing
some conditional densities which is required for estimating the posterior densities [21]. The
TI method [8], which employs a series of power posteriors, needs to choose a suitable dis-
cretization for the temperature parameter for numerically estimating an integration; as the
number of power posteriors increases, the computational cost increases. Also the discretiza-
tion for the temperature parameter may affect the estimation results [4]. Reversible jump
Markov chain Monte Carlo (RJMCMC) [9] has been developed to sampling M and θ for
NMF simultaneously [21]. Other methods which are not sampling-based methods had also
been developed for estimating M [18, 15, 17]. In this paper, a pseudo-marginal Markov chain
Monte Carlo sampler (PMCMC) [2] is proposed to simulate both M and θ . We will show
that the RJMCMC algorithm can be viewed as a special case of the PMCMC sampler. The
proposed sampler was then applied to a synthetic data and a nuclear magnetic resonance
spectroscopy data.

2 The Gibbs sampler

Prior to describe the PMCMC sampler, the Gibbs sampler is required to be derived for
sampling θ for a fixed M. The Gibbs sampler will be used to generate the importance densi-
ties for approximating the marginal likelihood which is used for the PMCMC sampler. The
model (1) can be represented as the form X = ∑

M
m=1 umvT

m + E which is useful for deriving
the Gibbs sampler. Denote Z = X−∑

M
m=1 umvT

m, the likelihood for the model has the form

p(X|U,V,Λ) ∝

N

∏
n=1

λ
−D

2
n exp

{
−1

2
trace

[
ZT

Λ
−1Z

]}
∝

N

∏
n=1

λ
−D

2
n exp

{
vT

mX̃T
−mΛ

−1um−
1
2

uT
mΛ
−1umvT

mvm

}
(2)

where X̃−m = X−∑ j 6=m u jvT
j . This form of the likelihood is convenient to derive the condi-

tionals for the Gibbs sampler. Since the elements of U and V are nonnegative, truncated pri-
ors are imposed on them. The unm is assumed to follow a truncated Exponential distribution
such that p(unm) = 1

1−e−bu e−unm 1[0,bu](unm) where 1[0,bu](unm) denotes that unm ∈ [0,bu], the

λ−1
n follows a Gamma prior with the form p(λ−1

n ) = 1
β

α
λ

λ
Γ (αλ )

(
1

λn

)αλ−1
e
− 1

β
λ

λn 1[0,∞)(λn),

and the vmt follows an Uniform prior in the range [0,bv]. It is required to simulate the poste-
rior distribution p(U,V,Λ |X) ∝ p(X|U,V,Λ)p(U)p(V)p(Λ). Based on the likelihood and
prior distributions, the conditionals for the Gibbs sampler have the same form with those
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derived in [16] and [21].

The conditional distribution of um is a truncated Gaussian (TG) with the form

p(um|X,V,Λ) = T G (µum ,Σum ,0,bu)

where µum = (µu1m , · · · ,µuNm)T and Σum = diag(σ2
u1m

, · · · ,σ2
uNm

), where µunm = A−1
unm(Bunm −

1) and σ2
unm = A−1

unm , and T G (µ,σ2,a,b) denotes a truncated Gaussian density with param-
eters µ and σ2 defined in the range [a,b]. The derivation shows that Aunm = λ−1

n vT
mvm and

Bunm = λ−1
n vT

mx̃n
−m where x̃n

−m denotes the nth row of X̃−m.

The conditional distribution of vm is also a truncated Gaussian, which has the form

p(vm|X,U,Λ) = T G (µvm ,Σvm ,0,bv)

where µvm = A−1
vm BT

vm and Σvm = A−1
vm , where Avm = avm I where avm = uT

mΛ−1um and Bvm =
X̃T
−mΛ−1um.

The conditional distribution of λ−1
n is a Gamma distribution,

p(λ−1
n |xn,V,un) = gamma(αn,βn)

where αn = αλ + D/2 and βn =
{

β
−1
λ

+ 1
2 ∑

D
d=1(xnd−unvT

d )2
}−1

where un represents the
nth row of U and vd represents the dth row of V.

