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Abstract Satellite-measured radiances are obviously of great interest for photo-
voltaic (PV) energy prediction. In this work we will use them together with clear
sky irradiance estimates for the nowcasting of PV energy productions over penin-
sular Spain. We will feed them directly into two linear Machine Learning models,
Lasso and linear Support Vector Regression (SVR), and two highly non-linear
ones, Deep Neural Networks (in particular, Multilayer Perceptrons, MLPs) and
Gaussian SVRs. We shall also use a simple Clear Sky-based persistence model for
benchmarking purposes. We consider prediction horizons of up to six hours, with
Gaussian SVR being statistically better than the other models at each horizon,
since its errors increase slowly with time (with an average of 1.92 % for the first
three horizons and of 2.89 % for the last three). MLPs performance is close to that
of the Gaussian SVR for the longer horizons (with an average of 3.1 %) but less
so at the initial ones (average of 2.26 %), being nevertheless significantly better
than the linear models. As it could be expected, linear models give weaker results
(in the initial horizons, Lasso and linear SVR have already an error of 3.21 % and
3.46 %, respectively), but we will take advantage of the spatial sparsity provided
by Lasso to try to identify the concrete areas with a larger influence on PV energy
nowcasts.

Keywords Photovoltaic energy, Nowcasting, EUMETSAT, Support Vector
Regression, Lasso, Clear Sky models

1 Introduction

Climate change and global warming are being accepted not just as possibilities but
as established facts that can provoke large, possibly harmful changes in weather
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behavior and that, therefore, should be vigorously kept in check. To prevent this,
the control of CO2 and other greenhouse gas emissions is crucial. Moreover, in-
creasing the penetration of renewable energies is also recognized as a key tool
in the process. In turn, this has led to an enormous growth in wind and solar
installations, driven initially by the availability of subsidies for the energy thus
produced but, nowadays, more and more so by simple economic considerations, as
the capital expenses per installed power are constantly decreasing.

Particularly, this is the case of solar energy. While at the beginning two com-
plementary paths were followed, namely, thermosolar and photovoltaic (PV) in-
stallations, lately it seems that PV energy is gaining the upper hand and becoming
the main source of new solar power, to the point of being a key energy provider
in states like California or Hawaii in the U.S., and Germany or Italy in Europe.
In Spain, and after a very fast growth up to 2012, new solar installations dropped
precipitously but they are now clearly gaining momentum as the installed solar
base should approximately double from the current 4 GW to about 8 GW by the
year 2020.

It is thus clear that accurate solar energy forecasting is nowadays becoming
crucial for the management of the electricity grid. Moreover, increasing PV pro-
duction is accompanied by a growing presence of solar power in energy markets,
whose agents also have a clear stake in having good production forecasts (see [3] for
a recent study on the economic value of PV forecasting in Spain). A large number
of solar energy forecasting approaches can be found in the literature. They can
be sorted into different families, such as physical techniques based on different
models of solar radiation, engineering methods to transform radiation estimates
into PV predicted outputs, statistical techniques either based on pure time series
analysis or combining these with exogenous variables or, finally, Machine Learning
(ML) methods, where explanatory variables such as Numerical Weather Prediction
(NWP) inputs, sky camera images or either ground- or satellite-based radiation
measurements are fed into more or less black box models that transform them
into future PV estimates. In all cases predictions may be sought for individual
plants (of interest for their managers) or for production aggregated over large
areas (of interest for Transmission System Operators, TSOs, or for large market
agents with contracts to purchase and/or deliver energy). A further distinction
between methods can be made in terms of the desired forecasting horizons. These
may go from the day-ahead or even longer periods to intra-day (hours) or even
very short (minutes) prediction horizons. Interested agents are again present in
all these horizons, as, for instance, system operators (that must ensure short and
medium time system stability and must plan next day energy generation) or mar-
ket agents (that must be present on both the day-ahead and intra-day markets).
Recent surveys of the large literature on these approaches and prediction goals
can be found in [2, 16,26].

This paper is concerned with the short term, a few hours ahead, same-day
forecasting of PV energy over a wide area. In our case we deal with peninsular
Spain, but the situation may be similar in places such as California or Texas in the
U.S., and Germany or Italy in Europe. This geographical scale and the short time
horizons restrict the methods to be used. In fact, local PV prediction is better
suited to physical or engineering models and the wide variations of atmospheric
conditions possible in a large area greatly preclude a pure time series approach,
that may not capture the overall influence of these variations. Because of this,
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we will thus concentrate on general ML methods, namely sparse linear models
(Lasso), Multilayer Perceptrons and Support Vector Regression, both linear and
non-linear.

Turning our attention to the prediction variables to be used, NWPs, usually a
first choice for renewable energy predictions, are not that useful here, because of
the time gaps between consecutive predictions. Taking as an example the European
Center for Medium Weather Forecasts (ECMWF), two main NWPs are provided
daily, with runs that usually start at 00 and 12 UTC hours and are distributed
widely about 6 hours later. National weather services usually provide intermedi-
ate forecasts; in the particular case of Spain, ECMWF’s NWP forecasts would
be available approximately at sunrise and sunset, i.e., about UTC hours 06 and
18. AEMET, Spain’s national weather service, provides intermediate predictions
whose runs start also at 06 and 18 UTC hours. In any case, there is approximately
a 6 hour gap between these forecasts, which makes their application to intra-day
solar energy predictions rather difficult.

On the other extreme we could consider ground measurements or sky cam-
eras [19], but their local nature, better suited for single site exploitation, makes it
quite difficult to apply their information to cover wider areas, let alone the entirety
of peninsular Spain. This essentially leaves us with satellite based measurements,
which usually have been applied to derive local irradiation forecasts which, in turn,
can be transformed into PV energy predictions. A good example of this approach is
the HELIOSAT method [13], a physical model in which information from the high
resolution visible satellite channel is used first to track and predict cloud behavior
and then its influence on irradiance values. More precisely, a dimensionless cloud
index is computed from the visible channel satellite images at a given hour H and
then applied to derive irradiance estimates at that hour using a physical clear-sky
model. Cloud positions are afterwards estimated at hours H + 1, H + 2, . . . using
a Motion Vector Field model and then transformed again into estimates of future
irradiance values. These estimates have been used to derive short term PV energy
forecasts, both at individual plants and over a regional level (see [18,28]).

