Skip to main content
Log in

Global Mittag-Leffler Synchronization of Fractional-Order Neural Networks Via Impulsive Control

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper aims at analyzing the impulsive synchronization of fractional-order neural works. Firstly, in view of control theory, by constructing a suitable impulsive response system with the designed controller, the synchronization error system between the drive system and the corresponding response system is given. Afterwards, based on the theory of impulsive differential equation, the theory of fractional differential equation, Lyapunov direct method, and inequality techniques, some effective sufficient criteria are established to guarantee the global Mittag-Leffler stability for the synchronization error system. Finally, several simulation examples are designed to demonstrate the effectiveness and feasibility of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huang T, Li C, Yu W, Chen G (2009) Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback. Nonlinearity 22:569–584

    Article  MathSciNet  MATH  Google Scholar 

  2. Sun Z, Xue L, Zhang K (2015) A new approach to finite-time adaptive stabilization of high-order uncertain nonlinear system. Automatica 58:60–66

    Article  MathSciNet  MATH  Google Scholar 

  3. Sun Z, Li T, Yang S (2016) A unified time-varying feedback approach and its applications in adaptive stabilization of high-order uncertain nonlinear systems. Automatica 70:249–257

    Article  MathSciNet  MATH  Google Scholar 

  4. Sun Z, Yun M, Li T (2017) A new approach to fast global finite-time stabilization of high-order nonlinear system. Automatica 81:455–463

    Article  MathSciNet  MATH  Google Scholar 

  5. Hua C, Li Y, Guan X (2017) Finite/fixed time stabilization for nonlinear interconnected systems with dead-zone input. IEEE Trans Autom Control 62(5):2254–2560

    Article  MathSciNet  MATH  Google Scholar 

  6. Li X, Rakkiyappan R (2013) Impulsive controller design for exponential synchronization of chaotic neural networks with mixed delays. Commun Nonlinear Sci Numer Simul 18(6):1515–1523

    Article  MathSciNet  MATH  Google Scholar 

  7. Samidurai R, Anthoni S, Balachandran K (2010) Global exponential stability of neutral-type impulsive neural networks with discrete and distributed delays. Nonlinear Anal Hybrid Syst 4(1):103–112

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang T, Li C, Duan S, Starzyk J (2012) Robust exponential stability of uncertain delayed neural networks with stochastic perturbation and impulse effects. IEEE Trans Neural Netw Learn Syst 23(6):866–875

    Article  Google Scholar 

  9. Yang X, Cao J, Ho D (2015) Exponential synchronization of discontinuous neural networks with time-varying mixed delays via state feedback and impulsive control. Cogn Neurodyn 9(2):113–128

    Article  Google Scholar 

  10. Li C, Yu X, Huang T, Chen G, He X (2016) A generalized Hopfield network for nonsmooth constrained convex optimization: Lie derivative approach. IEEE Trans Neural Netw Learn Syst 27(3):308–321

    Article  MathSciNet  Google Scholar 

  11. Gao X, Zhong S, Gao F (2009) Exponential synchronization of neural networks with time-varying delays. Nonlinear Anal Theory Methods Appl 71(5):2003–2011

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang K, Teng Z, Jiang H (2008) Adaptive synchronization of neural networks with time-varying delay and distributed delay. Phys A Stat Mech Appl 387(2):631–642

    Article  Google Scholar 

  13. Zhang C, He Y, Wu M (2010) Exponential synchronization of neural networks with time-varying mixed delays and sampled-data. Neurocomputing 74(1):265–273

    Article  Google Scholar 

  14. Chen W, Lu X, Zheng W (2015) Impulsive stabilization and impulsive synchronization of discrete-time delayed neural networks. IEEE Trans Neural Netw Learn Syst 26(4):734–748

    Article  MathSciNet  Google Scholar 

  15. Zhang W, Tang Y, Miao Q, Du W (2013) Exponential synchronization of coupled switched neural networks with mode-dependent impulsive effects. IEEE Trans Neural Netw Learn Syst 24(8):1316–1326

    Article  Google Scholar 

  16. Li P, Cao J, Wang Z (2007) Robust impulsive synchronization of coupled delayed neural networks with uncertainties. Phys A Stat Mech Appl 373:261–272

    Article  Google Scholar 

  17. Li X, Song S (2014) Research on synchronization of chaotic delayed neural networks with stochastic perturbation using impulsive control method. Commun Nonlinear Sci Numer Simul 19(10):3892–3900

    Article  MathSciNet  Google Scholar 

  18. Li C, Yu X, Liu Z, Huang T (2016) Asynchronous impulsive containment control in switched multi-agent systems. Inf Sci 370–371(20):667–679

    Article  Google Scholar 

  19. Lakshmikantham V, Bainov D, Simeonov P (1989) Theory of impulsive differential equations. World Science, Singapore

    Book  Google Scholar 

  20. Yang T (2001) Impulsive control theory. Springer, Berlin

    MATH  Google Scholar 

  21. Li C, Liao X, Zhang R (2004) Impulsive synchronization of nonlinear coupled chaotic systems. Phys Lett A 328(1):47–50

    Article  MathSciNet  MATH  Google Scholar 

  22. Song Q, Huang T (2015) Stabilization and synchronization of chaotic systems with mixed time-varying delays via intermittent control with non-fixed both control period and control width. Neurocomputing 154:61–69

    Article  Google Scholar 

  23. Wang X, Li C, Huang T, Chen L (2014) Impulsive exponential synchronization of randomly coupled neural networks with Markovian jumping and mixed model-dependent time delays. Neural Netw 60:25–32

    Article  MATH  Google Scholar 

  24. Yang X, Song Q, Liu Y, Zhao Z (2015) Finite-time stability analysis of fractional-order neural networks with delay. Neurocomputing 152:19–26

