Skip to main content
Log in

Image Segmentation via Mean Curvature Regularized Mumford-Shah Model and Thresholding

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Due to the limitations in imaging devices and subject-induced susceptibility effect, general image segmentation is still an open problem. Typical challenges include image noise, intensity inhomogeneity and various image modalities. In this paper, we propose to use a two-step strategy. Specifically, we first utilize a mean curvature regularized Mumford-Shah model to recover an intermediate image with enhanced saliency, and then the segmentation is obtained by a thresholding procedure. For images with intensity inhomogeneity, a bias-corrected fuzzy K-means method is used to correct the bias field before K-means thresholding. The proposed model can be minimized efficiently using the augmented Lagrangian algorithm. Experimental results and comparison analysis demonstrate that the proposed framework is not only able to preserve the geometry of object shapes, especially object corners, but it is also more accurate than state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T (2002) A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 21(3):193–199

    Article  Google Scholar 

  2. Bao Z, Murray JI, Boyle T, Ooi SL, Sandel MJ, Waterston RH (2006) Automated cell lineage tracing in Caenorhabditis elegans. Proc Natl Acad Sci USA 103:2707–2712

    Article  Google Scholar 

  3. Cai X, Chan R, Zeng T (2013) A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding. SIAM J Imaging Sci 6(1):368–390

    Article  MathSciNet  Google Scholar 

  4. Chan T, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  Google Scholar 

  5. Chan R, Yang HF, Zeng TY (2014) A two-stage image segmentation method for blurry images with Poisson or multiplicative gamma noise. SIAM J Imaging Sci 7(1):98–127

    Article  MathSciNet  Google Scholar 

  6. Cai X (2015) Variational image segmentation model coupled with image restoration achievements. Pattern Recogn 48(6):2029–2042

    Article  Google Scholar 

  7. Duan Y, Chang H, Huang W, Zhou J, Zeng T (2014) A two-stage image segmentation method using Euler’s elastica regularized Mumford-Shah model. In: 22nd international conference on pattern recognition

  8. Evans LC (1998) Partial differential equations. American Mathematical Society, Providence

    MATH  Google Scholar 

  9. Han X, Fischl B (2007) Atlas renormalization for improved brain MR image segmentation across scanner platforms. IEEE Trans Med Imaging 26(4):479–486

    Article  Google Scholar 

  10. Hong C, Yu J, Tao D, Wang M (2015) Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse retrieval. IEEE Trans Ind Electron 62(6):3742–3751

    Google Scholar 

  11. Hong C, Yu J, Wan J, Tao D, Wang M (2015) Multimodal deep autoencoder for human pose recovery. IEEE Trans Image Process 24(12):5659–5670

    Article  MathSciNet  Google Scholar 

  12. Hong C, Yu J, You J, Chen X, Tao D (2015) Multi-view ensemble manifold regularization for 3D object recognition. Inf Sci 320:395–405

    Article  MathSciNet  Google Scholar 

  13. http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/. The Berkeley segmentation dataset and benchmark

  14. Li C, Huang R, Ding Z, Gatenby JC, Metaxas DN, Gore JC (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20(7):2007–2016

    Article  MathSciNet  Google Scholar 

  15. Li C, Kao CY, Gore JC, Ding Z (2008) Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process Publ IEEE Signal Process Soc 17(10):1940–1949

    MathSciNet  MATH  Google Scholar 

  16. Li C, Kao C, Gore J, Ding Z (2007) Implicit active contours driven by local binary fitting energy. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), pp 1–7

  17. Mumford D, Shah J (1985) Boundary detection by minimizing functionals. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 22–26

  18. Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42:577–685

    Article  MathSciNet  Google Scholar 

  19. Piovano J, Rousson M, Papadopoulo T (2007) Efficient segmentation of piecewise smooth images. In: Scale space and variational methods in computer vision (SSVM07), Italy, Ischia, pp 709–720

  20. Tan M, Hu Z, Wang B, Zhao J, Wang Y (2016) Robust object recognition via weakly supervised metric and template learning. Neurocomputing 181:96–107

    Article  Google Scholar 

  21. Tsai A, Yezzi A, Willsky AS (2001) Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans Image Process 10:1169–1186

    Article  Google Scholar 

  22. Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the Mumford-Shah model. Int J Comput Vis 50:271–293

    Article  Google Scholar 

  23. Yuan J, Bae E, Tai XC (2010) A study on continuous max-flow and min-cut approaches, In: Proceedings of the twenty-third ieee conference on computer vision and pattern recognition (CVPR), San Francisco, CA, pp 2217–2224

  24. Yu J, Rui Y, Tao D (2014) Click prediction for web image reranking using multimodal sparse coding. IEEE Trans Imaging Process 23:2019–2032