In this paper we will also work with satellite measurements, directly feeding
them into ML models to nowcast the aggregated PV energy of peninsular Spain.
We must point out that satellite values correspond to measurements of reflected
radiance and, thus, do not give the incoming irradiances that are actually con-
verted into PV energy. In fact, we use these reflected radiances as proxies for the
actual, incoming radiances. As in our previous work in [5], we will consider the
11 spectral bands in the Meteosat satellites run by the European Organisation
for the Exploitation of Meteorological Satellites (EUMETSAT) which range from
the visible channels to the long-wavelength infrared ones at the opposite extreme
of the spectrum. Their approximate spatial resolution is about 3 km× 3 km for
Spain. There is an extra high resolution visible channel with a 1 km× 1 km resolu-
tion that we will not consider here. Moreover, and as discussed in Section 2, each
band gives rise to two measures, the effective radiance, plus a reflectance for the
first three visible channels and a brightness temperature for the remaining eight
infrared ones; thus, we have 22 variables for each grid point. These measures are
available each 15 min but, on the other hand, PV energy readings correspond to
hourly values of the energy produced up to a given hour H. Because of this we will
use at each hour the average of the previous four 15 min satellite readings available
up to that time.
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Given the large number of satellite readings and their rather fine spatial resolu-
tion, we will first downsample Meteosat’s initial resolution to that of a 0.125◦ grid
and then select a subset of those readings having the largest correlation with PV
energy values. Moreover, we will also incorporate into our forecasting variables a
Clear Sky (CS) estimate for the Global Horizontal Irradiance at each Meteosat grid
point. We will further aggregate these into a global CS model of peninsular Spain
which, in turn, we will use to define a simple persistence model for benchmarking
purposes. We believe ours to be the first work on using satellite information to
directly nowcast PV energy and, over our previous results in [5], we offer here the
following new contributions:

1. We will extend our forecasting horizons from the previous 3 hours up to a much
more useful 6 hours.

2. We will consider another powerful non-linear regression method, namely Deep
Neural Networks, applying their initialization and training techniques on Mul-
tilayer Perceptrons with 4 hidden layers and 100 units per layer.

3. We exploit the spatial structure of Lasso, the sparse linear model we use,
to derive a further understanding on the grid point relevance of the satellite
measures considered.

The rest of the paper is organized as follows. In Section 2 we give a general overview
of the EUMETSAT satellite data system, the satellite readings most relevant to
PV energy measures and the concrete channel information that can be obtained
essentially in real time from EUMETSAT. Channel information is also analyzed in
Section 2 in the context of PV energy prediction over peninsular Spain in order to
select the most informative channels. We will also present the CS estimates that
we add to our models. In Section 3 we will briefly describe the ML models we
will use, namely two regularized linear models, Lasso and linear Support Vector
Regression (SVR) as implemented in the LIBLINEAR [10] library, and two non-linear
ones, Gaussian SVR and Multilayer Perceptron (MLP). As we shall see, the high
dimensionality of the patterns used is not enough to put the linear models on a par
with the non-linear ones. On the other hand, the non-linear model results are quite
good, particularly that of Gaussian SVRs, which yield good nowcasts for all the
horizons up to the 6 hours considered. The performance of MLPs is inferior at the
shorter horizons, closer there to that of the linear models, but it deteriorates rather
slowly and is not too far away from that of the Gaussian SVRs at the later horizons.
We shall also use a simple, CS-based persistence model for benchmarking purposes.
As it could be expected, it is not competitive for the longer horizons but, on the
other hand and besides being extremely simple, it may be hard to beat on the first
two horizons, particularly at noon and early afternoon. Numerical results justifying
these assertions are given in Section 4, which also includes a Subsection where we
discuss how to take advantage of the spatial sparsity provided by the Lasso model
to identify the grid points whose satellite radiances may have a stronger influence
on PV energy production. Finally, in Section 5 we briefly recap our contributions,
offer our main conclusions and discuss further ways to improve on them.
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2 Satellite Data and Clear Sky Model

2.1 EUMETSAT Satellite Data

The Meteosat system is a satellite network that covers Europe as well as parts
of Africa and of the Atlantic Ocean and is run by the European Organisation
for the Exploitation of Meteorological Satellites (EUMETSAT) [8]. These satel-
lites measure for different wavelengths the radiance emitted and reflected by the
Earth’s surface and atmosphere. This information, often after some processing, is
widely used for weather forecasting as well as climate monitoring and research.
An important part of this processing is done by the different centers associated to
EUMETSAT’s Satellite Application Facility (SAF) network.

The satellites currently under operation are those of Meteosat’s Second Gen-
eration (MSG) system and they are equipped with the Spinning Enhanced Visible
and Infrared Imager (SEVIRI) technology and provide near real-time radiance
values every 15 minutes over eleven spectral bands, going from the visible (with a
wavelength 0.6 µm at Channel 1) to the long infrared (with a wavelength 13.4 µm
at Channel 11). These channels’ spatial resolution is about 3 km× 3 km for most of
the covered regions; an extra visible channel for radiances on the 0.6 µm to 0.9 µm
wavelength range is available with a higher 1 km× 1 km resolution over Europe
and some parts of Africa. Some of these channels target concrete physical mea-
sures, such as absorption of water-vapor (Channel 5), ozone (Channel 8), or CO2

(Channel 11).

The basic pixel counts that SEVIRI collects over each channel are further
processed by several calibration procedures. In some detail, these counts are first
transformed into radiances by the addition of an offset and the multiplication
of this shifted count by an appropriate calibration factor, as described in EU-
METSAT’s inter-calibration documentation [9]. In the case of the visible channels
their radiances are further divided by the corresponding maximum solar irradiance,
yielding a reflectance percentage. For the infrared channels an empirical formula [9]
is applied to their radiances to yield brightness temperatures. In other words, be-
sides the initial radiances, another variable is available at each channel, namely,
three reflectances for the visible wavelengths and eight brightness temperatures
for the infrared ones. Another independent information provided by Meteosat is
the Cloud Mask, a floating point number whose values range from 0, meaning a
clear sky, to 5, which corresponds to an overcast condition. However, given that
cloud information is implicitly captured in the channel information, we will not
use it. In summary, if we exclude the high resolution channel and the Cloud Mask,
we have 22 values at each point of a 3× 3 grid.

