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Abstract Neural network architectures can be regularised by adding a penalty
term to the objective function, thus minimising network complexity in addition to
the error. However, adding a term to the objective function inevitably changes the
surface of the objective function. This study investigates the landscape changes
induced by the weight elimination penalty function under various parameter set-
tings. Fitness landscape metrics are used to quantify and visualise the induced
landscape changes, as well as to propose sensible ranges for the regularisation
parameters. Fitness landscape metrics are shown to be a viable tool for neural
network objective function landscape analysis and visualisation.

Keywords Neural networks · Fitness landscapes · Regularisation · Weight
elimination

1 Introduction

Despite being studied for decades, and successfully applied in numerous areas
[1, 8], neural networks (NNs) remain to this day black box models, inner workings
of which are hard to characterise and visualise. In particular, the shape of the ob-
jective functions associated with supervised NN training is poorly understood [5].
Certain landscape properties of the NN objective functions, such as the presence

A. S. Bosman (Rakitianskaia)
Department of Computer Science, University of Pretoria,
Pretoria, South Africa
E-mail: annar@cs.up.ac.za
orcid.org/0000-0003-3546-1467

A. P. Engelbrecht
Department of Computer Science, University of Pretoria,
Pretoria, South Africa
E-mail: engel@cs.up.ac.za

M. Helbig
Department of Computer Science, University of Pretoria,
Pretoria, South Africa
E-mail: mhelbig@cs.up.ac.za



2 Anna Bosman et al.

of saddle points [7, 17], plateaus, and narrow ridges [11, 19], have been estab-
lished, but the relationship between these landscape features and corresponding
NN parameters, such as the number of neurons and hidden layers, or the activation
functions employed, remains unclear [22].

Empirical studies of the link between the objective function landscape charac-
teristics and the different NN parameters can be performed using fitness landscape
analysis (FLA). FLA is a relatively recent field of computational intelligence, ap-
plied for the first time in evolutionary computation for algorithm performance
prediction [20, 32]. FLA estimates and quantifies topographical properties of an
objective function landscape, such as ruggedness, neutrality, and searchability.
The obtained metrics can be subsequently used to better understand the given
optimisation problem, and make an intelligent algorithm choice [24, 27, 37]. The
properties of fitness landscapes are estimated by taking multiple random sam-
ples of the search space, calculating the fitness value for every sampling point,
and quantifying the relationship between the spatial characteristics of the sample
points and the corresponding fitness values [27, 37]. Sample analysis makes no
assumptions regarding the problem at hand, and can easily be applied to “black
box” optimisation problems such as NNs.

The ability of a NN to correctly predict the outputs of input patterns not
seen during training is known as the generalisation ability. A model that cannot
generalise has no practical use, therefore maximising the generalisation potential
of a NN is a major goal of NN training. A simple, yet effective way to improve the
generalisation ability of a NN is to add a weight regularisation term to the objective
function [33, 34, 42]. Weight regularisation aims to penalise network complexity
by decreasing the rate of weight growth, as well as by driving irrelevant weights
to zero. Regularisation was shown to be beneficial in practical NN applications
[30, 36, 42]. Therefore, investigating the effect of regularisation on the NN training
problem is important.

It is easy to understand the regularisation process intuitively: if large and
irrelevant weights are penalised, the final model will be more compact. It is, how-
ever, harder to imagine the surface of the objective function after a penalty term
has been added to it – will the penalty term introduce new optima, or make the
function smoother? Will the chosen training algorithm find the problem easier or
harder to optimise?

The relationship between the regularisation term and the resulting error sur-
face is far from trivial [12], especially given the fact that regularisation parameters
typically have to be empirically tuned before an improvement in generalisation
performance is observed. One way to investigate the relationship between the reg-
ularisation parameters and the resulting error surface is to use FLA techniques.
FLA provides an easy and convenient method to quantify and visualise the corre-
lation between the error landscape changes and the chosen regularisation scheme.
This study applies selected FLA metrics to study the NN error surfaces under the
weight elimination regularisation scheme. The obtained results provide interesting
insights into the nature of regularised NN error surfaces, give some guidance for
the corresponding parameter tuning, and set the path for future applications of
FLA in the NN context.

The rest of the paper is structured as follows: Section 2 discusses weight elim-
ination in NNs. Section 3 describes the FLA metrics used in this study, and the
applicability of FLA in the NN context. Section 4 describes the experimental proce-
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dure. Section 5 presents the empirical study of the effects of the weight elimination
term on the NN error surfaces. Section 6 concludes the paper and lists potential
topics for future research.

2 Neural Network Weight Elimination

The sum squared error (SSE) is one of the most commonly used NN objective
functions:

Esse =
P∑
p=1

K∑
k=1

(tk,p − ok,p)2 (1)

where P is the total number of training patterns, K is the total number of output
units, tk,p is the k-th target value for pattern p, and ok,p is the k-th output obtained
for pattern p. Minimisation of the SSE minimises the overall NN error.