The Gibbs sampler will be employed to generate the importance densities used in the
pseudo-marginal Markov chain Monte Carlo method, which is proposed in the following
section.

3 The pseudo-marginal Markov chain Monte Carlo sampler

It has been shown that, given M, the θM can be efficiently simulated using the Gibbs sampler,
where θM represents all the parameters when the dimension is M. In this section we propose
a PMCMC sampler for sampling the posterior distribution p(M,θM|X). It is straightforward
to set up the proposal distribution for the Metropolis-Hastings (MH) algorithm with the form
q(M′,θM′ |M,θM) = q(M′|M)p(θM′ |X,M′). Then the MH acceptance ratio is given by

p(M′,θM′ |X)q(M,θM|M′,θM′)
p(M,θM|X)q(M′,θM′ |M,θM)

=
p(X|M′)p(M′)q(M|M′)
p(X|M)p(M)q(M′|M)

where we have used the identity p(M,θM|X) = p(θM|X,M)p(M|X). This is exactly the
Bayes factor. This means that it is required to know the marginal likelihood for calculating
the acceptance ratio. However the marginal likelihood is essentially the quantity we want to
know. This acceptance ratio implies that the MH algorithm targets the posterior distribution
p(M|X), which is exactly what we want to infer. In most of the situations the marginal
likelihood has no analytical form. Interestingly, when the marginal likelihood is not known,
[2] and [1] have proposed to substitute the unknown marginal likelihood by an estimated one
to compute the MH acceptance ratio, and it has been proved that under weak assumptions
the algorithm leaves the target distribution p(M,θM|X) invariant. The PMCMC algorithm
described in Algorithm 1 is employed to simulate the posterior distribution p(M,θM|X) for
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Algorithm 1 The pseudo-marginal Markov chain Monte Carlo sampler
Input: data X, αλ = 1e−6, βλ = 1e6, bu = max(X), bv = max(X) and the number of samples NSamples.
Initialization:

– Randomly select M.
– Run the Gibbs sampler targeting the density p(θM |X ,M) and generate the importance density denoted

by q(θM |X ,M). A sample θM(0) is generated by using the sampling importance resampling (SIR)
technique.

– Estimate the marginal likelihood p(X|M) and denote the estimated marginal likelihood by ẐM .

for i = 1 to NSamples do
– Sample M′ from q(M′|M).
– Run the Gibbs sampler targeting the density p(θM′ |X ,M′) and generate the importance density

denoted by q(θM′ |X ,M′). A sample θM′ (i) is generated by using the SIR technique.
– Use the importance sampling to estimate the marginal likelihood p(X|M′) and denote the estimated

marginal likelihood by ẐM′ .

– Calculate the probability α(M,M′) = min
{

1,
ẐM′ p(M′)q(M|M′)
ẐM p(M)q(M′|M)

}
.

– with probability α(M,M′), accept (M′,θM′ (i)), and otherwise keep (M,θM(i)).
end for

the NMF model. The prior for M is assumed to be Uniform, and the proposal q(M′|M) is
also Uniform which indicates that the probabilities of moving from M to other states are
equal.

To estimate the marginal likelihood, the importance sampling could be employed. Sup-
pose q(θM|X ,M) is the importance density. The marginal likelihood can be represented as

p(X|M) =
∫ p(X|θM,M)p(θM|M)

q(θM|X ,M)
q(θM|X ,M)dθM

This integration can be computed by using the Monte Carlo estimate. Suppose θ l
M ∼ q(θM|X ,M),

the estimated marginal likelihood is thus ẐM = 1
L ∑l wl

M , where the weights are

wl
M =

p(X |θ l
M,M)p(θ l

M|M)
q(θ l

M|X ,M)

It is crucial to select the importance density, which is now generated in the following section.

