Skip to main content
Log in

Stability Analysis of TS Fuzzy System with State-Dependent Impulses

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper investigates the stability of TS fuzzy system via state-dependent impulsive control. Based on the Lyapunov stability theory, comparison theorem, and inequality techniques, the sufficient conditions with theoretical demonstration ensuring every solution of concerned models intersect each surface of the discontinuity exactly once are derived. Moreover, by applying B-equivalence method, the state-dependent impulsive TS fuzzy system can be reduced to the fixed-time impulsive ones, which can be analyzed via comparison method and mathematical induction. The control approach guarantees that the proposed state-dependent impulsive TS fuzzy system converge to zero. Finally, two numerical examples are carried out to demonstrate the effectiveness of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modelling and control. IEEE Trans Syst Man Cybern SMC–15:116–132

    Article  MATH  Google Scholar 

  2. Feng G (2006) A survey on analysis and design of model-based fuzzy control systems. IEEE Trans Fuzzy Syst 14:676–697

    Article  Google Scholar 

  3. Song Q, Cao J (2007) Impulsive effects on stability of fuzzy Cohen-Grossberg neural networks with time-varying delays. IEEE Trans Syst Man Cybern B Cybern 37:733–741

    Article  Google Scholar 

  4. Sun CY, Mu CX, Li XM (2009) A weighted LS-SVM approach for the identification of a class of nonlinear inverse systems. Sci China Ser F Inf Sci 52(5):770–779

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng S, Mu CX, Sun CQ (2012) Error quaternion fuzzy sliding mode control of attitude for spacecraft based on disturbance observer. J Southeast Univ (Natural Science Edition) 5:018

    Google Scholar 

  6. Huang J, Li C, He X (2013) Stabilization of a memristor-based chaotic system by intermittent control and fuzzy processing. Int J Control Autom Syst 11(3):643–647

    Article  Google Scholar 

  7. Zhao X, Zhang L, Shi P et al (2014) Novel stability criteria for T–S fuzzy systems. IEEE Trans Fuzzy Syst 22:313–323

    Article  Google Scholar 

  8. Yang X, Wu L, Lam HK et al (2014) Stability and stabilization of discrete-time T–S fuzzy systems with stochastic perturbation and time-varying delay. IEEE Trans Fuzzy Syst 22:124–138

    Article  Google Scholar 

  9. Yang X, Yang Z (2014) Synchronization of TS fuzzy complex dynamical networks with time-varying impulsive delays and stochastic effects. Fuzzy Sets Syst 235:25–43

    Article  MathSciNet  MATH  Google Scholar 

  10. Wen S, Zeng Z, Huang T et al (2014) Exponential adaptive lag synchronization of memristive neural networks via fuzzy method and applications in pseudorandom number generators. IEEE Trans Fuzzy Syst 22:1704–1713

    Article  Google Scholar 

  11. Wu ZG, Shi P, Su H et al (2014) Sampled-data fuzzy control of chaotic systems based on a T–S fuzzy model. IEEE Trans Fuzzy Syst 22:153–163

    Article  Google Scholar 

  12. Wang X, Yu J, Li C et al (2015) Robust stability of stochastic fuzzy delayed neural networks with impulsive time window. Neural Netw 67:84–91

    Article  Google Scholar 

  13. Li C, Liao X, Zhang R (2004) Impulsive synchronization of nonlinear coupled chaotic systems. Phys Lett A 328:47–50

    Article  MathSciNet  MATH  Google Scholar 

  14. Li C, Liao X, Zhang X (2005) Impulsive synchronization of chaotic systems. Chaos 15:023104

    Article  MathSciNet  MATH  Google Scholar 

  15. Li C, Wu S, Feng G et al (2011) Stabilizing effects of impulses in discrete-time delayed neural networks. IEEE Trans Neural Netw 22:323–329

    Article  Google Scholar 

  16. Li C, Li C, Liao X et al (2011) Impulsive effects on stability of high-order BAM neural networks with time delays. Neurocomputing 74:1541–1550

    Article  Google Scholar 

  17. Li X, Song S (2013) Impulsive control for existence, uniqueness, and global stability of periodic solutions of recurrent neural networks with discrete and continuously distributed delays. IEEE Trans Neural Netw Learn Syst 24:868–877

