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Abstract This paper introduces and extensively explores a forecasting proce-
dure based on multivariate dynamic kernels to re-examine –under a non-linear
framework– the experimental tests reported by Welch and Goyal (Review of Fi-

nancial Studies 21(4),1455-1508, 2008) showing that several variables proposed in
the finance literature are of no use as exogenous information to predict the equity
premium under linear regressions. For this non-linear approach to equity premium
forecasting, kernel functions for time series are used with multiple kernel learning
(MKL) in order to represent the relative importance of each of the variables. We
find that, in general, the predictive capabilities of the MKL models do not improve
consistently with the use of some or all of the variables, nor does the predictability
by single kernels, as determined by different resampling procedures that we imple-
ment and compare. This fact tends to corroborate the instability already observed
by Welch and Goyal for the predictive power of exogenous variables, now in a
non-linear modelling framework.

Keywords Support vector classification · Support vector regression · Financial
time series · Multiple kernel learning · Kernel functions for time series

1 Introduction

There is a long history of attempts to predict stock market returns by specifying
regression models based on lagged predictor variables independent of the stock
market returns. Shiller [27], Campbell and Shiller [6], and Cochrane [10], among
others, have studied the forecasting of future excess returns using the dividend
price ratio as predictor. Other popular predictor variables explored in the literature
are the dividend yield, earnings price ratio, dividend-to-earnings ratio, volatility,
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interest rates, exchange rates, consumption indices and inflation rates (see, e.g.,
[17,20,22,23], and [12] for a general discussion). Indeed, the list of valuation ratios
sought of as possible forecasters of expected excess returns is much longer and
show “... a pervasive pattern of predictability across markets wherein the cashflow or

price change one may have expected is not what is forecast.” [12]. In view of this
and further evidence showing the spurious nature of predictor models (mostly
linear regressions on the aforementioned valuation ratios), several authors have
conducted extensive studies on the forecasting performance of various economic
variables and different models (to mention a few, [2,7,11,28]). The latter, work
by Welch and Goyal [28], is of particular interest since the authors carry out a
comprehensive revision of the empirical performance of the most widely accepted
variables as predictors of equity premium –under linear regression models– and
conclude that these models have poor predictive capabilities, both in-sample and
out-of-sample.

In this work we extend the stock return predictability tests of Goyal and Welch
to non-linear (and semi-parametric) models on the different valuation ratios. We
are thus considering the possible non-linear relationship between the stock returns
and the predictor variables and expanding the framework of predictability from lin-
ear to more complex models, in terms of both classification and regression settings.
The models we consider come from kernel-based statistical learning adapted to the
goal of time series forecasting. We use ν-Support Vector Machines for classifica-
tion and regression [8], coupled with kernel functions able to analyze multivariate
temporal structures, and Multiple Kernel Learning (MKL) [3] to integrate the
different financial information and the different kernels.

The rest of the paper is structured as follows. In Section 2, we present the
multivariate dynamic kernels used in this study, including the construction of
new kernels. In Section 3, we present the non-linear forecasting methodology and
the formal definition of the variables used as features for the kernels. Section 4
follows with the results of the experimental design from a trading perspective and
discusses the performance of the kernels methods. Section 5 presents results of
a larger experiment –set up following a classical factorial design– that compares
performance of each individual kernel with combinations of the economic variables
against the linear composition of kernels given by MKL. Finally, we summarize
the major findings of the study and give indications for future research.1

2 Multivariate Dynamic Kernels for Time Series

Kernels are two-place symmetric functions that evaluate an inner product of the
arguments in some suitable feature space, thereby inducing an implicit mapping
that creates an image of the inputs into this feature space. More formally, a kernel
function k implicitly defines a map φ : X → H from an input space of objects X
into some Reproducing Kernel Hilbert Space (RKHS) H (called the feature space).
The “kernel trick” consists in performing the mapping and the inner product
simultaneously as in:

k(x,x′) =
〈
φ(x), φ(x′)

〉
H , x,x′ ∈ X , (1)

1 A preliminary report of this work has been presented at the IWAN 2017 meeting [16].
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where 〈·, ·〉H denotes inner product in H. It is known that a function is a valid
kernel function if and only if it induces positive semi-definite (p.s.d.) matrices
K = [k(xi,xj)]. This property can be expressed as

c>Kc =
N∑
i=1

N∑
j=1

cicjk(xi,xj) ≥ 0, (2)

for all N ∈ N,x1, . . . ,xN ∈ X and c ∈ RN . Kernels for time series can be con-
structed using two approaches: structural similarity and model similarity. Struc-

tural similarity employs methods to find an alignment of the data that makes the
comparison between series possible. Model similarity changes the structure of the
data by constructing a high-level representation (e.g., a model) and the comparison
is performed using this new representation [21].