Weight regularisation is applied to minimise both NN error and NN complexity.
If Ep is a penalty function that quantifies the complexity of a NN, the objective
function can be modified as follows:

Enn = Esse + λEp (2)

where λ is a hyperparameter controlling the “strength” of regularisation. If λ is
too small, the value of the penalty function will be much smaller than the error
value, and the error is likely to “overshadow” the penalty, thus causing the penalty
to be disregarded. On the other hand, if λ is too big, the penalty contribution to
the objective function will become larger than the error term contribution, and the
algorithm will focus on minimising the NN complexity instead of minimising the
error. In practice, λ is chosen empirically per problem and per penalty function
Ep.

The complexity of a NN can be expressed by the overall number of NN weights.
Simplistic architectures with too few weights may be incapable of learning a com-
plex problem representation. Excessive architectures with too many weights, on
the other hand, may promote overfitting. Thus, penalty functions are usually de-
signed to optimise the total number of NN weights.

A well-known L2 (i.e. quadratic) penalty function proposed in the literature is
weight decay [18], given by

Ep =
1

2

W∑
l=1

w2
l (3)

where W is the total number of weights in the NN, and wl is the l-th weight. The
weight decay penalty essentially calculates the magnitude of the weight vector.
The larger the magnitude, the more the NN will be penalised. Limiting the weight
growth tends to improve NN generalisation [34], since the relevant weights are
reinforced by the training algorithm at every iteration, while the irrelevant ones
decay towards zero over time.

A disadvantage of weight decay is that no differentiation between relevant
and irrelevant weights is explicitly made, thus both large and small weights are
penalised with the same rigour. Weigend et al [46] introduced an alternative L2
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penalty function, which uses an extra parameter w0 to specify the threshold that
separates relevant weights from irrelevant weights:

Ep =
W∑
l=1

w2
l /w

2
0

1 + w2
l /w

2
0

(4)

This penalty function is known as weight elimination. Parameter w0 defines a
threshold that distinguishes between significantly and insignificantly large weights.
Weights with |w| >> w0 yield a complexity cost close to 1, and contribute towards
the penalty term in Equation 4. Thus, weights with |w| >> w0 are seen as “too
large” and in need of regularisation. Weights with |w| << w0 yield a complexity
cost close to zero, and contribute very little to the weight elimination term. Thus,
weights with |w| << w0 are not penalised. A small w0 value will result in more
weights being penalised, thus only the most persistent weights will survive, yielding
an architecture comprised of few larger weights. On the other hand, for a large w0

value, small weights will not be subject to the penalty, resulting in an architecture
made up of many small weights.

The preference of a few large weights or many small weights is problem-
dependent, although it should be noted that large weights may cause the NN
to saturate. Saturation occurs when the hidden neurons of a NN predominantly
output values close to the asymptotic ends of the activation function range. The
output of the hidden unit is determined by the magnitude of the weighted sum of
inputs, or, in other words, the “strength” of the input signal. Very large weights
increase the signal strength, causing the bounded activation functions to output
near-asymptotic values. Saturated neurons are undesirable, because derivatives are
very small near the asymptotes, which cause a significant slow down in gradient
descent learning [13]. Non-gradient learning, such as particle swarm optimisation,
can also be hindered by NN saturation [40].

Weight elimination allows a refined, problem-specific approach to NN regu-
larisation. A recent study by Wang et al [43] provided a theoretical analysis of
boundedness and convergence of the weight-elimination NNs, and confirmed good
generalisation and pruning capabilities of weight elimination. However, there are
two parameters that need to be tuned: λ and w0. This study analyses the rela-
tionship between different settings of these two parameters and the corresponding
NN error landscapes. A sensible parameter optimisation range for λ and w0 is pro-
posed. It should be noted that weight elimination was chosen based on its relative
simplicity; even though other more complex regularisation schemes have also been
proposed in the literature, an investigation of the relationship between the penalty
function and the objective function must begin at the most interpretable point.
While weight decay is perhaps too trivial to provide interesting insight, and simply
imposes a quadratic convex shape on the original objective function, weight elim-
ination, with its two tunable parameters, is harder to visualise intuitively [43]. It
was also shown that modern regularisation techniques benefit when combined with
simpler L2 penalty functions [42]. Thus, the results of this study can be extended
and applied to numerous recently proposed regularisation schemes.
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3 Fitness Landscape Analysis

A fitness landscape refers to the hypersurface formed by the objective function
values as calculated across the search space. The goal of fitness landscape anal-
ysis (FLA) is to estimate and quantify various features of the objective function
hypersurface, such as ruggedness, neutrality, and searchability, and to discover cor-
relations between landscape features and algorithm performance [24, 37]. The term
“fitness landscape” was defined in the evolutionary optimisation community, and
the FLA techniques were originally developed for discrete binary search spaces.
However, the notion of fitness landscapes was soon extended to continuous spaces
[27, 37]. Any optimisation problem with a well-defined objective function can be
studied from the FLA perspective.