    Article  Google Scholar 

  18. Li C, Yu W, Huang T (2014) Impulsive synchronization schemes of stochastic complex networks with switching topology: average time approach. Neural Netw 54:85–94

    Article  MATH  Google Scholar 

  19. Li C, Yu X, Liu ZW et al (2016) Asynchronous impulsive containment control in switched multi-agent systems. Inf Sci 370:667–679

    Article  Google Scholar 

  20. Li X, Wu J (2016) Stability of nonlinear differential systems with state-dependent delayed impulses. Automatica 64:63–69

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang W, Tang Y, Miao Q et al (2014) Synchronization of stochastic dynamical networks under impulsive control with time delays. IEEE Trans Neural Netw Learn Syst 25(10):1758–1768

    Article  Google Scholar 

  22. Wang X, Li C, Huang T et al (2014) Impulsive exponential synchronization of randomly coupled neural networks with Markovian jumping and mixed model-dependent time delays. Neural Netw 60:25–32

    Article  MATH  Google Scholar 

  23. Kaul S, Lakshmikantham V, Leela S (1994) Extremal solutions, comparison principle and stability criteria for impulsive differential equations with variable times. Nonlinear Anal Theory Methods Appl 22:1263–1270

    Article  MathSciNet  MATH  Google Scholar 

  24. Fu X, Qi J, Liu Y (2000) General comparison principle for impulsive variable time differential equations with application. Nonlinear Anal Theory Methods Appl 42:1421–1429

    Article  MathSciNet  MATH  Google Scholar 

  25. Yang T (2001) Impulsive control theory. Springer, Berlin

    MATH  Google Scholar 

  26. Liu C, Li C, Liao X (2011) Variable-time impulses in BAM neural networks with delays. Neurocomputing 74:3286–3295

    Article  Google Scholar 

  27. Liu C, Liu W, Yang Z et al (2016) Stability of neural networks with delay and variable-time impulses. Neurocomputing 171:1644–1654

    Article  Google Scholar 

  28. Şaylı M, Yılmaz E (2016) Anti-periodic solutions for state-dependent impulsive recurrent neural networks with time-varying and continuously distributed delays. Ann Oper Res. doi:10.1007/s10479-016-2192-6

  29. Akalin E, Akhmet MU (2005) The principles of B-smooth discontinuous flows. Comput Math Appl 49(7):981–995

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu X, Wang Q (2006) Stability of nontrivial solution of delay differential equations with state-dependent impulses. Appl Math Comput 174:271–288

    MathSciNet  MATH  Google Scholar 

  31. Sayli M, Yilmaz E (2014) Global robust asymptotic stability of variable-time impulsive BAM neural networks. Neural Netw 60:67–73

    Article  MATH  Google Scholar 

  32. Sayli M, Yilmaz E (2015) Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays. Neural Netw 68:1–11

    Article  Google Scholar 

  33. Sayli M, Yilmaz E (2016) State-dependent impulsive Cohen-Grossberg neural networks with time-varying delays. Neurocomputing 171:1375–1386

    Article  Google Scholar 

  34. Akhmet M (2010) Principles of discontinuous dynamical systems. Springer, New York

    Book  MATH  Google Scholar 

  35. Sun J, Zhang Y, Wu Q (2003) Less conservative conditions for asymptotic stability of impulsive control systems. IEEE Trans Autom Control 48(5):829–831

    Article  MATH  Google Scholar 

  36. Sanchez EN, Perez JP (1999) Input-to-state stability (ISS) analysis for dynamic NN. IEEE Trans Circuits Syst I 46(11):1395–1398

    Article  MATH  Google Scholar 

  37. Gronwall TH (1919) Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann Math 20:292–296

    Article  MathSciNet  MATH  Google Scholar 

  38. Zheng Y, Chen G (2009) Fuzzy impulsive control of chaotic systems based on TS fuzzy model. Chaos Solitons Fractals 39(4):2002–2011

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Natural Science Foundation of China (Grant Nos. 61633011, 61374078), Chongqing Research Program of Basic Research and Frontier Technology (Grant No. cstc2015jcyjBX0052) and Qatar National Research Fund (Grant No. 4-1162-1-181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuandong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Li, C., Huang, T. et al. Stability Analysis of TS Fuzzy System with State-Dependent Impulses. Neural Process Lett 47, 403–426 (2018). https://doi.org/10.1007/s11063-017-9657-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9657-8

Keywords

Navigation