We have downloaded 15 min readings from the EUMETSAT Data Centre for
the years 2013, 2014 and 2015. Of these we will use 2013 for training, 2014 for
hyper-parameter validation and 2015 for model testing. Given the large area we
consider, we will work with a down-sampled resolution of 0.125◦ and a grid that
matches that of the orographical model of the ECMWF. Since we will only consider
grid locations over peninsular Spain, this results in a final number of 3391 points.
PV energy readings at a given hour H, kindly provided by Red Eléctrica de España
(REE), correspond to the energy produced during the entire hour ending at the H
value. Because of this we will average at hour H the four 15 min values of the above
Meteosat variables available up to that hour. Furthermore, we will only consider

http://www.eumetsat.int/website/home/Data/DataDelivery/EUMETSATDataCentre/index.html
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daylight hours, dropping satellite readings outside the UTC range between hours
05 to 20. After this we are finally left with at most 4645 hourly values per year
(slightly smaller in fact for some years, due to some missing data).

In any case, using at each point all the Meteosat variables, we would end up
with hourly patterns with a dimension of 23 × 3391 = 77 993, clearly too large.
To reduce it we have computed for the year 2013 the correlations between the
hourly PV energy readings and the hourly averages of each Meteosat variable over
the retained grid points. The correlation matrix is depicted in Figure 1; variable
names indicate Infrared (IR), Visible (VIS) or Water Vapour (WV) channels and
their corresponding type is % (reflectivity), R (radiance) and K (brightness temper-
ature); Prod refers to the PV energy production; and the number accompanying
the variable tag refers to its wavelength. The figure shows that infrared radiances
are highly correlated with their corresponding brightness temperatures. Correla-
tions are positive for all channels and largest for the infrared IR 016 and IR 039

channels followed by the VIS008 visible one. Figure 2 gives the correlations between
the variables and the PV energy production sorted in decreasing order. Accord-
ing to the figure, we have selected the radiances of the IR 016, IR 039 and VIS008

channels plus the brightness temperature of channel IR 039 and discarded the rest
in our experimental work. Among the discarded variables there are IR 016 % and
VIS008 %, because they have a perfect correlation of 1 with their radiances counter
parts IR 016 R and VIS008 R.

2.2 Clear Sky Model

Clear Sky (CS) models, usually derived from atmospheric physical analysis, try
to estimate either the Direct Normal Irradiance (DNI) or the Global Horizontal
Irradiance (GHI) at a certain point. In principle, the horizontal radiation I at a
given point is given by I = Id cosΘ, where Θ is the zenith angle, i.e., the angle
between the incident solar rays and the vertical at the point, and Id the direct
(beam) radiation. While Θ is a simple trigonometric function Θ = Θ(L,D,H)
of the latitude L of the point and the day D and hour H, modeling Id is more
difficult as it requires the local adjustment of several physical parameters, such as
height, atmospheric pressure, temperature or air turbidity, which, in turn, have to
be carefully calibrated at the concrete sites where they are to be used.

In fact, the physical modeling of solar radiation is a very active research area
with many models proposed in the recent literature. A review of some of these
models from the point of view of renewable energy is in [21]. Here we will consider
the model introduced by [15] as implemented in the Python library pvlib [23].
We have run this model to estimate the GHI for each of our 3391 grid points in
peninsular Spain over the 3 years considered. At each point its altitude is derived
from its geopotentials in the ECMWF’s orographical model for Spain; for all other
parameters we use their pvlib defaults.

These CS GHI estimates can be obviously used at each hour, either past or
future, and we will add their values at hours H and H−K as extra variables when
predicting PV energy at hour H from features at hour H −K. After adding these
CS values, we end up with a yearly data matrix of dimensions 4645 patterns ×
16 955 features for the model at hour H (i.e., K = 0), where we only use the CS
estimate for that hour, and 4645×20 346 for the rest (the actual number of patterns
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Fig. 1: Correlations between satellital radiances and PV energy.
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at each year is actually slightly smaller, because of missing values). Moreover, and
as explained in Subsection 3.1, we will also use these CS estimates of GHI to define
a very simple persistence model for benchmarking purposes.

3 Machine Learning Models

As mentioned, we will use four well-established ML models: Lasso, Multilayer
Perceptrons (MLPs), and linear and Gaussian kernel Support Vector Regression
(SVR); some of them have been recently used in the literature of solar power
forecasting [20]. In principle, the high dimensionality of the problem suggests that
linear models should be a first choice. That is why we choose Lasso to force feature
sparsity and cope with possible collinearities and linear SVR, with its epsilon
insensitive loss function. Of course, powerful non linear models such as MLPs and
Gaussian SVRs are mandatory.

To these, and within the realm of mainstream yet powerful regression models,
we could add Random Forests and Gradient Boosting. However, we have not done
so since we believe that the very high dimensionality of the problem may hinder
their performance: both randomly choose the features to be considered for tree
splitting which, with dimensions above 15 000 in all datasets, is likely not to be
a clear-cut task. We have seen this to be the case in previous work [25] on wind
energy, where these models yielded very good results for an individual wind farm
but less so for the entire Peninsular Spain. Of course, more regression models could
be used, but we believe that our choice of models is a sensible and broad one for an
approach that, to the best of our knowledge, has not received previous attention
in the literature and that may, of course, be improved in further work.

Finally, and as mentioned, we will additionally consider a CS-based persistence
model as a baseline benchmark for the others. We briefly describe all these models
next.

3.1 Persistence

Our baseline CS model simply predicts PV energy at hour H as a scaling of
the energy at hour H − K, where the scaling factor is given as a ratio of the
corresponding averages of CS values over the grid points. Its formulation for an
H −K model with a horizon forecast of K hours is thus

P̂VH =
CSH

CSH−K
PVH−K (1)

where PVH−K , P̂VH denote the real and predicted PV energy at hours H − K
and H and CSh the averaged value of the clear-sky radiances at a given hour h
over the area under consideration. While very simple, the baseline CS models will
give in general reasonable values and particularly good, hard to beat ones around
noon, specially in the mid-year, mostly sunny, months.
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3.2 The Lasso Model

Given an N pattern sample {(x1, y1), . . . , (xN , yN )} that we organize in an N × p
data matrix X, with p the pattern dimension, and an N dimensional target vector
y, the Lasso solution [14] (b∗,w∗) minimizes the `1 regularized loss

`L(w, b) =
1

2
‖y −Xw − b‖2 + λ‖w‖1. (2)

The sparsity introduced by the `1 regularization helps to avoid possible singu-
larities in the sample covariance matrix, particularly in cases such as ours where
sample sizes of ≈ 4500 are much smaller than the feature’s dimension of ≈ 20 000.
This is achieved because the `1 penalty drives many coefficients towards zero; in
turn, this allows automatic (i.e., wrapper-based) feature selection and makes pos-
sible model interpretation in terms of the specific grid positions of the non-zero
coefficients. We shall use the Scikit-learn [22] implementation of Lasso.