3.1 The importance density and the sampling importance resampling technique

The importance densities were generated by using the Gibbs sampler. The posterior den-
sities for both U and V are truncated Normal distributions. The posterior for λ−1

n is a
Gamma distribution. Therefore, the importance densities for unm, vmt and λ−1

n are truncated
Normal and Gamma such that q(unm|X,M) = T N unm(µunm ,σ2

unm ,0,bu), q(vnm|X,M) =
T N vnm(µvnm ,σ2

vnm ,0,bv) and q(λ−1
n |X,M)= Gamma(λn,βn), where the parameters of those

densities are posterior sample estimates given by the Gibbs sampler.

To generate a sample using the sampling importance resampling (SIR) technique [14],
in the first step N samples {θ n

M}N
n=1 are generated from the proposal densities q(θM|X ,M).

An approximation to the posterior distribution p(θM|X ,M) can be represented as

p̃(dθM|X,M) =
N

∑
n=1

W n
MIθ n

M
(dθM)
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where W n
M = wn

M
∑

N
n=1 wn

M
are called the importance weights and Iθ n

M
(θ n

M) equals 1 if the condition

holds and otherwise 0. A sample is then drawn from the distribution p̃(dθM|X,M), which is
approximately distributed according to the posterior p(θM|X,M). Note that the importance
sampling has also been applied to classification problems [11].

4 Relation to the reversible jump MCMC

A reversible jump MCMC algorithm could be easily derived from the proposed PMCMC
sampler. When using the importance sampling to estimate the marginal likelihood, suppose
just one sample was used to calculate the importance weights. The estimated marginal likeli-

hood thus has the simple form ẐM′ =
p(X |θ∗M′ ,M

′)p(θ∗M′ |M
′)

q(θ∗
M′ |X ,M′) where θ ∗M′ ∼ q(θM′ |X ,M′). Suppose

we are proposing the move from M to M′, then the acceptance ratio can be written as

p(X |θ ∗M′ ,M
′)p(θ ∗M′ |M

′)p(M′)q(θM′ |X ,M′)q(M|M′)
p(X |θM,M)p(θM|M)p(M)q(θ ∗M′ |X ,M′)q(M′|M)

This form of the acceptance ratio is exactly the same as the one proposed in [21] for the
RJMCMC scheme. This implies that the RJMCMC algorithm is a special case of the pro-
posed PMCMC sampler.

5 Simulation results

In this section, the PMCMC sampler is evaluated by applying it to a toy data set and a
nuclear magnetic resonance (NMR) spectroscopy data. The PMCMC sampler was used to
infer M, U and V simultaneously.

In the implementation of the Gibbs sampler, four free parameters bu, bv, αλ and βλ are
required to be defined. We set bu = bv to be the maximum value of the observation matrix X,
and set αλ = 1e−6 and βλ = 1e6 for the prior of the inverse of the noise variance λn. The
Gibbs sampler was used to generate the importance densities for the PMCMC and RJMCMC
samplers. Seven thousand samples were generated by the Gibbs sampler for U, V and Λ .
The first five thousand samples were used as burn-in and the last two thousand samples were
used to generate the importance densities. Both methods were used to simulate the posterior
distribution p(M,θM|X).

5.1 Toy Data

To generate a toy data set, a 10× 3 matrix U was generated by using the Exponential dis-
tribution with the rate parameter λ = 1. The matrix VT with size 3× 100 was uniformly
generated in the range [0,1]. The observation matrix of size 10×100 was thus generated by
X = UVT +E, where E is the Gaussian noise matrix. Thus in this toy data, the true value of
M is 3.

The PMCMC and RJMCMC samplers were used to sampling the posterior distribution
p(M,θM|X). The most important task is to infer the number M. The PMCMC sampler did
not move to other states when M = 3 after a number of iterations. Figure 1 shows a trace
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plot of the variable M with respect to the number of iterations, which shows that the sampler
converged very fast. In the stable state M = 3, the estimated matrix V was also compared
to the true one. The scatter plots of the estimated and the true matrix V are shown in the
Figure 2. This shows the ability of the sampler to infer the matrices U and V. The RJMCMC
sampler was also applied to sampling the posterior distribution p(M,θM|X). As expected
the RJMCMC sampler also did not move to other states when M = 3 after a number of
iterations. Figure 1 also shows a trace plot for the variable M. Those results show that both
PMMH and RJMCMC samplers are consistent. One problem for both methods is that they
were not mixing. The reason is that the probability of P(M|X) is approximately one, and so
that it is very hard for the samplers to move to other states. A possible approach to make the
algorithms to be mixing is to employ the tempering approaches [10].