    Article  MathSciNet  Google Scholar 

  25. Zhu W, Chan T (2012) Image denoising using mean curvature of image surface. SIAM J Imaging Sci 5(1):1–32

    Article  MathSciNet  Google Scholar 

  26. Zhang K, Song H, Zhang L (2010) Active contours driven by local image fitting energy. Pattern Recogn 43(4):1199–1206

    Article  Google Scholar 

  27. Zhu W, Tai XC, Chan T (2014) A fast algorithm for a mean curvature based image denoising model using augmented lagrangian method. In: Efficient algorithms for global optimization methods in computer vision. Springer, Berlin Heidelberg, pp 104–118

    Chapter  Google Scholar 

  28. Zhu W, Tai XC, Chan T (2013) Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Probl Imaging 7(4):1409–1432

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author (D. X. Kong) was supported in part by the National Natural Science Foundation of China (Grant No. 91630311) and the Fundamental Research Funds for the Central Universities (Grant No. 2017XZZX007-02). The author (J. L. Peng) was supported in part by the National Natural Science Foundation of China (Nos. 11401231, 11771160), Natural Science Foundation of Fujian Province (No. 2015J01254) and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (No. ZQN-PY411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexing Kong.

Appendix: The Derivations in Tables 1 and 2.

Appendix: The Derivations in Tables 1 and 2.

In this “Appendix”, we discuss the corresponding functionals for each variable function u, q, p, n, m by fixing the other variable functions and show how to get the associated minimizers or the Euler–Lagrange equations. Similarly as in [28], these functionals can be written as follows.

$$\begin{aligned} \varepsilon _1(u) =&\frac{1}{2}\int _{\Omega }(f-u)^2dx + \frac{\mu }{2}\int _{\Omega \Gamma }|\nabla u|^2dx + \frac{r_2}{2}\int _{\Omega }|p-<\nabla u,1>|^2dx\nonumber \\&+\lambda _2\int _{\Omega }(p-<\nabla u,1>)dx, \end{aligned}$$
(4.1)
$$\begin{aligned} \varepsilon _2(q) =\,&\lambda \int _{\Omega }|q|dx + \frac{r_3}{2}\int _{\Omega }(q-\partial _xn_1-\partial _yn_2)^2dx + \lambda _3\int _{\Omega }(q-\partial _xn_1-\partial _yn_2)dx, \end{aligned}$$
(4.2)
$$\begin{aligned} \varepsilon _3(p) =\,&r_1\int _{\Omega }(|p|-p\cdot m)dx + \lambda _1\int _{\Omega }(|p|-p\cdot m)dx + \frac{r_2}{2}\int _{\Omega }|p-<\nabla u,1>|^2dx\nonumber \\&+\lambda _2\int _{\Omega }(p-<\nabla u,1>)dx, \end{aligned}$$
(4.3)
$$\begin{aligned} \varepsilon _4(n)=\,&\frac{r_3}{2}\int _{\Omega } (q-\partial _xn_1-\partial _yn_2)^2dx + \lambda _3\int _{\Omega }(q-\partial _xn_1-\partial _yn_2)dx + \frac{r_4}{2}\int _{\Omega }|n-m|^2dx\nonumber \\&+\lambda _4\int _{\Omega }(n-m)dx, \end{aligned}$$
(4.4)
$$\begin{aligned} \varepsilon _5(m) =\,&r_1\int _{\Omega }(|p|-p\cdot m)dx + \lambda _1\int _{\Omega }(|p|-p\cdot m)dx\nonumber \\&+\frac{r_4}{2}\int _{\Omega }|n-m|^2dx + \lambda _4\int _{\Omega }(n-m)dx\nonumber \\&+ \delta _{R}(m). \end{aligned}$$
(4.5)

The minimizers of the functionals \(\varepsilon _2(q)\), \(\varepsilon _3(p)\), \(\varepsilon _5(m)\) can be expressed explicitly, while the minimizers of functionals \(\varepsilon _1(u)\), \(\varepsilon _4(n)\) are determined by the associated Euler–Lagrange equations. For the sake of completeness of presentation, we present the details of how to minimize the subproblems here.

For the functional \(\varepsilon _1(u)\), since

$$\begin{aligned} \varepsilon _1(u) =&\frac{1}{2}\int _{\Omega }(f-u)^2dx + \frac{\mu }{2}\int _{\Omega \setminus \Gamma }|\nabla u|^2dx + \frac{r_2}{2}\int _{\Omega }(\partial _xu-d_{1})^2dx\\&+\frac{r_2}{2}\int _{\Omega }(\partial _yu-d_{2})^2dx, \end{aligned}$$

where \((d_{1},d_{2},d_{3})=d=p + \frac{\lambda _2}{r_2}\), then one gets

$$\begin{aligned}{}[I + (\mu +r_2)\Delta ]u = f + r_2 \partial _x^{T}d_{1} +r_2\partial _{y}^{T}d_{2}, \end{aligned}$$

where I is the identity operator, \(\partial _{x}^{T}\) is the tranapose of \(\partial _{x}\) and \(\partial _{y}^{T}\) is the tranapose of \(\partial _{y}\)