3.3 Multilayer Perceptrons

Given the same sample as in the previous case, in Neural Network (NN) regression
we minimize the following `2 regularized loss

`NN(w) =
1

2N

∑
p

(yp − f(xp,w))2 +
α

2
‖w‖2 , (3)

where by f(x,w) we denote the output on x of a Multilayer Perceptron (MLP)
whose architecture determines a weight set w. Many possible architecture options
are available, including convolutional or even recurrent ones; here we have worked
with feed-forward, fully connected MLPs with the same number of hidden units
per layer, namely 4 layers of 100 units each (similar architectures with different
numbers of layers gave similar results).

The classical theory of such networks is very well known (see for instance [4,
Chapter 5]) but the recent developments on deep NNs have resulted in important
improvements, some of which we will apply here, such as ReLUs [12] as the ac-
tivation functions, Glorot–Bengio weight initialization [11] and minibatch-based
Adam [17] as the optimization method, resulting in networks with a large number
of weights even if not very deep. These options are available in widely-known neu-
ral network frameworks such as Keras [7] or Scikit-learn [22]. For this work we will
use the standard implementation of Scikit-learn. In a slight abuse of language, we
may refer occasionally to these networks as “deep”, in the sense that they are de-
fined, initialized and optimized using these new advanced techniques, rather than
implying a large number of hidden layers.

It should be noted that we will not consider convolutional layers. The main
reason is that standard implementations of convolutional layers assume “rectan-
gular” inputs such as images, because handling the vertical and horizontal strides
of rectangular images when applying convolutional kernels is quite easy. However,
while satellital readings can be easily organized as rectangular images, in the case
of Spain’s PV they would include large sea regions where satellital readings are
subject to substantial albedo effects that distort them and, very likely, the predic-
tions they may provide. To this, we have to add another factor; during most of the
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year, sunrise in Spain takes place, more or less, in parallel to the Mediterranean
coast, which implies that, at several hours, most of the radiation is over the sea
and not inland. A final reason is our need to diminish the dimensionality of the
problem, that we achieve by cropping up satellital readings so that their coordi-
nates adjust to the shape of peninsular Spain. After all this pre-processing the
inputs to the model are no longer rectangular images, and, hence, we cannot use
standard tools for convolutional networks such as TensorFlow or wrappers such as
Keras.

3.4 Linear and Gaussian Support Vector Regression

The large dimension of our problem motivates our choice for the Linear SVR
model, which is reportedly good in problems of high dimensionality [10]. Using
the previous notation, the Linear Support Vector Regression (SVR) cost function
is

`S(w, b) =
∑
p

[yp −w · xp − b]ε +
1

C
‖w‖22, (4)

where we use an `2 regularization and the ε-insensitive loss `(y, ŷ) = [y − ŷ]ε =
max{|y − ŷ| − ε, 0}, that defines an ε-wide, penalty-free “error tube” around the
model. Notice that this loss-regularization combination is one of the different pos-
sibilities in the LIBLINEAR implementation in Scikit-learn [22]. Notice also that
LIBLINEAR’s model is homogeneous, that is, we drop the intercept term b.

The initial and more standard way to find the optimal (w∗, b∗) in an SVR model
is to rewrite (4) as a constrained minimization problem which is then transformed
using Lagrangian theory into a much simpler dual problem, the one actually being
solved; see [24]. The optimal (w∗, b∗) are then obtained from the dual solution
through the KKT equations. It turns out that the dual problem only involves
patterns through their dot products and a natural extension to improve on a
purely linear model is to apply the kernel trick [24]. It replaces the initial dot
products x · x′ with the values k(x,x′) of a positive definite kernel k that can be
written as k(x,x′) = φ(x) · φ(x′), where the x are mapped through φ(x) into a
larger, possibly infinite, dimensional Hilbert space H. We thus arrive to a non-
linear model f(x) = W · φ(x) + b for which the optimal W∗ ∈ H can be written as
W∗ =

∑
p α
∗
pφ(xp). We thus have

f(x) = b∗ + W∗ · φ(x) = b∗ +
∑
p

α∗pφ(xp) · φ(x) = b∗ +
∑
α∗

p>0

α∗pk(xp,x), (5)

where the xp for which |α∗p| > 0 are the Support Vectors (SVs), and the stan-
dard kernel choice is the Gaussian one, k(x,x′) = exp(−γ‖x− x′‖2). Notice that
in our case, the SVs lend themselves to a temporal interpretation as the most rel-
evant day-hour pairs, given that their radiances define the centers of the different
Gaussians in the model.

Here we will use the Scikit-learn’s wrappers of the very well-known LIBSVM [6]
and LIBLINEAR libraries.
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Table 1: Hyper-parameters of the Lasso and Linear SVR models.

Model Parameter
K

0 1 2 3 4 5 6

Lasso λ 0.020 0.017 0.012 0.016 – – –

Linear SVR
C

(
×103

)
9.410 17.742 6.349 13.511 – – –

ε 1.690 1.670 2.800 3.000 – – –

Gaussian SVR
C

(
×103

)
6.820 18.389 2.559 10.229 1.081 1.218 0.064

ε 0.011 0.022 0.018 0.036 0.018 0.029 0.027

γ
(
×10−3

)
0.241 0.238 0.231 0.244 0.242 0.230 0.049

MLP α 1e-4 1e-7 1e-8 1e-5 10 0.1 10

3.5 Hyper-parameter Tuning

We will work with the Lasso, the MLP and the LIBLINEAR and LIBSVM imple-
mentations of SVR in Scikit-learn [22]. All these models require a careful hyper-
parameter tuning to find the optimal λ for Lasso, α for MLP, C and ε for Linear
SVR, and C, ε and γ for Gaussian SVR. We used for this the GridSearchCV class
in [22]. More specifically, we define the following intervals to perform the search:

1. For Lasso’s λ we explore 50 values in the interval (10−6, 108).
2. For MLP’s α we explore 13 values in the interval (10−6, 108).
3. For Linear SVR and Gaussian SVR’s C we explore 14 values in (4−5, 48), and

for ε we explore 5 values in the interval (4−4σ, σ), where σ is the standard
deviation of the training targets.

4. For Gaussian SVR’s γ we explore 6 values in the interval ( 1
d4−2, 1d43), where

d is the number of features.

