Skip to main content
Log in

Graph-Regularized Local Coordinate Concept Factorization for Image Representation

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Existing matrix factorization based techniques, such as nonnegative matrix factorization and concept factorization, have been widely applied for data representation. In order to make the obtained concepts to be as close to the original data points as possible, one state-of-the-art method called locality constraint concept factorization is put forward, which represent the data by a linear combination of only a few nearby basis concepts. But its locality constraint does not well reveal the intrinsic data structure since it only requires the concept to be as close to the original data points as possible. To address these problems, by considering the manifold geometrical structure in local concept factorization via graph-based learning, we propose a novel algorithm, called graph-regularized local coordinate concept factorization (GRLCF). By constructing a parameter-free graph using constrained Laplacian rank (CLR) algorithm, we also present an extension of GRLCF algorithm as \(\hbox {GRLCF}_{\mathrm{CLR}}\). Moreover, we develop the iterative updating optimization schemes, and provide the convergence proof of our optimization scheme. Since GRLCF simultaneously considers the geometric structures of the data manifold and the locality conditions as additional constraints, it can obtain more compact and better structured data representation. Experimental results on ORL, Yale and Mnist image datasets demonstrate the effectiveness of our proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao M, Chow TWS, Zhang Z, Wu Z (2015) Learning from normalized local and global discriminative information for semi-supervised regression and dimensionality reduction. Inf Sci 324(10):286–309

    Article  Google Scholar 

  2. Zhao M, Zhang Z, Chow TWS (2012) Trace ratio criterion based generalized discriminative learning for semi-supervised dimension reduction. Pattern Recognit 45(4):1482–1499

    Article  MATH  Google Scholar 

  3. Zhao M, Zhang Z, Chow TWS, Li B (2014) A general soft label based linear discriminant analysis for semi-supervised dimension reduction. Neural Netw 55:83–97

    Article  MATH  Google Scholar 

  4. Li P, Chun C, Bu J (2012) Clustering analysis using manifold kernel concept factorization. Neurocomputing 87:120–131

    Article  Google Scholar 

  5. Jain A, Murty M, Flynn P (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

    Article  Google Scholar 

  6. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability, University of California Press, Berkeley, pp 281–297

  7. Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: analysis and an algorithm. Adv Neural Inf Process Syst (NIPS) 14:849–856

    Google Scholar 

  8. Nie F, Zeng Z, Tsang IW, Xu D, Zhang C (2011) Spectral embedded clustering: a framework for in-sample and out-of-sample spectral clustering. IEEE Trans Neural Netw 22(11):1796–1808

    Article  Google Scholar 

  9. Yang Y, Shen H, Nie F et al (2011) Nonnegative spectral clustering with discriminative regularization. In: Proceedings of the 25th AAAI conference on artificial intelligence (AAAI’ 11), pp 555–560

  10. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401:788–791

    Article  MATH  Google Scholar 

  11. Xu W, Gong Y (2004) Document clustering by concept factorization. In: Proceedings of the 2004 international conference on research and development in information retrieval (SIGIR’04), Sheffield, UK, pp 202–209

  12. Nie F, Ding CHQ, Luo D, Huang H(2010) Improved minmax cut graph clustering with nonnegative relaxation. In: ECML/PKDD, pp 451–466

  13. Huang J, Nie F, Huang H, Ding C (2014) Robust manifold nonnegative matrix factorization. ACM Trans Knowl Discov Data 8(3):21, Article 11

  14. Lu M, Zhao X, Zhang L, Li F (2016) Semi-supervised concept factorization for document clustering. Inf Sci 331:86–98

    Article  MathSciNet  Google Scholar 

  15. Belkin and M, Niyogi P(2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in neural information processing systems 14. MIT Press, Cambridge, MA, pp 585–591

  16. Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  17. Tenenbaum J, de Silva V, Langford J (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  18. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from examples. J Mach Learn Res 7:2399–2434

    MathSciNet  MATH  Google Scholar 

  19. Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  20. Cai D, He X, Han J, Huang T (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33:1548–1560

