Skip to main content
Log in

Density Based Cluster Growing via Dominant Sets

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Although there are a lot of clustering algorithms available in the literature, existing algorithms are usually afflicted by practical problems of one form or another, including parameter dependence and the inability to generate clusters of arbitrary shapes. In this paper we aim to solve these two problems by merging the merits of dominant sets and density based clustering algorithms. We firstly apply histogram equalization to eliminate the parameter dependence problem of the dominant sets algorithm. Noticing that the obtained clusters are usually smaller than the real ones, a density threshold based cluster growing step is then used to improve the clustering results, where the involved parameters are determined based on the initial clusters. This is followed by the second cluster growing step which makes use of the density relationship between neighboring data. Data clustering experiments and comparison with other algorithms validate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Achtert E, Bohm C, Kroger P (2006) Deli-clu: boosting robustness, completeness, usability, and efficiency of hierarchical clustering by a closest pair ranking. In: International conference on knowledge discovery and data mining, pp 119–128

    Chapter  Google Scholar 

  2. Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) Optics: ordering points to identify the clustering structure. In: ACM SIGMOD international conference on management of data, pp 49–60

  3. Brendan JF, Delbert D (2007) Clustering by passing messages between data points. Science 315:972–976

    Article  MathSciNet  Google Scholar 

  4. Bulo SR, Pelillo M, Bomze IM (2011) Graph-based quadratic optimization: a fast evolutionary approach. Comput Vis Image Underst 115(7):984–995

    Article  Google Scholar 

  5. Chang H, Yeung DY (2008) Robust path-based spectral clustering. Pattern Recognit 41(1):191–203

    Article  Google Scholar 

  6. Cheng Y (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intell 17(8):790–799

    Article  Google Scholar 

  7. Comaniciu D, Peter M (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  8. Daszykowski M, Walczak B, Massart DL (2001) Looking for natural patterns in data: part 1. Density-based approach. Chemometr Intell Lab Syst 56(2):83–92

    Article  Google Scholar 

  9. Ding J, Chen Z, He X, Zhan Y (2016) Clustering by finding density peaks based on Chebyshev’s inequality. In: Chinese control conference, pp 7169–7172

  10. Ester M, Kriegel HP, Sander J, Xu XW (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: International conference on knowledge discovery and data mining, pp 226–231

  11. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14(8):2611–2620

    Article  Google Scholar 

  12. Fraley C, Raftery AE (1998) How many clusters? which clustering method? Answers via model-based cluster analysis. Comput J 41(8):578–588

    Article  Google Scholar 

  13. Fränti P, Virmajoki O, Hautamäki V (2006) Fast agglomerative clustering using a k-nearest neighbor graph. IEEE Trans Pattern Anal Mach Intell 28(11):1875–1881

    Article  Google Scholar 

  14. Fu L, Medico E (2007) Flame, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformatics 8(1):1–17

    Article  Google Scholar 

  15. Gionis A, Mannila H, Tsaparas P (2007) Clustering aggregation. ACM Trans Knowl Discov Data 1(1):1–30

    Article  Google Scholar 

  16. Hinnerberg A, Keim D (1998) An efficient approach to clustering large multimedia databases with noise. In: International conference on knowledge discovery and data mining pp 58–65

  17. Hou J, Gao H, Li X (2016) DSets-DBSCAN: a parameter-free clustering algorithm. IEEE Trans Image Process 25(7):3182–3193

    Article  MathSciNet  Google Scholar 

  18. Hou J, Gao H, Xia Q, Qi N (2016) Feature combination and the knn framework in object classification. IEEE Trans Neural Netw Learn Syst 27(6):1368–1378

    Article  Google Scholar 

  19. Hou J, Liu W, Xu E (2016) Density based clustering via dominant sets. In: IAPR-TC3 workshop on artificial neural networks in pattern recognition, pp 80–91

    Chapter  Google Scholar 

  20. Hou J, Liu W, Xu E, Cui H (2016) Towards parameter-independent data clustering and image segmentation. Pattern Recogn 60:25–36

    Article  Google Scholar 

  21. Hou J, Pelillo M (2013) A simple feature combination method based on dominant sets. Pattern Recogn 46(11):3129–3139

    Article  Google Scholar 

  22. Jain AK, Law MHC (2005) Data clustering: a user’s dilemma. In: International conference on pattern recognition and machine intelligence, pp 1–10

    Google Scholar 

  23. Kärkkäinen I, Fränti P (2002) Dynamic local search algorithm for the clustering problem. Research report A-2002-6, University of Joensuu

  24. Pavan M, Pelillo M (2003) A graph-theoretic approach to clustering and segmentation. In: IEEE international conference on computer vision and pattern recognition, pp 145–152

  25. Pavan M, Pelillo M (2005) Efficient out-of-sample extension of dominant-set clusters. In: Advances in neural information processing systems, pp 1057–1064

  26. Pavan M, Pelillo M (2007) Dominant sets and pairwise clustering. IEEE Trans Pattern Anal Mach Intell 29(1):167–172

    Article  Google Scholar 

  27. Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344:1492–1496

    Article  Google Scholar 

  28. Rosenberg A, Hirschberg J (2007) V-measure: a conditional entropy-based external cluster evaluation measure. In: Joint conference on empirical methods in natural language processing and computational natural language learning, pp 410–420

  29. Roy S, Bhattacharyya DK (2005) An approach to find embedded clusters using density based techniques. LNCS 3816:523–535

    Google Scholar 

  30. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):167–172

    Google Scholar 

  31. Torsello A, Bulo SR, Pelillo M (2006) Grouping with asymmetric affinities: a game-theoretic perspective. IEEE Int Conf Comput Vis Pattern Recognit 1:292–299

    Google Scholar 

  32. Veenman CJ, Reinders M, Backer E (2002) A maximum variance cluster algorithm. IEEE Trans Pattern Anal Mach Intell 24(9):1273–1280

    Article  Google Scholar 

  33. Wang XF, Xu Y (2016) Fast clustering using adaptive density peak detection. Stat Methods Med Res. https://doi.org/10.1177/0962280215609948.

    Article  MathSciNet  Google Scholar 

  34. Yang N, Liu Q, Li Y, Xiao L, Liu X (2016) Star-scan: a stable clustering by statistically finding centers and noises. In: Asia-Pacific web conference on web technologies and applications, pp 456–467

    Chapter  Google Scholar 

  35. Zahn CT (1971) Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans Comput 20(1):68–86

    Article  Google Scholar 

  36. Zhu X, Loy CC, Gong S (2014) Constructing robust affinity graphs for spectral clustering. In: IEEE International conference on computer vision and pattern recognition, pp 1450–1457

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Hou.

Additional information

This work is supported in part by National Natural Science Foundation of China under Grant No. 61473045 and Natural Science Foundation of Liaoning Province under Grant No. 20170540013, and in part by China Scholarship Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., E, X. & Liu, W. Density Based Cluster Growing via Dominant Sets. Neural Process Lett 48, 933–954 (2018). https://doi.org/10.1007/s11063-017-9767-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9767-3

Keywords

Navigation