As the functional \(\varepsilon _2(q)\) can be reformulated as

$$\begin{aligned} \varepsilon _2(q) = \lambda \int _{\Omega }|q|dx + \frac{r_3}{2}\int _{\Omega }(q-\tilde{q})^2dx, \end{aligned}$$

where \(\tilde{q} = \partial _{x}n_1+\partial _{y}n_2-\frac{\lambda _3}{r_3}\), then by Lemma 1 in [28], one gets

$$\begin{aligned} \arg \min \limits _{q}\varepsilon _2(q) = \max \big (|\tilde{q}|-\frac{\lambda }{r_3}, 0\big )\frac{\tilde{q}}{|\tilde{q}|}. \end{aligned}$$

Similarly, as

$$\begin{aligned} \varepsilon _3(p) =&(r_1+\lambda _1)\int _{\Omega }|p|dx + \frac{r_2}{2}\int _{\Omega }(p-\tilde{p})^2dx,\\ \varepsilon _5(m) =&\int _{\Omega }(m-\tilde{m})^2dx + \delta _{R}(m), \end{aligned}$$

where \(\tilde{p} = <\nabla u,1> - \frac{\lambda _2}{r_2} + \frac{m(r_1+\lambda _1)}{r_2}\)\(\tilde{m} = n+\frac{\lambda _4}{r_4}+\frac{(r_1+\lambda _1)p}{r_4}\). By using Lemma 1 in [28], one obtains

$$\begin{aligned} \arg \min \limits _{p}\varepsilon _3(p) = \max \big (|\tilde{p}|-\frac{r_1+\lambda _1}{r_2}, 0\big )\frac{\tilde{p}}{|\tilde{p}|}. \end{aligned}$$

By using Lemma 2 in [28], we get

$$\begin{aligned}&\arg \min \limits _{m}\varepsilon _5(m) = {\left\{ \begin{array}{ll} &{}\tilde{m}, ~~~~~|\tilde{m}|\le 1,\\ &{}\frac{\tilde{m}}{|\tilde{m}|}, ~~~ |\tilde{m}|>1. \end{array}\right. }\ \end{aligned}$$

As for the functional \(\varepsilon _4(n)\), standard procedures lead to the following Euler–Lagrange equations:

$$\begin{aligned} \Big (\frac{r_4}{r_3}+\partial _x^{T}\partial _x\Big )n_1 + \partial _x^{T}\partial _yn_2&= \frac{r_4}{r_3}h_1+\partial _x^{T}q+\frac{1}{r_3}\partial _x^{T}\lambda _3,\\ \Big (\frac{r_4}{r_3}+\partial _y^{T}\partial _y\Big )n_2 + \partial _{y}^{T}\partial _{x}n_1&= \frac{r_4}{r_3}h_2+\partial _{y}^{T}q+\frac{1}{r_3}\partial _y^{T}\lambda _3,\\ n_3&=h_3. \end{aligned}$$

where \(n=(n_1,n_2,n_3)\), \(m=(m_1,m_2,m_3)\), \(\lambda _2=(\lambda _{21},\lambda _{22},\lambda _{23})\), \(\lambda _4=(\lambda _{41},\lambda _{42},\lambda _{43})\), \(h=(h_1,h_2,h_3)=m-\frac{\lambda _4}{r_4}\). Both u and n can be solved by the fast Fourier transform [28]. Moreover, based on the above formulations, we may update all the Lagrange multipliers:

$$\begin{aligned} \lambda _1^{new} =\,&\lambda _1^{old} + r_1(|p^{old}|-p^{old}\cdot m^{old}),\\ \lambda _{21}^{new} =\,&\lambda _{21}^{old} + r_2(p_{1}^{old}-\partial _x u^{old}),\\ \lambda _{22}^{new} =\,&\lambda _{22}^{old} + r_2(p_{2}^{old}-\partial _y u^{old}),\\ \lambda _{23}^{new} =\,&\lambda _{23}^{old} + r_2(p_{3}^{old}-1),\\ \lambda _3^{new} =\,&\lambda _3^{old} + r_3(q^{old}-\partial _xn_{1}^{old}-\partial _yn_{2}^{old}),\\ \lambda _{41}^{new} =\,&\lambda _{41}^{old} + r_4(n_{1}^{old}-m_{1}^{old}),\\ \lambda _{42}^{new} =\,&\lambda _{42}^{old} + r_4(n_{2}^{old}-m_{2}^{old}),\\ \lambda _{43}^{new} =\,&\lambda _{43}^{old} + r_4(n_{3}^{old}-m_{3}^{old}), \end{aligned}$$

where \(|p|=\sqrt{(p_{1})^2+(p_{2})^2+(p_{3})^2}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Peng, J. & Kong, D. Image Segmentation via Mean Curvature Regularized Mumford-Shah Model and Thresholding. Neural Process Lett 48, 1227–1241 (2018). https://doi.org/10.1007/s11063-017-9763-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9763-7

Keywords

Navigation