To estimate fitness landscape characteristics, multiple samples of the search
space are taken. The objective function value for every point in each sample is
then calculated. FLA metrics provide different ways of quantifying the relation-
ship between the spatial and the qualitative characteristics of the sample points.
The sample-based conclusions provide useful estimates of the fitness landscape
properties for the given optimisation problem. FLA metrics were shown to be
descriptive on a wide selection of continuous benchmark functions [27, 31]. FLA
metrics were also successfully used for algorithm performance prediction [24] and
algorithm selection [35] on continuous benchmark functions of up to 30 dimensions.

This section presents an overview of FLA in the NN context, and describes
the FLA metrics used in this study. Section 3.1 describes the existing applications
of FLA to NNs. Section 3.2 discusses the gradient estimate metrics. Section 3.3
discusses the ruggedness metric based on information entropy. Section 3.4 discusses
the searchability metric.

3.1 Error Landscapes of Neural Networks

NN training is the process of finding the best possible combination of weights that
connect the neurons between layers. Each unique combination of weights can be
treated as a candidate solution that represents the mapping between the inputs and
the outputs. Thus, given m weights and biases, the search space is a continuous m-
dimensional space of all possible weight combinations. The complete search space
of all possible NN weight vectors with corresponding error values constitutes the
“error landscape” of a NN.

Error landscapes of NNs can thus be treated as fitness landscapes of continuous
optimisation problems. An important property specific to NNs is that NN error
landscapes are unbounded, since each weight is defined as any number in R. This
poses a problem to sampling algorithms, as no amount of sampling is guaranteed to
adequately cover the space between minus infinity and plus infinity. The problem
is solved by focusing on the areas of the search space that the algorithms actually
explore, and where acceptable solutions can in fact be found [2].

Error landscapes have been studied before in an attempt to understand the
inner workings of NNs. Gallagher [11] used principal component analysis (PCA) to
simplify the weight space in order to visualise NN training trajectories. Gallagher
[11] found that error landscapes have many flat areas with sudden cliffs or ravines.
PCA was further used in [22] to identify the factors that influence the NN error
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surfaces. It was also shown that NN error landscapes exhibit more saddle points
than local minima, and that the number of local minima diminishes exponentially
as the dimensionality of the problem increases [7]. Malan and Engelbrecht’s FLA
metrics have been successfully applied to investigate the amount of information
contained in SSE landscapes and classification error landscapes, and to study
the effect of multiple hidden layers on the error landscape properties [41]. In the
recent paper by Gonçalves et al [14], single-output NNs were constructed using
geometric semantic genetic programming such that the resulting error landscape
was guaranteed to be unimodal.

Even though some properties of the NN error landscapes have been identified,
the relationship between various NN parameters and the resulting error surface
remains an open problem [5]. This study contributes to the existing body of knowl-
edge by applying a selection of FLA measures for the first time to investigate the
relationship between NN regularisation parameters and the resulting error land-
scapes. The insights gained are used to propose sensible regions for the regularisa-
tion parameters involved. One of the goals of this paper is to illustrate that FLA is
a powerful visualisation and analysis tool, deserving acknowledgement in the NN
community.

3.2 Gradients

An important property of a fitness landscape is the magnitude of fitness changes,
i.e. the gradient information available to a training algorithm. To quantify the
fitness change magnitudes, Malan and Engelbrecht [26] proposed two gradient
measures, i.e. the average estimated gradient Gavg, and the standard deviation of
the gradient Gdev. Gavg and Gdev are calculated based on Manhattan progressive
random walk [27] samples of the search space. Gavg is defined as:

Gavg =

∑T−1
t=0 |g(t)|
T

where T is the number of steps in the Manhattan progressive random walk, and
g(t) is defined as:

g(t) =
∆et

d(xt,xt+1)

where ∆et is the difference between the error values of the weight vectors xt and
xt+1, which define step t of the random walk, and d(xt,xt+1) is the Euclidean
distance between xt and xt+1. The absolute value of g(t) is used in the Gavg
calculation, since ∆et can be either positive or negative (the error can increase or
decrease). The aim of Gavg is to quantify the magnitude of changes rather than
their direction, thus the sign of g(t) is of no consequence. Positive values of g(t)
are also required to ensure that the negative error slopes do not cancel out the
positive error slopes.

The standard deviation of the gradient Gdev is defined as:

Gdev =

√∑T−1
t=0 (Gavg − |g(t)|)2

T − 1
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The Gavg metric quantifies the mean magnitude of change in fitness values,
while Gdev represents the corresponding standard deviation. In the NN context,
the presence of gradients is a desired characteristic, because gradient descent-
based algorithms rely on gradient information. However, very steep gradients may
yield abrupt changes in the weight vector, potentially causing the algorithm to
“overshoot” regions with good optima.

In this study, Manhattan progressive random walks of 1000 steps were used,
where the size of each step was equal to 1% of the search space. Pseudocode for
the Manhattan progressive random walk, as well as Gavg and Gdev calculations,
can be found in [24].

