Skip to main content
Log in

Fast Pedestrian Detection Based on the Selective Window Differential Filter

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Following the recent progress of the pixel-level filtering for pedestrian detection, we propose a window differential feature (WDF) based on the multiple channel maps. More specifically, WDF encodes first-order statistics between artitary two pixels in the whole detection window, thus obtaining larger receptive field for achor pixel than other filtering methods. Despite obtaining more discriminative information for pedestrian, WDF suffers expensive space complexity due to the high feature dimensionality. Quantitive analysis for the arbitrary pairwise elements in the WDF vector demonstrates the weak correlations existing in the proposed feature, thus motivate dimension reduction with feature selection to be the top choice. Three different dimension reduction methods for the WDF demonstrate that feature selection with mutual information achieves superior result. In addition, we find the complementary characteristics between the baseline feature and selective window differential feature, thus combining both can obtain further performance improvement. Extensive experiments on the INRIA, Caltech, ETH, and TUD-Brussel datasets consistently show superior performance of the proposed method to state-of-the-art methods with a 22 fps running speed for 640 \(\times \) 480 images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Chen C, Seff A, Kornhauser A, Xiao J (2015) DeepDriving: learning affordance for direct perception in autonomous driving. In: IEEE international conference on computer vision (ICCV), pp 2722–2730

  2. Bilal M, Khan A, Khan MUK, Kyung CM (2016) A low complexity pedestrian detection framework for smart video surveillance systems. IEEE Trans Circuits Syst Video Technol 99:1–1

    Google Scholar 

  3. Zhang B, Li Z, Cao X, Ye Q, Chen C, Shen L, Perina A, Jill R (2017) Output constraint transfer for kernelized correlation filter in tracking. IEEE Trans Syst Man Cybern Syst 47(4):693–703

    Article  Google Scholar 

  4. Zhang B, Perina A, Li Z, Murino V, Liu J, Ji R (2016) Bounding multiple Gaussians uncertainty with application to object tracking. Int J Comput Vis 118(3):364–379

    Article  MathSciNet  Google Scholar 

  5. Li X, Shen C, Dick A, Zhang Z, Zhuang Y (2016) Online metric-weighted linear representations for robust visual tracking. IEEE Trans Pattern Anal Mach Intell 38(5):931–950

    Article  Google Scholar 

  6. Li X, Hu W, Shen C, Zhang Z, Dick A, Hengel AVD (2013) A survey of appearance models in visual object tracking. ACM Trans Intell Syst Technol 4(4):1–48

    Article  Google Scholar 

  7. Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295:395–406

    Article  Google Scholar 

  8. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceeding of IEEE conference on computer vision and pattern recognition, vol 1, pp 886–893

  9. Wang X, Han T, Yan S (2009) An HOG-LBP human detector with partial occlusion handling. In: IEEE international conference on computer vision, pp 32–39

  10. Dollár P, Appel R, Belongie S, Perona P (2014) Fast feature pyramids for object detection. IEEE Trans Pattern Anal Mach Intell 36(8):1532–1545

    Article  Google Scholar 

  11. Wang L, Zhang B, Han J, Shen L, Qian C (2016) Robust object representation by boosting-like deep learning architecture. Sig Process Image Commun 47:490–499

    Article  Google Scholar 

  12. Sheng B, Hu Q, Li J, Yang W, Zhang B, Sun C (2017) Filtered shallow-deep feature channels for pedestrian detection. Neurocomputing 249:19–27

    Article  Google Scholar 

  13. Chang C, Lin C (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27

    Article  Google Scholar 

  14. Gu B, Sheng VS (2016) A robust regularization path algorithm for v-support vector classification. IEEE Trans Neural Netw Learn Syst 99:1–8

    Google Scholar 

  15. Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28(2):337–407

  16. Gu B, Sun X, Sheng VS (2016) Structural minimax probability machine. IEEE Trans Neural Netw Learn Syst 28(7):1646–1656

  17. Felzenszwalb P, Girshick R, McAllester D, Ramanan D (2009) Object detection with discriminatively trained part based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627–1645