Given the natural temporal ordering of the data, we will use for this 2013 as
a training set and 2014 as a validation set. Table 1 shows the optimal hyper-
parameters for our models.

4 Results

Our main goal in this paper is to test the performance of the aforementioned
machine learning models for PV energy production forecasting at hour H from
satellite readings at hour H−K, where K is the prediction horizon. In this section
we will show the results of our experiments, that will include:

1. A short term forecasting scenario, considering short horizons, namely 1, 2 and
3 hours ahead plus a baseline model at the 0 horizon.

2. A longer term forecasting scenario, considering the horizons 4, 5, and 6 hours
ahead for the best performing, non-linear MLP and Gaussian SVR models on
the previous experiment.

3. An analysis of a sparse model interpretation.

As mentioned, for these experiments we will employ data from years 2013, 2014
and 2015, corresponding respectively to the train, validation and test sets. After
searching for the best hyper-parameters, we train the model over the union of the
training and validation sets and then predict over the test set. As usually, when
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working with these models, we will scale the features to a 0 mean and 1 standard
deviation for all models except Gaussian SVR, where we scale them to a [−1, 1]
range to better control the Gaussian kernel behavior when dealing with largely
different pattern pairs.

4.1 Short Term Forecasting

In a first experiment we will consider the K = 1, 2, 3 horizons as well as the
K = 0 case and denote the resulting models as m1, m2, m3 and m0 respectively;
while not useful from an operative point of view, the m0 model offers a “best
possible” baseline with which we can compare the others. For a more homogeneous
comparison we will report errors within the time range between 08 and 20 UTC
hours, given that for each increasing horizon we have to shift the data one hour.
PV energy production after hour 20 is negligible and it is obvious that the results
before 08 UTC of, say, the m2 and, more so, the m3 models will not be good, as
they have to predict substantial PV energy at 08 UTC from very small readings
at 06 UTC and 05 UTC respectively.

In fact, the average error of the Gaussian m3 model is comparable with those
of the m1 Lasso and Linear SVR models, and quite close to their m0 models errors.

Table 2 shows a summary of the overall hourly average test errors over 2015
for each model and prediction horizon, where we omit the H (i.e. K = 0) persis-
tence model for obvious reasons; for a quick overall glance, the rightmost column
indicates the total mean test error of each model and the corresponding ranking;
the same rank value is repeated for two models whenever they are not significantly
different according to a Wilcoxon signed-rank test [27] (whose implementation is
included in the scipy.stats Python package) with a significance level of 5 %. We
compute the ranking by comparing the hourly absolute errors of all models over
the test set. As it can be seen, the Gaussian (G) SVR results are clearly better
than those of Lasso, MLP and linear (L) SVR essentially across all hours. Nonethe-
less, in the case of MLP it is remarkable the slow degrading of its errors, making
its performance closer to that of Gaussian SVR as the horizon grows. Moreover,
Gaussian SVR’s errors degrade much more slowly than the other models (except
MLPs) as the prediction horizon increases; in fact, the average error of the Gaus-
sian m3 model is comparable to those of the m1 Lasso and Linear SVR models, and
quite close to their m0 models errors.

The behavior of the CS persistence model is also remarkable. Its average errors
are much larger but this is due to the expectedly bad behavior of the H−K models
at the beginning of the day, where they should not be used. On the other hand,
its evening errors tend to be the best ones and its afternoon errors are comparable
and sometimes better than those of Lasso and linear SVR. A plausible reason is
the many near-clear sky days of the Iberian Peninsula, particularly in areas with
large PV productions.

The clearly best average behavior of the Gaussian SVR model also holds when
we consider its hourly errors on a monthly basis. Details of the m0 and m2 models
are given in Tables 3 and 4 (recall that the m0 model is a baseline and the m2 is
the first operational hour for intra-day energy markets). As it can be seen, hourly
errors also increase quite moderately with the prediction horizons for all months.
Moreover, monthly average errors are quite stable; the worst months seem to be
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Table 2: Average hourly and overall test errors and rankings for Lasso, Linear
SVR, Gaussian SVR, MLP and CS Persistence. The blue color corresponds to the
minimum (0.05), and the red color to the maximum omitting CS (6.53).

K Models
Hour

Av.
8 9 10 11 12 13 14 15 16 17 18 19 20

0

Lasso 2.32 2.53 2.69 2.71 2.58 2.77 2.78 2.46 2.39 2.15 0.98 0.64 0.40 2.11(2)

L SVR 1.50 2.19 2.63 2.57 2.86 3.05 2.96 2.73 2.30 1.69 1.10 0.61 0.27 2.03(2)

G SVR 1.02 1.77 1.94 1.94 1.91 1.90 1.81 1.88 1.72 1.43 0.82 0.46 0.17 1.44(1)

MLP 1.30 2.35 2.55 2.74 3.01 3.07 2.82 2.57 2.46 2.15 1.33 0.51 0.11 2.07(2)

1

CS 18.25 3.99 3.09 3.04 2.26 1.34 1.84 2.66 2.66 1.74 0.54 0.23 0.04 3.21(4)

Lasso 2.46 3.19 3.64 3.43 3.29 2.85 2.59 2.44 2.34 2.70 1.81 0.82 0.21 2.44(3)

L SVR 1.83 2.51 2.78 3.01 3.18 3.34 3.07 2.96 3.15 2.55 1.74 1.00 0.35 2.42(3)

G SVR 1.25 1.80 2.04 1.85 1.92 1.82 1.86 1.86 1.67 1.45 1.10 0.54 0.24 1.49(1)

MLP 1.43 2.41 2.90 2.70 2.84 3.15 3.21 2.86 2.44 1.87 1.05 0.32 0.06 2.09(2)

2

CS 47.86 24.71 8.91 6.14 5.49 3.31 2.56 4.01 4.31 2.93 1.01 0.30 0.05 8.58(5)

Lasso 3.93 4.27 4.63 4.23 4.02 3.60 3.25 2.99 3.15 3.87 2.49 1.21 0.38 3.23(3)

L SVR 2.77 3.25 3.64 3.62 4.05 4.40 4.97 4.94 4.85 4.50 2.76 1.59 0.78 3.55(4)

G SVR 1.98 2.60 2.78 2.59 2.40 2.21 2.05 2.20 2.08 1.71 1.23 0.59 0.36 1.91(1)

MLP 1.65 2.82 3.08 2.89 2.76 2.81 2.92 2.87 2.44 1.90 1.14 0.38 0.07 2.13(2)

3

CS 69.06 45.09 24.72 12.42 8.43 6.39 3.45 4.38 5.13 3.69 1.41 0.35 0.05 14.20(5)

Lasso 4.66 4.63 5.66 5.36 5.04 4.87 4.21 3.86 3.66 4.37 2.95 1.51 0.62 3.95(3)

L SVR 3.10 3.77 4.06 4.42 4.85 5.37 6.14 6.53 6.34 5.79 3.71 2.10 1.13 4.41(4)

G SVR 2.75 3.27 3.69 3.29 3.19 2.80 2.61 2.49 2.37 1.87 1.30 0.65 0.30 2.35(1)

MLP 1.99 3.20 3.85 3.60 3.52 3.45 3.41 3.27 2.92 2.19 1.36 0.39 0.05 2.55(2)

Table 3: Gaussian SVR test errors of the m0 model per hour and month. The blue
color corresponds to the minimum (0), and the red color to the maximum (2.82).