3.3 First entropic measure of ruggedness

The first entropic measure of ruggedness (FEM), proposed in [25], quantifies
the level of ruggedness observed in a fitness landscape. A progressive random
walk [29] through the search space is taken, generating a time series of fitness
values {ft}nt=0. A symbol sequence, S(ε) = s1s2...sn, is generated from {ft}nt=0,
where si ∈ {1̄, 0, 1} is given by

si = Ψft(i, ε) =


1̄ if fi − fi−1 < −ε
0 if |fi − fi−1| ≤ ε
1 if fi − fi−1 > ε

where ε is the chosen sensitivity threshold. An entropic measure H(ε) is now
defined as

H(ε) = −
∑
p6=q

P[pq] log6 P[pq]

where p, q ∈ {1̄, 0, 1}, and P[pq] is given by

P[pq] =
n[pq]

n

where n[pq] is the number of sub-blocks pq in S(ε). Note that p 6= q, thus the total
number of unique pq value combinations is 6. The value of H(ε) depends on the
chosen value for ε. It was shown in [24, 25] that for a certain ε∗, H(ε∗) converges
on the value of 0 for any {ft}nt=0. The value of ε∗ is defined as the smallest value of
ε for which the landscape becomes flat. The first entropic measure of ruggedness
(FEM) is calculated as follows:

FEM = max
∀ε∈[0,ε∗]

{H(ε)}

Two FEM measures are usually used to describe a fitness landscape: micro-
ruggedness FEM0.01, where the maximum size of the random walk step is equal to
1% of the objective function domain, and macro-ruggedness FEM0.1, where the
maximum size of the random walk step is equal to 10% of the objective function
domain. Both were considered in this study. Each random walk consisted of 1000
steps. Pseudocode for the progressive random walk, as well as FEM calculations,
can be found in [24].
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The value of FEM is continuous and falls in the [0, 1] range, where 0 indicates
a smooth landscape (no entropy), and 1 indicates maximal ruggedness (highest
entropy). In the NN context, a smooth landscape would be easier to search than
a rugged one, provided that the smooth surface is inclined, i.e. contains enough
gradient information to guide the search.

3.4 Fitness distance correlation

The fitness distance correlation (FDC) metric, proposed by Jones and Forrest
[21], is designed to quantify global problem hardness. FDC estimates the global
shape of the fitness landscape by calculating the covariance between the fitness of
a solution and its distance to the nearest optimum.

FDCs, proposed in [28], is an adaptation of FDC for continuous landscapes
without known optima. FDCs is defined as:

FDCs =

∑n
i=1(ei − e)(di − d)√∑n

i=1(ei − e)2
√∑n

i=1(di − d)2

where n is the size of a uniform sample of weight vectors, W = {w1, ...,wn}, with
associated error values E = {e1, ..., en}; e is the mean of E, di is the Euclidean
distance from wi to the weight vector in the sample with the lowest error value,
and d is the mean of all di.

FDCs generates values in the range [−1, 1]. For minimisation problems, a value
close to 1 indicates a highly searchable landscape, i.e., the closer the sample points
are to the fittest point, the higher is their fitness. A value close to 0 indicates a
lack of information in the landscape, i.e., points both far from the fittest point and
close to the fittest point may have similar fitness values. A negative FDCs value
indicates a “deceptive” search landscape, i.e., approaching the fittest point in the
sample may produce points of increasingly worse fitness.

Previous application of FDC in the NN context was done by Gallagher [10].
The aim of the study was to estimate the difficulty of training NNs, thus the
weights obtained from each training epoch rather than a random sample were
used as sample points. The optima found by the training algorithm was used in
place of the global optima. Since a training algorithm was used for sampling, the
samples were biased towards regions of the search space with higher gradients.

Note that FDCs uses random uniform samples of the search space rather than
samples gathered during the training. The main advantage of random samples
and random walk samples over samples gathered along the training trajectory
is that the random samples are independent of the training algorithm, thus the
information gathered from the randomised samples is more objective, and provides
a more general view of the error landscape characteristics.

4 Experimental Procedure

The aim of the experiments was to apply FLA metrics to regularised NN error
landscapes, and to observe the influence of regularisation parameters on both error
landscape characteristics and training algorithm performance. Thus, insight into
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the regularised NN error landscapes can be gained, and the expressiveness of FLA
metrics in the NN context can be evaluated.

The rest of the section is structured as follows: Section 4.1 outlines the bench-
mark problems used in this study, Section 4.2 describes the corresponding NN ar-
chitectures, Section 4.3 describes the chosen search space boundaries, Section 4.4
lists the regularisation parameter settings investigated in this study, Section 4.5
describes the NN training algorithm used, and Section 4.6 lists the NN training
algorithm parameters.

4.1 Benchmark problems

The three classification benchmark problems used in this study are outlined in
Table 1. Well-known benchmarks were chosen for their relative interpretability.
The NN architectures were adopted from the listed sources.

Table 1: Benchmark Problems

Problem In Hidden Out Source Dimensionality

Iris 4 4 3 [16] 35

Diabetes 8 6 2 [3] 68

Glass 9 9 6 [16] 150

4.1.1 Iris

The Iris flower data set [9] contains 50 examples belonging to the three species
of Iris flowers: Iris setosa, Iris versicolor, and Iris virginica. Four input variables
are defined: sepal length, sepal width, petal length, and petal width. The iris data
set, even though relatively low-dimensional and simple, is not altogether trivial,
as two of the three output classes significantly overlap across two of the four input
variables, and two inputs have low correlation with the class labels [15].