0 100 200 300 400 500
2

3

4

5

6
Pseudo−marginal Markov Chain Monte Carlo Sampler

M

0 100 200 300 400 500
1

2

3

4
Reversible Jump MCMC Sampler

M

Iterations

Fig. 1 The trace plot for the M in 500 iterations. Both the PMCMC and RJMCMC samplers converged to the
true model state M = 3, quickly.

5.2 Nuclear Magnetic Resonance Spectroscopy Data

In this section the NMF model was applied to a NMR spectroscopy data which has been
used to study the mixtures of metabolites in biological samplers [13]. The PMCMC sam-
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Fig. 2 The scatter plot of the estimated matrix V (column) versus the true matrix (row) by using the PMCMC
sampler.

pler is further assessed by applying it to a data set with 8 samples acquired by in vitro 1D
H-NMR on two neural cell types which are neurons and neural stem cells. The data were
preprocessed after acquisition as usual [7], and the functional spectra is discretized by bin-
ning variables into bins of size 0.04 ppms resulting in 2394 variables totally. For each sample
the baseline was removed and finally the data matrix X has the size 8×2394. For this data
set there are also negative values in the matrix X. In this case, the Gibbs sampler is still valid
to seek the nonnegative matrices U and V. It has been indicated by [6] that the NMF model
has the character of clustering. In the NMR data, four spectroscopy samples were acquired
for the neurons and the rest four samples were for neural stem cells. Therefore there should
be two clusters for this NMR data. The rows of the matrix U should reflect the clustering
results. Our task is thus to infer the U which indicates which sampler corresponds to which
cluster, the V which is the collection of the intrinsic spectra for the neural types, and the M
which indicates the number of clusters.

The crucial task is to infer the number of clusters, i.e., M, for the spectra data. Both
the PMCMC and RJMCMC samplers were applied to seek M. As was noted both samplers
were used to simulate the joint posterior distribution p(M,θM|X). Figure 3 plots the simula-
tions for the number M using PMCMC and RJMCMC samplers. Both samplers converged
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when the state moved to M = 2. The plots indicated that P(M = 2|X) = 1, which correctly
estimated the number of clusters. The matrices U,V and the noise variances were also simu-
lated along with the number M. The columns of V are the component spectra for neural cell
types. The observation matrix X is the collection of the mixtures. Thus the rows of U could
be explained as the weights for generating the mixture spectra by using the combination
of the component spectra. Figure 4 shows the inferred means of the weights. The standard
deviation errors are not shown, since they are relatively small. In the figure 4, one column
of U is plotted in red and the other is in green. It shows that the matrix U indicated that the
observation spectra X had two clusters, where the first four observation spectra belong to
the neurons and the last four spectra belong to the neural stem cells.

0 500 1000 1500 2000
2

3

4

5

6

7

8
Pseudo−marginal Markov Chain Monte Carlo Sampler

M

0 500 1000 1500 2000

1

2

3

4

5

6

7

8
Reversible Jump MCMC Sampler

M

Iterations

Fig. 3 The trace plot for the M in 2000 iterations. Both the PMCMC and RJMCMC samplers inferred two
clusters in the data.

6 Conclusions

A pseudo-marginal Markov chain Monte Carlo method has been proposed for sampling both
the matrix dimensions and the nonnegative matrices for the nonnegative matrix factorization.
It has been shown that the proposed PMCMC sampler is a generalization of the RJMCMC
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Fig. 4 The estimates of the matrix U by using PMCMC. The mean values (circles) of each column of U were
divided by the maximum value of the column.

scheme employed in [21]. The PMCMC sampler was able to converge quickly and locate
correctly the matrix dimensions for the toy and NMR data sets.
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