Month
Hour

Av.
8 9 10 11 12 13 14 15 16 17 18 19 20

January 0.37 1.37 1.96 1.70 1.74 1.53 1.47 1.25 1.28 0.73 0.21 0.00 0.00 1.05
February 0.70 1.72 2.08 1.92 2.12 2.43 2.26 2.17 1.49 1.46 0.42 0.19 0.00 1.46
March 1.07 2.82 2.58 2.56 2.27 2.21 2.11 2.05 1.86 1.54 1.05 0.35 0.00 1.73
April 1.24 1.57 1.35 1.39 1.59 1.42 1.15 1.47 1.83 1.74 1.21 0.49 0.23 1.28
May 1.04 1.06 1.99 1.45 1.31 1.31 1.35 1.48 1.16 1.22 1.04 0.86 0.18 1.19
June 1.13 1.48 1.62 1.33 1.36 1.44 1.91 1.87 1.76 2.17 1.67 1.33 0.60 1.51
July 1.41 2.18 2.22 2.07 1.53 1.19 1.44 2.05 2.34 2.68 1.28 0.76 0.44 1.66
August 1.66 2.16 2.33 2.81 2.67 2.52 2.61 2.72 2.47 1.91 1.52 0.99 0.59 2.07
September 1.02 1.47 1.49 1.65 2.05 1.86 1.88 1.59 1.39 1.49 0.73 0.55 0.01 1.32
October 1.34 1.61 1.66 2.29 2.24 2.50 1.82 2.04 1.81 1.06 0.42 0.00 0.00 1.45
November 0.80 1.73 1.39 1.44 1.71 2.17 1.71 1.61 1.52 0.58 0.22 0.01 0.01 1.15
December 0.47 2.05 2.67 2.64 2.28 2.22 1.98 2.34 1.76 0.53 0.01 0.00 0.00 1.46

Average 1.02 1.77 1.94 1.94 1.91 1.90 1.81 1.88 1.72 1.43 0.82 0.46 0.17 1.44

February and March, most likely because of the atmospheric instability to be
expected in them. August also shows large errors, easily explained by its high PV
energy production, much larger than the one from, say, November to February.

Summing things up, satellite information combined with Gaussian SVR can be
used to set up a PV energy nowcasting procedure with a quite good performance
on the horizons 1, 2 and 3.
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Table 4: Gaussian SVR test errors of the m2 model per hour and month. The blue
color corresponds to the minimum (0), and the red color to the maximum (4.5).

Month
Hour

Av.
8 9 10 11 12 13 14 15 16 17 18 19 20

January 0.94 1.77 3.37 2.86 2.30 2.03 1.53 1.75 1.69 0.88 0.36 0.00 0.00 1.50
February 1.06 4.22 4.50 3.43 3.04 2.85 2.53 2.85 2.49 1.86 1.22 0.11 0.00 2.32
March 2.61 3.26 2.98 4.27 3.71 2.92 2.62 2.55 2.17 1.79 1.07 0.36 0.00 2.33
April 2.64 2.47 1.94 2.47 1.95 1.97 2.31 2.15 1.90 1.79 1.53 0.92 0.60 1.89
May 2.86 2.11 2.13 1.22 1.60 1.44 1.28 1.66 1.33 1.71 1.38 0.73 0.45 1.53
June 2.22 2.33 2.53 2.09 1.49 1.16 1.27 1.36 2.01 2.34 2.46 1.74 0.85 1.84
July 2.14 2.29 2.25 2.07 1.61 1.31 1.18 1.32 1.73 2.45 2.44 1.38 1.05 1.78
August 2.16 2.22 2.19 2.39 2.07 2.64 2.37 2.69 2.95 2.95 2.05 1.13 1.31 2.24
September 2.24 2.26 2.49 2.26 2.33 1.91 2.05 2.42 2.41 1.71 1.33 0.64 0.01 1.85
October 2.60 3.33 3.32 2.66 3.01 2.59 2.24 2.37 2.09 1.40 0.61 0.00 0.00 2.02
November 1.33 2.57 2.53 2.58 2.44 1.91 1.66 1.75 1.47 0.72 0.23 0.01 0.01 1.48
December 0.98 2.43 3.12 2.72 3.28 3.73 3.53 3.54 2.73 0.91 0.01 0.00 0.00 2.08

Average 1.98 2.60 2.78 2.59 2.40 2.21 2.05 2.20 2.08 1.71 1.23 0.59 0.36 1.91

Table 5: Average hourly and overall test errors and rankings for Gaussian SVR
and MLP for horizons beyond 3 hours. The blue color corresponds to the minimum
(0.09), and the red color to the maximum (5.24).