4.1.2 Diabetes

The diabetes data set [38] contains 768 patterns describing Pima Indian patients.
Personal patient data is recorded, such as age and the results of medical exami-
nations, e.g. blood pressure, body mass index, and glucose tolerance test result,
among others. The patterns are divided into two classes: diabetes positive or dia-
betes negative. All inputs are continuous, and 65.1% of the examples are diabetes
negative. The data set contains noise [38].

4.1.3 Glass

The glass data set [38] describes 6 glass types (float processed or non-float pro-
cessed building windows, vehicle windows, containers, tableware, or head lamps)
based on chemical analysis represented by the percentage content of eight different
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elements. Recognizing the type of glass from the glass shard analysis has a prac-
tical application in forensic investigations. The data set consists of 214 examples,
all inputs are continuous, and two of the inputs have very low correlation with the
class labels. The frequency of the 6 classes are 70, 76, 17, 13, 9, and 29 instances,
respectively.

4.2 Neural network architecture

This study considered feed-forward NNs with a single hidden layer. The input layer
employed the identity (linear) activation function. The hidden and output layers
employed the sigmoid activation function, given by fNN (net) = 1/(1 + e−net),
where net is the weighted sum of inputs. The inputs were scaled to [−1, 1] for all
experiments, and the binary target values were scaled to tk ∈ {0.1, 0.9}. The chosen
scaling corresponds with the active domain and range of the sigmoid activation
function.

4.3 Search space boundaries

NN weights are defined to be any numbers in R, thus sensible boundaries have
to be chosen for the sampling to take place. As discussed in Section 3.1, the
search space should be sampled in the areas explored by the search algorithms,
where acceptable solutions are likely to be found. Three search space boundary
settings were considered in this study: [−0.5, 0.5], [−1, 1], [−5, 5]. These regions
correspond to the typical weight initialisation area [23], as well as the areas where a
search algorithm may find an acceptable solution [2]. The three different boundary
settings yielded similar FLA results, therefore only [−1, 1] results are reported. An
investigation of the relationship between the NN search space boundaries and the
corresponding FLA metrics can be found in [2].

4.4 Regularisation parameters

The success of weight elimination is heavily dependent on the regularisation param-
eters λ and w0 (see Equations (2) and (3)), which are usually chosen empirically
[46]. FLA offers an intuitive way to visualise the effects that the regularisation
parameters have on the resulting error surface. To study these effects, different
combinations of λ and w0 must be considered. Previous studies have shown that
w0 of order unity is usually a good choice [45], and that small values of λ tend
to give better results [39], because λ significantly larger than 1 causes the error
to be dominated by the penalty function. This study considered all combinations
of λ ∈ {1 × 10−6, 5 × 10−6, 1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3, 5 ×
10−3, 1 × 10−2, 5 × 10−2, 0.1, 0.5, 1} and w0 ∈ {1 × 10−6, 5 × 10−6, 1 × 10−5, 5 ×
10−5, 1× 10−4, 5× 10−4, 1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2, 0.1, 0.5, 1, 2, 5} for
each problem.



Fitness Landscape Analysis of Weight-Elimination Neural Networks 11

4.5 Neural Network Training

Characterisation of error landscapes is not very useful unless insight into the nature
of the problem is provided that can aid the training process. In addition to studying
the error landscapes of regularised NNs, this study investigates the relationship
between NN training algorithm performance and the FLA characteristics of the
problem.

Backpropagation (BP) is one of the most popular NN training algorithms,
first applied to NN training in 1974 by Werbos [47]. BP uses gradient descent to
iteratively adjust NN weights and biases in the direction of the negative gradient of
the objective function. Weight regularisation is applied to a NN by incorporating
the desired penalty term in the gradient calculations.

4.6 Training algorithm parameters

To investigate the relationship between NN training algorithm performance and
the FLA characteristics of the problem, the corresponding training algorithm pa-
rameters had to be optimised to ensure that the algorithm performed adequately.
An iterative approach to algorithm parameter optimisation was used. Algorithm
parameters were optimised one at a time. For each parameter, the algorithm was
tested under a selected range of possible values for this parameter, while the other
parameters remained fixed. In order to keep the optimisation process statistically
sound, 30 independent runs were conducted for every value in the chosen discrete
range. The parameter value yielding the lowest average generalisation error for
the current parameter optimised was subsequently chosen, and optimisation pro-
ceeded to the next parameter. For optimisation of the remaining parameters, all
the parameters already optimised were fixed to their best values.

For stochastic backpropagation, the learning rate, η, and momentum, α, had
to be optimised. Values considered during the optimisation process are listed in
Table 2. Final parameter values used in the experiments are listed in Table 3.