    Article  Google Scholar 

  21. Cai D, He X, Han J (2011) Locally consistent concept factorization for document clustering. IEEE Trans Knowl Data Eng 23(6):902–913

    Article  Google Scholar 

  22. Nie F, Wang X, Jordan MI, Huang H(2016) The constrained Laplacian rank algorithm for graph-based clustering. In: The 30th AAAI conference on artificial intelligence (AAAI), Phoenix, USA

  23. Nie F, Wang X, Huang H(2014) Clustering and projected clustering with adaptive neighbors. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 977–986

  24. Yu K, Zhang T, Gong Y (2009) Nonlinear learning using local coordinate coding. In: Proceedings of the advances in neural information processing systems, pp 2223–2231

  25. Chen Y, Zhang J, Cai D, Liu W, He X (2013) Nonnegative local coordinate factorization for image representation. IEEE Trans Image Process 22(3):969–979

    Article  MathSciNet  Google Scholar 

  26. Liu H, Yang Z, Yang J, Wu Z, Li X (2014) Local coordinate concept factorization for image representation. IEEE Trans Neural Netw Learn Syst 25(6):1071–1081

    Article  Google Scholar 

  27. Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization. Adv Neural Inf Process Syst (NIPS) 13:556–562

    Google Scholar 

  28. Zhao M, Chow TWS, Zhang Z, Li B (2015) Automatic image annotation via compact graph based semi-supervised learning. Knowl Based Syst 76:148–165

    Article  Google Scholar 

  29. Sha F, Saul LK, Lee DD (2007) Multiplicative updates for nonnegative quadratic programming. Neural Comput 19(8):2004–2031

    Article  MathSciNet  MATH  Google Scholar 

  30. Lovasz L, Plummer M (1986) Matching theory. Akad’emiai Kiad’o, Budapest

    MATH  Google Scholar 

  31. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc Series B (Methodol) 39(1):1–38

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under Grant Nos. 61373063, 61233011, 61125305, 61375007, 61220301, and by National Basic Research Program of China under Grant No. 2014CB349303. Also this work is supported in part by the Natural Science Foundation of Jiangsu Province (BK20150867), the Natural Science Research Foundation for Jiangsu Universities (13KJB510022), and the Talent Introduction Foundation and Natural Science Foundation of Nanjing University of Posts and Telecommunications (NY212014, NY212039, NY215125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ye.

Appendix: (Proof of Theorem 1)

Appendix: (Proof of Theorem 1)

To prove Theorem 1, we need to show that the objective function \({\varvec{J}}_{\varvec{GRLCF}} \) in Eq. (13) is nonincreasing under the updating rules stated in Eqs. (16) and (17). Now, we make use of an auxiliary function similar to that used in the EM algorithm [31] to prove the convergence of the theorem 1. We begin with the definition of the auxiliary function.

Definition 2

The function \(G\left( {x,{x}'} \right) \) is an auxiliary function for F(x), if the \(G\left( {x,{x}'} \right) \ge F(x)\) and \(G\left( {x,x} \right) =F(x)\) are satisfied.

The auxiliary function is very useful because of the following lemma.

Lemma 1

if G is an auxiliary function of F, then F is nonincreasing under the update

$$\begin{aligned} x^{(t+1)}=\mathop {\arg \min }\limits _{x} G\left( {x,x^{(t)}} \right) \end{aligned}$$
(27)

Proof

\(F\left( {x^{(t+1)}} \right) \le G\left( {x^{(t+1)},x^{(t)}} \right) \le G\left( {x^{(t)},x^{(t)}} \right) =F\left( {x^{(t)}} \right) \).

Next we will show that the updating rule for \({\varvec{V}}\) in Eq. (17) is exactly the update in Eq. (27) with a proper auxiliary function.