    Article  Google Scholar 

  18. Zhu Q, Yeh MC, Cheng KT, Avidan S (2006) Fast human detection using a cascade of histograms of oriented gradients. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, vol 2, pp 1491–1498

  19. Shen J, Yang W, Sun C (2013) Real-time human detection based on gentle MILBoost with variable granularity HOG-CSLBP. Neural Comput Appl 23(7–8):1937–1948

    Article  Google Scholar 

  20. Nam W, Dollar P, Han JH (2014) Local decorrelation for improved pedestrian detection. Adv Neural Inf Process Syst 27:424–432

    Google Scholar 

  21. Zhang S, Bauckhage C, Cremers AB (2014) Informed haar-like features improve pedestrian detection. In: IEEE conference on computer vision and pattern recognition, pp 947–954

  22. Zhang S, Benenson R, Schiele B (2015) Filtered channel features for pedestrian detection. In: IEEE conference on computer vision and pattern recognition, pp 1751–1760

  23. Shen J, Zuo X, Yang W, Yu H, Liu G (2016) Learning discriminative shape statistics distribution features for pedestrian detection. Neurocomputing 184:66–77

    Article  Google Scholar 

  24. Shen J, Zuo X, Li J, Yang W, Ling H (2017) A novel pixel neighborhood differential statistic feature for pedestrian and face detection. Pattern Recogn 63:127–138

    Article  Google Scholar 

  25. Yang B, Yan J, Lei Z, Li SZ (2015) Convolutional channel features. In: IEEE international conference on computer vision, pp 82–90

  26. Zhang L, Lin L, Liang X, He K (2016) Is faster R-CNN doing well for pedestrian detection? In: Proceedings of 14th european conference computer vision, pp 443–457

  27. Hinton GE, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:2006

    Article  MathSciNet  MATH  Google Scholar 

  28. Dollar P, Tu Z, Perona P, Belongie S (2009) Integral channel features. In: British machine vision conference, vol 91, pp 1–11

  29. Dollár P, Wojek C, Schiele B, Perona P (2012) Pedestrian detection: an evaluation of the state of the art. IEEE Trans Pattern Anal Mach Intell 34(4):743–761

    Article  Google Scholar 

  30. Ess A, Leibe B, Schindler K, van Gool L (2009) Robust multiperson tracking from a mobile platform. IEEE Trans Pattern Anal Mach Intell 31(10):1831–1846

    Article  Google Scholar 

  31. Wojek C, Walk S, Schiele B (2009) Multi-cue onboard pedestrian detection. In: IEEE conference on computer vision and pattern recognition, pp 794–801

  32. Angelova A, Krizhevsky A, Vanhoucke V, Ogale A, Fergusonn D (2015) Real-time pedestrian detection with deep network cascades. In: British machine vision conference, vol 32, pp 1–12

  33. Paisitkriangkrai S, Shen C, Hengel AVD (2016) Pedestrian detection with spatially pooled features and structured ensemble learning. IEEE Trans Pattern Anal Mach Intell 38(6):1243–1257

    Article  Google Scholar 

  34. Yang Y, Wang Z, Wu F (2015) Exploring prior knowledge for pedestrian detection. In: Proceedings of the British machine vision conference, pp 176.1–176.12

  35. Shen J, Sun C, Yang W, Wang Z, Sun Z (2011) A novel distribution-based feature for rapid object detection. Neurocomputing 74(17):2767–2779

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the NSF of Jiangsu Province (Grants Nos. BK20140566, BK20150470), the NSF of China (61305058, 61603080), the Fundamental Research Funds for the Jiangsu University (13JDG093), the NSF of the Jiangsu Higher Education Institutes of China (15KJB520008, 16KJB520009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jifeng Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, X., Shen, J., Yu, H. et al. Fast Pedestrian Detection Based on the Selective Window Differential Filter. Neural Process Lett 48, 403–417 (2018). https://doi.org/10.1007/s11063-017-9746-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9746-8

Keywords

Navigation