Table 2: BP Parameter Values Considered in the Optimisation Process

Discrete value range

Learning rate η {0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5}
Momentum α {0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5}

Table 3: Optimised BP Parameter Values

Iris Glass Diabetes

Learning rate η 0.1 0.4 0.3
Momentum α 0.9 0.9 0.8

It should be noted that the focus of the study was on investigating the rela-
tionship between the error landscape characteristics and regularisation parame-
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ters, rather than algorithm performance. Thus, adequate performance rather than
optimal performance was sufficient for the purpose of this study.

Each reported result is an average over 30 independent simulations that ran
for 1000 iterations. Data sets were divided into a training set and a generalisation
set; 80% of the patterns were randomly chosen to form the training set, and the
remaining 20% were used for testing. Test data used to calculate the generalisation
errors was never used for parameter optimisation.

5 Experimental Results

The purpose of the experiments was twofold: first, to investigate the influence of
the regularisation term on the NN error landscapes under different regularisation
parameter settings (in Section 5.1); secondly, to observe the training algorithm
response to the error landscape changes induced by weight elimination (in Sec-
tion 5.2).

5.1 Characterising regularised NN error landscapes

This section presents an analysis of the relationship between the regularisation
term and the NN error landscapes. Section 5.1.1 investigates the effect of λ and
w0 on the average gradients observed in the landscapes. Section 5.1.2 looks at land-
scape ruggedness under different λ and w0. Section 5.1.3 investigates the “search-
ability” of the NN error landscapes under various λ and w0.

5.1.1 Gradients

To understand the impact of the penalty term, consider the weight elimination
penalty for a single weight over various values of w0, illustrated in Figure 1. As
can be seen from Figure 1, the weight elimination term has a clear minimum
in one dimension: a weight of 0 yields no penalty. The value of w0 controls the
“sharpness” of the minimum. It can be hypothesised that an increase in the value
of λ increases the contribution of the penalty term to the objective function, thus
“simplifying” the objective function by adding a global attractor in the form of a
global minimum imposed by the penalty term.

Figure 2 shows the average values of Gavg and Gdev associated with differ-
ent combination of λ and w0. For interpretability, every scatter plot in Figure 2
includes a LOESS curve [6], representing local polynomial regression. Across all
problems considered, an overall downward trend in Gavg is associated with an
increase in λ. Indeed, the surface of the penalty function only has one minimum
and is otherwise rather smooth. Therefore, it can be hypothesised that increasing
the contribution of the penalty term to the objective function smoothes the er-
ror landscape. However, the effect of the penalty strongly depends on the chosen
value of w0: as shown in Figure 2, larger values of w0 indeed yield smaller Gavg
gradients. According to Figure 1, larger w0 implies that the imposed minimum is
less sharp, thus smaller gradients are to be expected.

In Figure 2, the problems are presented in ascending order of dimensionality.
Figure 2 shows that the average magnitudes of the gradients increase with an
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Fig. 1: Weight elimination function for a single weight, w, and weight elimination
threshold, w0

increase in problem dimensionality, which seems to be an inherent property of NN
error landscapes. The downward trend in Gavg associated with the penalty term
contribution becomes more definite with an increase in dimensionality. A high-
dimensional fully-connected NN architecture is more likely to have redundant free
parameters than a low-dimensional architecture, thus the effect of the penalty term
becomes more pronounced in high dimensions.

Figure 2 also shows that an increase in λ is associated with an overall upward
trend in Gdev. In other words, a stronger contribution of the penalty term to
the objective function yields smaller gradients of higher variability. As Figure 1
illustrates, weight elimination introduces sharp minima, surrounded by a plateau-
like surface. On the plateau, the gradients will be small. Around the minima,
however, the fitness value will change rapidly. Thus, high Gdev likely resulted
due to the contrast between the plateaus and the sudden minima. Indeed, a large
difference between Gavg and Gdev is indicative of a step-like landscape with sudden
jumps, according to [24]. The hypothesis is further confirmed by observing that the
larger values of w0, as illustrated in Figure 2, are not associated with an increase
in Gdev: higher values of w0 decrease the sharpness of the introduced optima.

Thus, introduction of the weight elimination term decreases the overall gra-
dients of the error surface, but adds sharp, narrow optima that may not be very
easy to find.

5.1.2 First Entropic Measure of Ruggedness

The first entropic measure of ruggedness, FEM , quantifies the change in fitness
values based on entropy. Figure 3 illustrates how the micro- and macro-ruggedness
of the regularised error landscape change in relation to different values of λ and
w0. Variation in ruggedness for different values of w0 is only observed for larger
values of λ. If λ is too small, the contribution of the penalty term may become
negligible. As the value of w0 increases, so does the ruggedness: small w0 yields
sharp narrow optima that alter a small part of the search space; increasing w0

widens the “diameter” of the penalty-induced optima, thus influencing a larger
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Fig. 2: Gavg and Gdev results obtained for different combinations of λ and w0 on
the [−1, 1] interval

part of the error landscape. The ruggedness begins to drop again as w0 becomes
larger than 0.01: the induced optima gradually “flattens” and is lost among other
error landscape fluctuations. When w0 becomes larger than the chosen error land-
scape boundaries, no sampled weights are deemed large enough to be penalised,
thus the contribution of the penalty term vanishes altogether.
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Fig. 3: FEM0.01 and FEM0.1 results obtained for different combinations of λ and
w0 on the [−1, 1] interval