K Models
Hour

Av.
9 10 11 12 13 14 15 16 17 18 19 20

4
G SVR 3.64 3.91 3.98 3.58 3.55 3.29 3.09 2.70 1.99 1.27 0.65 0.29 2.66(1)

MLP 3.57 4.32 4.27 3.92 3.71 3.70 3.52 3.07 2.21 1.36 0.55 0.09 2.86(2)

5
G SVR – 4.67 4.27 4.37 4.01 4.07 3.68 3.14 2.18 1.21 0.60 0.29 2.95(1)

MLP – 4.40 4.67 4.57 4.31 4.14 4.01 3.50 2.52 1.30 0.45 0.10 3.09(2)

6
G SVR – – 4.72 4.84 4.60 4.27 3.96 3.61 2.52 1.22 0.57 0.29 3.06(1)

MLP – – 5.08 5.24 5.03 4.73 4.32 3.81 3.00 1.53 0.56 0.24 3.35(2)

4.2 Longer Term Forecasting

Given the slow degrading of both MLP and Gaussian SVR we have extended the
previous experiment by adding more prediction horizons beyond 3 hours; specif-
ically, we have tried K = 4, 5, 6 hours ahead. Their errors summary is shown in
Table 5 where we shift the initially predicted hour to hours 9 for model m4, 10 for
m5 and 11 for m6. Again, the rightmost column indicates the mean of the errors of
both models and their corresponding ranking. Here a Wilcoxon signed-rank test
shows the Gaussian SVR and MLP models to be significantly different, and no
rank repetitions arise. Even though the problem keeps getting harder (note that
to predict at 11 UTC we have to consider data at 05 UTC for the m6 model) as
we increase the forecasting horizon, the errors degrade remarkably slowly. We also
see that for the earliest and the latest hours the MLP obtains better predictions.
Nonetheless, Gaussian SVR is still the best model by a good margin, even if the
MLP is closer than in shorter horizons. Summing up, we see that MLP is a better
model for longer horizons than for shorter ones, getting quite close to the Gaussian
SVR’s performance.

Given its very good results, we also show the monthly errors of Gaussian SVR
for horizons 4 and 6 in Tables 6 and 7. As we can see, the conclusions observing
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Fig. 3: SVR vs MLP productions-predictions comparison.
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Fig. 4: SVR vs MLP absolute error frequency comparison.

these hourly and monthly errors are very similar to the extracted from the shorter
horizons; the worst errors are located in August, because of the very high produc-
tion, and in unstable months like February, March or December. Not surprisingly,
the highest errors are located around the central hours of the day, typically where
more energy is produced.

Finally, we show in Figure 3 a comparison between actual PV productions (on
the x-axis) and the SVR and MLP predictions for H = 6 (on the y-axis); perfectly
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Table 6: Gaussian SVR test errors of the m4 models per hour and month. The blue
color corresponds to the minimum (0), and the red color to the maximum (6.19).

Month
Hour

Av.
9 10 11 12 13 14 15 16 17 18 19 20

January 2.21 4.71 4.85 4.48 4.20 3.01 2.74 2.17 1.11 0.35 0.00 0.00 2.49
February 4.29 6.04 6.19 4.81 4.82 4.44 3.67 2.98 2.56 1.13 0.46 0.00 3.45
March 4.63 5.34 5.38 5.27 6.02 5.47 4.44 3.37 2.46 1.24 0.49 0.00 3.68
April 4.58 3.21 3.82 3.94 3.39 3.44 3.35 2.97 2.46 1.79 0.77 0.54 2.85
May 3.77 3.54 3.04 2.53 2.51 2.43 2.21 1.90 2.21 1.64 0.84 0.39 2.25
June 2.92 2.70 3.38 2.46 2.15 2.22 2.10 2.09 1.94 2.00 1.29 0.70 2.16
July 2.81 2.20 2.43 1.81 1.78 1.77 2.05 1.99 1.99 1.88 1.57 0.91 1.93
August 3.50 2.85 2.89 3.08 3.58 3.62 3.74 3.50 3.25 2.52 1.44 0.93 2.91
September 4.90 3.84 3.20 4.12 3.62 3.35 3.45 3.17 2.13 1.23 0.83 0.00 2.82
October 4.36 4.86 4.23 4.28 4.02 3.32 2.83 2.86 1.75 0.83 0.00 0.00 2.78
November 2.91 3.78 3.95 2.89 3.08 2.71 2.31 1.74 0.93 0.56 0.01 0.00 2.07
December 2.70 3.84 4.33 3.22 3.38 3.66 4.18 3.59 0.98 0.01 0.00 0.00 2.49

Average 3.63 3.91 3.97 3.57 3.54 3.29 3.09 2.69 1.98 1.26 0.64 0.29 2.66

Table 7: Gaussian SVR test errors of the m6 models per hour and month. The blue
color corresponds to the minimum (0), and the red color to the maximum (7.94).

Month
Hour

Av.
11 12 13 14 15 16 17 18 19 20

January 5.20 6.07 6.70 6.65 4.45 3.22 1.44 0.31 0.00 0.00 3.40
February 6.88 7.94 7.61 6.15 5.23 4.31 2.71 1.03 0.58 0.00 4.24
March 6.12 6.88 7.39 6.30 6.23 5.21 3.58 1.50 0.63 0.00 4.38
April 3.68 4.16 4.15 4.04 4.10 3.53 2.95 1.70 0.90 0.49 2.97
May 3.66 3.30 3.07 3.38 3.53 3.07 2.77 1.92 1.13 0.47 2.63
June 3.71 3.07 2.76 2.88 3.51 3.34 2.70 1.83 1.20 0.87 2.59
July 2.56 2.41 2.38 2.56 2.57 2.47 2.11 1.54 0.92 0.77 2.03
August 3.11 3.13 3.29 3.76 4.51 4.73 4.32 2.37 0.99 0.81 3.10
September 6.01 5.37 3.92 3.70 4.23 4.53 3.12 1.26 0.49 0.00 3.26
October 6.50 6.85 5.70 5.34 4.14 3.58 2.27 0.51 0.00 0.00 3.49
November 4.07 4.31 4.09 3.10 2.10 2.80 0.97 0.67 0.01 0.00 2.21
December 5.14 4.53 4.08 3.26 2.82 2.46 1.26 0.01 0.00 0.00 2.35

Average 4.72 4.84 4.60 4.26 3.95 3.60 2.51 1.22 0.57 0.28 3.06

prediction would result on diagonal structures. It can be seen how the SVR pre-
dictions show a relatively sharper structure, particularly for higher productions.
This is illustrated in Figure 4, which shows the differences of the binned absolute
SVR and MLP error frequencies; bin sizes are 2%. Notice that the SVR errors are
more frequent on the smaller error bins of 0 to 2% and 2% to 4%, where the SVR–
MLP frequency differences are positive. On the other hand, MLP errors are more
frequent on the larger bins (4% to 6% and above), where frequency differences are
negatives.

4.3 Model Interpretation

Apart from accurate predictions, it is also important to obtain a reasonably inter-
pretable model in order to understand the underlying phenomena. To do so, we
will take advantage of the sparse properties of Lasso, whose global `1 norm regu-
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(a) Group norms for the m0 model. (b) Group norms for the m2 model.

(c) Group norms for the m4 model. (d) Group norms for the m6 model.