Considering any element \(v_{ab} \) in \({\varvec{V}}\), we use \(F_{v_{ab} } \) to denote the part of \({\varvec{J}}_{\varvec{GRLCF}} \) which is only relevant to \(v_{ab} \). It is easy to check that

$$\begin{aligned} {{F}'}_{v_{{ab}} }= & {} \left( {\frac{\partial {\varvec{J}}_{{\varvec{GRLCF}}} }{\partial {\varvec{V}}}} \right) _{{ab}} \\= & {} \left[ {2{\varvec{W}}^{{\varvec{T}}}{\varvec{KWV}}-2\,{\varvec{W}}^{{\varvec{T}}}{\varvec{K}}+\lambda \left( {{\varvec{A}}-2\;\,{\varvec{W}}^{{\varvec{T}}}{\varvec{K}}+{\varvec{B}}} \right) +2\,\;\mu \,{\varvec{VL}}} \right] _{{ab}} ,\\ {{F''}}_{v_{ab} }= & {} 2({\varvec{W}}^{{{\varvec{T}}}}{\varvec{KW}})_{aa} +2\mu {\varvec{L}}_{bb} \end{aligned}$$

Since our update is essentially element-wise, it is sufficient to show that each \(F_{v_{ab} } \) is nonincreasing under the update step of Eq. (17).

Lemma 2

Function

$$\begin{aligned} G\left( v,v_{ab}^{(t)} \right)= & {} F_{v_{ab} } \left( v_{ab}^{(t)} \right) +{F}'_{v_{ab} } \left( v_{ab}^{(t)}\right) \left( v-v_{ab}^{(t)} \right) \nonumber \\&+\frac{({\varvec{W}}^{T}\varvec{KWV}+\textstyle {1 \over 2}\lambda {\varvec{A}}+\textstyle {1 \over 2}\lambda {\varvec{B}}+\mu {{\varvec{V}}}{{\varvec{E}}})_{ab} }{v_{ab}^{(t)} }(v-v_{ab}^{(t)} )^{2} \end{aligned}$$
(28)

is an auxiliary function for \(F_{v_{ab} } \).

Proof

Since \(G(v,v)=F_{v_{ab} } (v)\) is obvious, we need show that \(G(v,v_{ab}^{(t)} )\ge F_{v_{ab} } (v)\). To do this, we compare the Taylor series expansion of \(F_{v_{ab} } (v)\)

$$\begin{aligned} F_{v_{ab} } (v)= & {} F_{v_{ab} } (v_{ab}^{(t)} )+{F}'_{v_{ab} } (v_{ab}^{(t)} )(v-v_{ab}^{(t)} )\\&+[({\varvec{W}}^{T}{{\varvec{K}}}{{\varvec{W}}})_{aa} +\mu {\varvec{L}}_{bb} ](v-v_{ab}^{(t)} )^{2} \end{aligned}$$

with Eq. (27) to find that \(G(v,v_{ab}^{(t)} )\ge F_{v_{ab} } (v)\) is equivalent to

$$\begin{aligned} \frac{({\varvec{W}}^{T}\varvec{KWV}+{1 \over 2}\lambda {\varvec{A}}+\textstyle {1 \over 2}\lambda {\varvec{B}}+\mu {{\varvec{V}}}{{\varvec{E}}})_{ab} }{v_{ab}^{(t)} }\ge ({\varvec{W}}^{T}{{\varvec{K}}}{{\varvec{W}}})_{aa} +\mu {\varvec{L}}_{bb} \end{aligned}$$
(29)

From the definition of \({\varvec{A}}\) and \({\varvec{B}}\), it is easy to check that \({\varvec{A}}\ge 0\) and \({\varvec{B}}\ge 0\). Thus we have