Macro-ruggedness results, also shown in Figure 3, illustrate the same trends as
micro-ruggedness, but in a more pronounced manner. Average values of FEM0.1

exceed the corresponding FEM0.01 values, indicating that larger step sizes experi-
ence more variation in the landscape. Once again, values of w0 close to 0.01 induce
the most ruggedness across all problems considered.
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Entropy is used to estimate the level of ruggedness in fitness landscapes. From
the information theory perspective, the amount of entropy can be interpreted as
the amount of “information”, or variability. Clearly, specific values of w0 and λ
maximise the amount of variability present in the error landscape. The question
that remains to be answered is whether this “information” is indeed useful to
the training algorithms, and whether the penalty term makes the error landscape
easier to search.

5.1.3 Fitness Distance Correlation

FDCs results for different values of λ and w0 are shown in Figure 4. Once again,
the effect of the penalty term on the error landscape only becomes noticeable for
larger values of λ. It becomes evident from Figure 4 that FDCs tends to decrease as
the value of w0 increases. It was observed in Section 5.1.2 that increasing the value
of w0 results in increased ruggedness. Ruggedness implies that the fitness value
fluctuates instead of persistently going up or down as the landscape is traversed
by an algorithm. Increased fluctuations are thus labelled as “less searchable”.
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Fig. 4: FDCS results obtained for different combinations of λ and w0 on the [−1, 1]
interval
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After the highest peak of ruggedness is reached at w0 ≈ 0.01, and the rugged-
ness begins to decline with an increase in w0, the landscape is progressively per-
ceived as more and more searchable. Highest values of w0, combined with the
highest values of λ, yield the higest searchability on all problems considered. Thus,
only large weights are penalised, and the applied penalty is strong. It was hypoth-
esised in Section 5.1.1 that the application of penalty simplifies the landscape, and
the FDCs results support the hypothesis. High values of w0 combined with high
values of λ have also been shown to yield error landscapes with low and consistent
gradients in Section 5.1.1, which once again confirms the landscape simplification
via regularisation.

5.1.4 Summary

Regularised NN error landscapes were considered in terms of approximate gradi-
ents, ruggedness, and searchability. It was observed that the addition of a penalty
term has a visible impact on the resulting error landscape, and that such properties
of the error surface as gradients and ruggedness can be controlled by tuning the
regularisation parameters. The next section puts these observations in the context
of NN training.

5.2 Fitness landscape analysis and neural network training

Now that it has been established how the penalty term changes the NN error
landscape, it is important to understand whether the induced changes make the
landscape easier or harder to search for the NN training algorithms. This study
considers the classical BP algorithm for NN training, as outlined in Section 4.5. No
search space boundaries were enforced during training, since NN weights are de-
fined to be any real numbers in R. The goal of the study was to execute an instance
of an algorithm on a problem, and to observe any difference in algorithm perfor-
mance induced by the various combinations of λ and w0 values. All NN weights
were randomly initialised in the [−0.5, 0.5] interval. Algorithm performance was
evaluated in terms of the mean squared training error, ET , the mean squared
generalisation error, EG, and the mean classification error, EC . Both EG and EC
were calculated on the test set, which constituted a randomly selected 20% of the
data set not used during training or parameter optimisation. If at least one value
in the output vector differed from the corresponding target value by more than
0.5, the pattern was labelled as incorrectly classified.

Figure 5 summarises the average EG and EC values obtained for different val-
ues of λ and w0. Across all problems and both error metrics, high values of λ tend
to result in inferior performance. An increase in λ implies that the contribution of
the penalty term to the objective function becomes stronger. Indeed, if the train-
ing algorithm focuses on eliminating the weights rather than minimising the error,
the training will produce a minimal architecture that is utterly useless.

The situation looks quite different when observed from the perspective of w0.
On all problems, the smallest values of w0 yield poor training and generalisation
performance. It has been observed in Section 5.1 that low values of w0 correspond
to error landscapes of low ruggedness and drastic gradient changes due to the
nature of the penalty term. BP, being a gradient-descent method, struggles to find
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Fig. 5: Backpropagation results obtained for different combinations of λ and w0

a way through the plateaus of the resulting staircase-like error surface. An increase
in w0, that corresponds to an increase in ruggedness, and a decrease in gradient
variation, yields a predictable improvement in BP performance. As w0 increases
further, penalising fewer and fewer weights, the error begins to grow again, which
is especially evident from the EC values.

What parameter selection guidance can be induced from the above observa-
tions? First of all, w0 in the range [0.001, 0.01] generated the landscapes with most
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Fig. 6: Parallel coordinate plots for various FLA metrics obtained on the [−1, 1]
interval
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variability, i.e. information, which resulted in the lowest average ET , EG, and EC
values. The authors suggest that values less or equal to 0.01 are considered for
w0 for low-dimensional problems, and values greater or equal to 0.01 are consid-
ered for higher-dimensional problems. Values around 0.01 are likely to produce
a sensible result, thus 0.01 can be used as a starting point in the optimisation
process.