    Article  Google Scholar 

  25. Bao H, Cao J (2015) Projective synchronization of fractional-order memristor-based neural networks. Neural Netw 63:1–9

    Article  MATH  Google Scholar 

  26. Li Y, Chen Y, Podlubny I (2009) Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45:1965–1969

    Article  MathSciNet  MATH  Google Scholar 

  27. Yu J, Hu C, Jiang H, Fan X (2014) Projective synchronization for fractional neural networks. Neural Netw 49:87–95

    Article  MATH  Google Scholar 

  28. Yu J, Hu C, Jiang H (2012) \(\alpha \)-stability and \(\alpha \)-synchronization for fractional order neural networks. Neural Netw 35:82–87

    Article  MATH  Google Scholar 

  29. Yang X, Li C, Huang T, Song Q (2017) Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses. Appl Math Comput 293:416–422

    MathSciNet  Google Scholar 

  30. Yang X, Li C, Huang T, Song Q, Chen X (2017) Quasi-uniform synchronization of fractional-order memristor-based neural networks with delay. Neurocomputing 234:205–215

    Article  Google Scholar 

  31. Zhu H, He Z, Zhou S (2011) Lag synchronization of the fractional-order system via nonlinear observer. Int J Mod Phys B 25:3951–3964

    Article  MATH  Google Scholar 

  32. Zhang S, Yu Y, Wang H (2015) Mittag-Leffler stability of fractional-order Hopfield neural networks. Nonlinear Anal Hybrid Syst 16:104–121

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu A, Zeng Z (2016) Boundedness, Mittag-Leffler stability and asymptotical \(\omega \)-periodicity of fractional-order fuzzy neural networks. Neural Netw 74:73–84

    Article  Google Scholar 

  34. Wu A, Zeng Z, Song X (2016) Global Mittag-Leffler stabilization of fractional-order bidirectional associative memory neural networks. Neurocomputing 177:489–496

    Article  Google Scholar 

  35. Boroomand A, Menhaj B (2010) Fractional-order Hopfield neural networks. In: Natural computation international conference, pp 883–890

  36. Diethelm K (2010) The analysis of fractional differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  37. Kilbas A, Srivastava H, Trujillo J (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam

    MATH  Google Scholar 

  38. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  39. Chen J, Zeng Z, Jiang P (2014) Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw 51:1–8

    Article  MATH  Google Scholar 

  40. Ding Z, Shen Y, Wang L (2016) Global Mittag-Leffler synchronization of fractional-order neural networks with discontinuous activations. Neural Netw 73:77–85

    Article  Google Scholar 

  41. Kaslik E, Sivasundaram S (2012) Nonlinear dynamics and chaos in fractional order neural networks. Neural Netw 32:245–256

    Article  MATH  Google Scholar 

  42. Wu A, Zeng Z (2016) Global Mittag-Leffler stabilization of fractional-order memristive neural networks. IEEE Trans Neural Netw Learn Syst 28(1):206–217

    Article  Google Scholar 

  43. Stamova I (2014) Global stability of impulsive fractional differential equations. Appl Math Comput 237:605–612

    MathSciNet  MATH  Google Scholar 

  44. Stamova I (2015) Mittag-Leffler stability of impulsive differential equations of fractional order. Q Appl Math 73(3):525–535

    Article  MathSciNet  MATH  Google Scholar 

  45. Li Y, Chen Y, Podlubny I (2010) Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl 59:1810–1821

    Article  MathSciNet  MATH  Google Scholar 

  46. Li H, Jiang Y, Wang Z, Hu C (2015) Global stability problem for feedback control systems of impulsive fractional differential equations on networks. Neurocomputing 161:155–161

    Article  Google Scholar 

  47. Wang F, Yang Y, Hu M (2015) Asymptotic stability of delayed fractional-order neural networks with impulsive effects. Neurocomputing 154:239–244

    Article  Google Scholar 

  48. Stamova I (2014) Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlinear Dyn 77(4):1251–1260

    Article  MathSciNet  MATH  Google Scholar 

  49. Aguila-Camacho N, Duarte-Mermoud M, Gallegos J (2014) Lyapunov functions for fractional order systems. Commun Nonlinear Sci Numer Simul 19(9):2951–2957

    Article  MathSciNet  Google Scholar 

  50. Berman A, Plemmons R (1979) Nonnegative matrices in the mathematical sciences. Academic, New York

    MATH  Google Scholar 

  51. Hua C, Liu D, Guan X (2014) Necessary and sufficient stability criteria for a class of fractional-order delayed systems. IEEE Trans Circuits Syst II 61(1):59–63

    Article  Google Scholar 

  52. Hua C, Guan X (2016) Smooth dynamic output feedback control for multiple time-delay systems with nonlinear uncertainties. Automatica 68:1–8

    Article  MathSciNet  MATH  Google Scholar 

  53. Sun Z, Zhang C, Wang Z (2017) Adaptive disturbance attenuation for generalized high-order uncertain nonlinear systems. Automatica 80:102–109

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Qatar National Research Fund, a member of the Qatar Foundation, through the National Priorities Research Program under Grant NPRP 9-166-1-031, by the National Natural Science Foundation of China under Grants 61374078, 61773004 and 11501065, and in part by the Chongqing Research Program of Basic Research and Frontier Technology of cstc2015jcyjBX0052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuandong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Li, C., Huang, T. et al. Global Mittag-Leffler Synchronization of Fractional-Order Neural Networks Via Impulsive Control. Neural Process Lett 48, 459–479 (2018). https://doi.org/10.1007/s11063-017-9744-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9744-x

Keywords

Navigation