$$\begin{aligned} ({\varvec{W}}^{T}\varvec{KWV}+\textstyle {1 \over 2}\lambda {\varvec{A}}+\textstyle {1 \over 2}\lambda {\varvec{B}}+\mu {{\varvec{V}}}{{\varvec{E}}})_{ab}= & {} ({\varvec{W}}^{T}\varvec{KWV}+\textstyle {1 \over 2}\lambda {\varvec{A}}+\textstyle {1 \over 2}\lambda {\varvec{B}})_{ab} +\mu \sum \limits _{i=1}^N {v_{ai}^{(t)} {\varvec{E}}_{ib} }\\\ge & {} ({\varvec{W}}^{T}\varvec{KWV})_{ab} +\mu \sum \limits _{i=1}^N {v_{ai}^{(t)} {\varvec{E}}_{ib} } \\= & {} \sum \limits _k {({\varvec{W}}^{T}{{\varvec{K}}}{{\varvec{W}}})_{ak} {\varvec{V}}_{kb} } +\mu \sum \limits _{i=1}^N {v_{ai}^{(t)} {\varvec{E}}_{ib} }\\\ge & {} v_{ab} ({\varvec{W}}^{T}{{\varvec{K}}}{{\varvec{W}}})_{aa} +\mu v_{ab} {\varvec{E}}_{bb}\\\ge & {} v_{ab} ({\varvec{W}}^{T}{{\varvec{K}}}{{\varvec{W}}})_{aa} +\mu v_{ab} ({\varvec{E}}-{\varvec{S}})_{bb} \\= & {} v_{ab} ({\varvec{W}}^{T}{{\varvec{K}}}{{\varvec{W}}})_{aa} +\mu v_{ab} {\varvec{L}}_{bb} \end{aligned}$$

Thus, Eq. (29) holds and \(G(v,v_{ab}^{(t)} )\ge F_{v_{ab} } (v)\).

Next we define an auxiliary function for the update rule in Eq. (16). Similarly, consider any element \(w_{ab}\) in \({\varvec{W}}\), we use \(F_{w_{ab} } \) to denote the part of \({\varvec{J}}_{\varvec{GRLCF}} \) which is only relevant to \(w_{ab} \). Then the auxiliary function regarding \(w_{ab} \) is defined as follows:

Lemma 3

Function

$$\begin{aligned} G(w,w_{ab}^{(t)} )= & {} F_{w_{ab} } (w_{ab}^{(t)} )+{F}'_{w_{ab} } (w_{ab}^{(t)} )(w-w_{ab}^{(t)} )\nonumber \\&+\frac{\left( {\varvec{KWVV}^{T}} \right) _{ab}+\lambda \left( {\sum \nolimits _{i=1}^N {\varvec{KWD}_{i} } } \right) _{ab} }{w_{ab}^{(t)} }(w-w_{ab}^{(t)} )^{2} \end{aligned}$$
(30)

is an auxiliary function for \(F_{w_{ab}}\).

The proof of Lemma 3 is essentially similar to the proof of Lemma 2 and is omitted here due to space limitation.

We can now demonstrate the convergence of the Theorem 1:

Proof of Theorem 5

Replacing \(G(v,v_{ab}^{(t)} )\) in Eq. (27) by Eq. (28), we get

$$\begin{aligned} v_{ab}^{(t+1)} =v_{ab}^{(t)} \frac{2(\lambda +1)({\varvec{W}}^{T}{\varvec{K}})_{ab} +2\mu ({\varvec{V}}\mathbf{S })_{ab} }{(2{\varvec{W}}^{T}\varvec{KWV}+\lambda {\varvec{A}}+\lambda {\varvec{B}}+{\varvec{2}}\mu {{\varvec{V}}}{{\varvec{E}}})_{ab} } \end{aligned}$$

Since Eq. (28) is an auxiliary function, \(F_{z_{ab} } \) is nonincreasing under this updating rule.

Similarly, Replacing \(G(w,w_{ab}^{(t)} )\) in Eq. (27) by Eq. (29), we get

$$\begin{aligned} w_{{ab}}^{(t + 1)} = w_{ab}^{(t)} \frac{\left( {{\varvec{KV}}^{T} + \lambda \sum \nolimits _{i = 1}^{N} {{\varvec{X}}^{T} {\varvec{x}}_{i} {\mathbf {1}}^{T} {\varvec{D}}_{i} } } \right) _{{ab}} }{\left( {{\varvec{KWVV}}^{T} + \lambda \sum \nolimits _{i = 1}^{N} {{\varvec{KWD}}_{i} } } \right) _{{ab}} } \end{aligned}$$

Since Eq. (30) is an auxiliary function, \(F_{w_{ab} } \) is nonincreasing under this updating rule.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Jin, Z. Graph-Regularized Local Coordinate Concept Factorization for Image Representation. Neural Process Lett 46, 427–449 (2017). https://doi.org/10.1007/s11063-017-9598-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9598-2

Keywords

Navigation