Even though excessively large λ may hinder training by overshadowing the
error by the penalty, a value of λ < 0.001 is not likely to influence the error
landscape significantly. Therefore, λ in the range [0.001, 0.1] is suggested to be
considered in the parameter optimisation process.

It should also be noted that very low values of λ have yielded low error val-
ues in some scenarios, especially on lower-dimensional problems. Thus, regularised
models should be compared to non-regularised models as a part of the optimisa-
tion process, to ensure that regularisation does indeed improve the generalisation
performance.

To further visualise the relationship between the obtained FLA measures and
the corresponding algorithm performance, parallel coordinate plots are presented
in Figure 6. Parallel coordinate plots were first proposed by Wegman [44] as a way
of visualising the relationships between various dimensions in high-dimensional
spaces. In Figure 6, each FLA metric is represented as a parallel coordinate axis,
and EC is used as a metric representing BP performance. Each line represents a
combination of averages over 30 simulations of each metric, for a given combination
of λ and w0 values.

Even though BP performance differs per problem (Figures 6a, 6b, and 6c),
some general trends can be observed. For all problems considered, Gavg higher
than Gdev is associated with lower EC . Consistent but prominent gradients imply
a more searchable and cohesive landscape, with enough gradient information to
guide BP. Small Gavg and Gdev, indicative of a fairly flat landscape, yielded poor
BP performance, which is to be expected. Mid-range Gavg with Gdev >> Gavg also
yielded poor performance, indicating that BP does not perform well on step-like
error landscapes with abrupt fitness changes.

Figure 6 shows that high ruggedness is handled well by BP. Good BP perfor-
mance on highly rugged surfaces indicates that BP may be much more resilient
to local minima than previously suspected. These results correlate well with the
recent theoretical findings showing that the NN error landscapes contain more sad-
dle points than local minima [17], and that the number of local minima reduces
exponentially as the dimensionality of the problem increases [4, 7].

Low micro-ruggedness, FEM0.01, combined with higher macro-ruggedness,
FEM0.1, resulted in poor BP performance. Low FEM0.01 and high FEM0.1 also
correspond to low Gavg. All of these properties combined describe landscapes
with wide plateaus, with sudden changes observable only on the macro-level. Such
landscapes are not very searchable from the gradient descent perspective.

Interestingly, the searchability measure FDCs provided the least useful and
the most misleading information: the highest FDCs values corresponded to the
flattest landscapes with low Gavg and Gdev. BP struggled to perform well on such
landscapes for the lack of gradient information. Low values of FDCs, on the other
hand, corresponded to better BP performance. Perhaps NN error surfaces are too
untrivial to be considered from a “global shape” perspective that FDCs offers.
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6 Conclusion

This study investigated the applicability of FLA metrics to regularised NN error
landscapes. The influence of the weight elimination term on the NN error land-
scape characteristics was studied. It was observed that the addition of a weight
elimination term to the objective function alters the error landscape, and does
not necessarily make the error landscape easier to search. Five continuous FLA
metrics were used to study the properties of the regularised error surfaces: gradi-
ent measures Gavg and Gdev, ruggedness measures FEM0.01 and FEM0.1, and
the searchability measure FDCs. Different combinations of regularisation param-
eters λ and w0 were used, and the BP training algorithm was considered in the
FLA context. FLA was shown to be a useful tool for visualising the properties of
high-dimensional NN error landscapes.

The weight elimination term was shown to smooth the error landscape while
introducing additional minima. Tuning of the w0 parameter allows tuning of the
sharpness of the introduced minima. Sharper minima result in more drastic, highly
varied gradients. Values chosen from the [0.001, 0.1] range for the w0 parameter
maximised the variability, or ruggedness of the landscape, and yielded the lowest
average NN errors. It was shown that the BP algorithm is capable of efficiently
searching very rugged landscapes. On the other hand, step-like landscapes with
rare and sudden fitness changes render BP inefficient.

Very small λ values render regularisation insignificant, while excessively large
values of λ overshadow the error by the penalty. Values chosen from the [0.001, 0.1]
range resulted in visible error landscape transformations and did not hinder train-
ing, provided that the w0 value was sensible. The necessity to optimise λ can be
eliminated by employing a multi-objective algorithm to optimise both the objec-
tive function and the weight elimination term separately, and find the suitable
trade-off solution thereof. This is a topic of future research.

The searchability metric, FDCs, evaluated rugged landscapes as less search-
able, even though BP actually benefited from the variability in the landscape.
Perhaps NN error surfaces are too complex for the crude “global shape” estima-
tion that FDCs provides. Out of the five metrics considered, FDCs produced the
least valuable results.

This study only considered weight elimination. It will be interesting to com-
pare weight elimination error surfaces to other regularised error surfaces. FLA can
potentially be used to optimise the penalty parameters involved, as FLA metrics
provide a handy visualisation tool for the corresponding error landscapes. The be-
haviour of FLA metrics on larger data sets and larger NN architectures needs to
be investigated. Future research will include a broader investigation of NN error
surfaces from the FLA perspective.
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