Skip to main content
Log in

Properties of a Batch Training Algorithm for Feedforward Networks

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

We examine properties for a batch training algorithm known as the output weight optimization–hidden weight optimization (OWO–HWO). Using the concept of equivalent networks, we analyze the effect of input transformation on BP. We introduce new theory of affine invariance and partial affine invariance for neural networks and prove this property for OWO–HWO. Finally, we relate HWO to BP and show that every iteration of HWO is equivalent to BP applied to whitening transformed data. Experimental results validate the connection between OWO–HWO and OWO–BP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barton S (1991) A matrix method for optimizing a neural network. Neural Comput 3(3):450–459

    Article  Google Scholar 

  2. Chen HH, Manry MT, Chandrasekaran H (1999) A neural network training algorithm utilizing multiple sets of linear equations. Neurocomputing 25(1–3):55–72. doi:10.1016/S0925-2312(98)00109-X

    Article  MATH  Google Scholar 

  3. Dawson M, Fung A, Manry M (1993) Surface parameter retrieval using fast learning neural networks. Remote Sens Rev 7(1):1–18

    Article  Google Scholar 

  4. De Bernardez L, Buitrago R, García N (2011) Photovoltaic generated energy and module optimum tilt angle from weather data. Int J Sustain Energy 30(5):311–320

    Article  Google Scholar 

  5. Ebrahimpour R, Kabir E, Yousefi M (2007) Face detection using mixture of MLP experts. Neural Process Lett 26:69–82. doi:10.1007/s11063-007-9043-z

    Article  MATH  Google Scholar 

  6. Ergezinger S, Thomsen E (1995) An accelerated learning algorithm for multilayer perceptrons: optimization layer by layer. IEEE Trans Neural Netw 6(1):31–42

    Article  Google Scholar 

  7. Fahlman SE (1988) Faster-learning variations on back-propagation: an empirical study. In: Proceedings of the 1988 connectionist models summer school. Morgan Kaufmann, San Mateo, pp 38–51

  8. Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  9. Güler E, Sankur B, Kahya Y, Raudys S (1998) Visual classification of medical data using MLP mapping. Comput Biol Med 28(3):275–287

    Article  Google Scholar 

  10. Hagan M, Menhaj M (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993

    Article  Google Scholar 

  11. Hornik K, Stinchcombe M, White H (1990) Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Netw 3(5):551–560

    Article  Google Scholar 

  12. Kaminski W, Strumillo P (1997) Kernel orthonormalization in radial basis function neural networks. IEEE Trans Neural Netw 8(5):1177–1183

    Article  Google Scholar 

  13. Kim T, Manry M, Maldonado J (2003) New learning factor and testing methods for conjugate gradient training algorithm. In: Proceedings of the international joint conference on neural networks, 2003. IEEE, vol 3, pp 2011–2016

  14. LeCun Y, Bottou L, Orr G, Müller K (1998) Efficient backprop. In: Orr G, Müller KR (eds) Neural Networks: tricks of the trade, vol 1524. Lecture Notes in Computer Science. Springer, Berlin, pp 546–546

  15. Li J, Manry M, Narasimha P, Yu C (2006) Feature selection using a piecewise linear network. IEEE Trans Neural Netw 17(5):1101–1115

    Article  Google Scholar 

  16. Li J, Yao J, Petrick N, Summers R, Hara A (2006) Hybrid committee classifier for a computerized colonic polyp detection system. In: Proceedings of the SPIE medical imaging. Citeseer, San Diego

  17. Manry MT (1982) Image processing and neural network laboratory. http://www-ee.uta.edu/eeweb/ip/new_training.html

  18. Manry MT, Apollo SJ, Allen LS, Lyle WD, Gong W, Dawson M, Fung AK (1994) Fast training of neural networks for remote sensing. Remote Sens Rev 9:77–96. doi:10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  19. Mantena V, Jiang W, Li J, McKenzie R (2009) Prostate cancer biomarker identification using maldi-ms data: initial results. In: Life science systems and applications workshop, 2009. LiSSA 2009. IEEE/NIH. IEEE, pp 116–119

  20. Ondimu S, Murase H (2007) Reservoir level forecasting using neural networks: Lake Naivasha. Biosyst Eng 96(1):135–138

    Article  Google Scholar 

  21. Parisi R, Di Claudio E, Orlandi G, Rao B (1996) A generalized learning paradigm exploiting the structure of feedforward neural networks. IEEE Trans Neural Netw 7(6):1450–1460

    Article  Google Scholar 

  22. Raudys S (2001) Statistical and neural classifiers: an integrated approach to design. Springer, Berlin

    Book  MATH  Google Scholar 

  23. Ruck D, Rogers S, Kabrisky M, Oxley M, Suter B (1990) The multilayer perceptron as an approximation to a Bayes optimal discriminant function. IEEE Trans Neural Netw 1(4):296–298. doi:10.1109/72.80266

    Article  Google Scholar 

  24. Rumelhart D, Hinton G, Williams R (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536

    Article  Google Scholar 

  25. Sartori M, Antsaklis P (1991) A simple method to derive bounds on the size and to train multilayer neural networks. IEEE Trans Neural Netw 2(4):467–471

    Article  Google Scholar 

  26. Scalero R, Tepedelenlioglu N (1992) A fast new algorithm for training feedforward neural networks. IEEE Trans Signal Process 40(1):202–210

    Article  Google Scholar 

  27. Sheikhan M, Shabani AA (2013) Pso-optimized modular neural network trained by OWO–HWO algorithm for fault location in analog circuits. Neural Comput Appl 23(2):519–530

    Article  Google Scholar 

  28. Shepherd AJ (1997) Second-order methods for neural networks, 1st edn. Springer, New York

    Book  Google Scholar 

  29. Wang G, Chen C (1996) A fast multilayer neural-network training algorithm based on the layer-by-layer optimizing procedures. IEEE Trans Neural Netw 7(3):768–775

    Article  Google Scholar 

  30. Wang L (2009) Data mining with computational intelligence. Springer, Berlin

    Google Scholar 

  31. Yeh J (2006) Real analysis: theory of measure and integration. World Scientific Publishing Company Incorporated, Singapore

    Book  MATH  Google Scholar 

  32. Yu C, Manry MT, Jiang L (2005) Effects of nonsingular preprocessing on feedforward network training. Int J Pattern Recognit Artif Intell 19(02):217–247. doi:10.1142/S0218001405004022

    Article  Google Scholar 

  33. Yu Q, Apollo S, Manry M (1993) Map estimation and the multilayer perceptron. In: Proceedings of the 1993 IEEE-SP workshop on neural networks for processing [1993] III. IEEE, pp 30–39

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melvin D. Robinson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinson, M.D., Manry, M.T., Malalur, S.S. et al. Properties of a Batch Training Algorithm for Feedforward Networks. Neural Process Lett 45, 841–854 (2017). https://doi.org/10.1007/s11063-016-9553-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-016-9553-7

Keywords

Navigation