Fig. 5: Evolution of the normalized group norms of the coefficients for the horizons
0, 2, 4 and 6 (models m0, m2, m4 and m6).

larization introduces overall sparsity in the resulting coefficients. For this reasons,
Lasso is often also seen as a feature selection model.

We have run this model for all 6 hours horizons (apart from the first 3 already
reported for performance comparison) focusing now on the intensity of the coef-
ficients. The hyper-parameter of the reported models are given in Table 8, which
are pretty similar to those of the previous models. To achieve a more intuitive
interpretation we have grouped the CS and satellite variables at each grid point
and calculated the Euclidean norm of each such group, which intuitively should
give us an indication of the importance of each grid point as a whole. This will also
allow us to perform an analysis regarding the evolution of the coefficients across
the 6 hours lapse, which may be useful for an even higher level interpretation (not
just at an horizon level but also to study the evolution between horizons). To draw
the coefficients over the map we have normalized them by their maximum, keeping
them in a [0, 1] scale so we can compare them easily and have also truncated those
below 0.2. We show the coefficients in Figure 5.

On a per horizon basis we see that the most important points are located
in the southern region of the Peninsula, which is the area with the most sunny
hours across the year. It is also important to keep in mind that the solar energy
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Table 8: Hyper-parameters of the Lasso model for 4, 5 and 6 hours in advance.

Model Parameter
K

4 5 6

Lasso λ 0.013 0.013 0.014

production in Spain is widely distributed (the greatest percentage of the overall
production comes from many small plants), as reflected in the 00 map, which shows
many points of low importance and only a few of highest intensity.

At first sight, when considering the evolution across horizons, we see that the
number of lower importance points is slowly decreasing as the horizon increases.
This may be explained because of the worsening of the Lasso models at the longer
horizons, which forces the model to stop fitting finer grained production plants
and to focus instead only on the bulkiest production points. Furthermore, we see
that the highest intensity points are quite the same across all horizons, located at
the western and south western regions of the Iberian Peninsula. Moreover, these
points are also located within the middle diagonal section of the Peninsula; the area
with the most sunny hours across all 6 horizons according to the daily irradiance
evolution over the Iberian Peninsula (we are shifting our data with respect to the
sun, so the north west is the area with the least sunny hours).

Summing up, this analysis gives us an idea of the importance of each grid point
for the overall solar energy production for every horizon, which may be useful, for
instance, to better monitor the more relevant PV installations or to understand
the energy generation in a given region.

5 Conclusions, Discussion and Further Work

Satellite-based information has been widely used to nowcast solar irradiance values
and PV energy productions, usually from an atmospherical physics perspective.
Here we propose the direct exploitation of these readings by feeding them into ML
models to nowcast the PV energy production of peninsular Spain, predicting the
energy at hour H from Meteosat satellite data at hour H −K, where K = 1, 2, 3
for a first experiment and then for K = 4, 5, 6 for an extended one, to be used for
nowcasting forecasting purposes; we also consider K = 0 for model benchmarking
and control. We have worked with the radiances of the IR016, IR039 and VIS008

channels and the brightness temperature of channel IR039, which we downsample
from Meteosat’s initial finer resolution to a coarser 0.125◦ one. Moreover, we have
added at each point of the resulting grid a theoretical estimation of its Clear Sky
(CS) irradiance value and considered four well-known ML models, namely, Lasso,
MLP and Linear and Gaussian SVR, plus a simple CS-based persistence approach.

Our results here greatly simplify and improve previous results in [5]; in partic-
ular, Gaussian SVRs over satellite and CS features give remarkable results, with
rather low mean absolute errors that degrade slowly when the prediction hori-
zon K increases. Other interesting models are MLPs, whose errors also degrade
slowly, although their performance is not as good as that of Gaussian SVR. While
initially being also relatively good, the performance of Lasso and Linear SVR is
clearly below that of Gaussian SVR and MLP. A possible reason for this is proba-



Machine Learning Nowcasting of PV Energy using Satellite Data 19

bly the high correlation between the predictor variables: while the Lasso or linear
SVR regularization are enough to provide reasonable final models, the intrinsic
data dimensionality is probably not large enough to make them powerful enough.
Moreover, the homogeneous nature of linear SVR may also hamper its perfor-
mance. On the other hand, the performance of the CS-based persistence is rather
good around noon and on the evenings, although markedly worse in the morning,
as it could be expected.

The results here are given for hourly energy prediction updates but this can
be easily extended to 15 min updates, provided that satellite readings for that
frequency are available. Besides this improvement, there are other areas for further
work. An obvious starting point is the nowcasting of the PV production of single
farms. Here, purely linear models are not likely to be competitive, but, given the
reduced dimensionality, Random Forest and Gradient Boosting should be added
to our non-linear model choices. Moreover, the reduced rectangular feature grids
to be used for single farms imply that albedo effects will not be present and, thus,
convolutional layers could also be considered for neural models. Another clear
option is the addition of other features, particularly those of day-ahead NWP
radiance predictions, that should help more in the case of longer horizons. On the
other hand, this will make pattern dimensions even greater than they are now and
some form of feature reduction is likely to be needed. Lasso does precisely that, but
as our results show, it does not provide by itself the best forecasts. This suggests to
explore Lasso models as a kind of feature selectors that are then further exploited
by Gaussian SVRs. In this line, and given the natural grouping of features by grid
points, it may also be interesting to use group versions of Lasso, as those proposed
in [1]. Finally, it is also important to consider nowcasting over smaller areas, such
as individual plants or islands, that may be isolated from larger grids and where
PV energy fluctuations are harder to manage. We are currently studying these
issues.

Finally, it may be of interest to discuss about the possibility of extending
this work to the nowcast of wind energy. Although, in terms of the ML methods
involved, there should not be much of a difference between photovoltaic or wind
energy, nowcasting requires that forecasting information is updated regularly in
time, so that new forecasts (i.e., the nowcasts) are issued with a suitably large
frequency. Obviously, the latest readings of the energy produced could be used for
nowcasting both wind and PV energy. However, if nothing else is available, these
readings are a too simple source of information, that could be exploited essentially
only in linear or non-linear AR time series models. While a simple persistence
is quite difficult to beat at a one-hour horizon, these AR models degrade quite
fast as the autocorrelations of the wind energy time series quickly decrease. Extra
exogenous information is thus needed but, other than the already discussed NWP
forecasts, this is quite hard to come by in the case of wind energy. Moreover, it
is difficult to find any data source or provider that gives new, fresh wind energy
related information on an hourly basis, preventing this field from benefiting (at
least directly) from the approach described here.
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