The general goal is to define p.s.d. kernels between two time series (not nec-
essarily of the same length), s1 = (s1(1), . . . , s1(N1)) and s2 = (s2(1), . . . , s2(N2))
where the pairwise comparisons (s1(i), s2(j)) are reasonable.2 One of the main
difficulties is that the commonly used Euclidean distance disregards the temporal
dependency among the observations of the two series. In the next section the main
kernel functions used in this work will be formally described.

2.1 Vector Auto-Regression Kernel

The Vector Auto-Regression (VAR) is a classical econometric model that finds
correlations between a set of variables given a certain number of lags. Each variable
is defined by a function that represents its changes over a defined period of time
using past information of the series and other variables. The VAR model relates
the observation x(t) at time t with a linear combination of lagged values of the
observation. In order to fit a model, a lag parameter L is provided, which defines
how many time steps the function will be looking at in the past to assess the linear
combination parameters, as in:

x(t) =
L∑
l=1

Alx(t− l) + b + εt, (3)

where L is the number of lags of the model, A1, . . . , AL are the transition matrices
(each a square matrix with as many dimensions as features the data has), b is the
intercept (a vector of dimension equal to the number of features) and εt is the
Gaussian noise at time t. The VAR is a model by itself, capable of predicting
values for new data, but the information generated can be used to create a kernel.
VAR kernels can be built using three steps [24]:

1. Build two VAR models, one for each time series using a certain (common)
number of lags.

2. Bind the values of the transition matrices and intercepts of each series and
calculate the Frobenius norm over the difference of those values.

2 In financial series, the length of the different time series is variable since it is a function of
the number of business days of each month, among other causes.
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3. Apply a Radial Basis Function (RBF) transform to the Frobenius distance to
convert it to a similarity measure and a p.s.d. kernel.

Formally, given an obtained VAR model for a series s, we consider the binding:

B̂(s) =
[
A1|A2| · · · |AL|[b]

]
. The distance between series s1 and s2 is then

defined as the Frobenius norm of the difference between the respective bindings:

dF(s1, s2) =

√
Tr
{

(B̂(s1)− B̂(s2))(B̂(s1)− B̂(s2))>
}
. (4)

Once this Frobenius distance is calculated, it can be transformed into a valid
kernel using a Laplacian RBF transform:

kVAR(s1, s2) = exp

{
−dF(s1, s2)

2σ

}
(5)

The parameters of this kernel methodology are the number of lags L and σ > 0.
In this work, the value of L will be fixed to 5, whereas σ will be set to the median
Frobenius distance between the time series being compared. Both parameters are
set following previous recommendations [14] and the authors’ own experience on
this type of data [24].

2.2 Global Alignment Kernel

Sakoe and Chiba proposed the now classic dynamic time warping algorithm (DTW),
to find a good alignment between two series before computing any Euclidean dis-
tance [25]. DTW is still quite popular for the classification of time series (see,
e.g., [19]). An alignment (or warping function) π between two time series s1 and
s2 is a pair of increasing tuples (π1, π2) of length P ≤ N1 + N2 − 1 such that
1 = π1(1) ≤ . . . ≤ π1(P ) = N1 and 1 = π2(1) ≤ . . . ≤ π2(P ) = N2, with unitary
increments and no simultaneous repetitions. Intuitively, an alignment is a series of
connecting lines associating each time point of s1 to one or more time points in
s2, and vice versa. The associations are: s1(t) with s2(t) denoted by →, s1(t) with
s1(t + 1) denoted by ↑ and s1(t) with s2(t + 1) denoted by ↗. In practice, these
can be represented as two integer vectors π1, π2 of the same length with binary
increments: (

π1(i+ 1)− π1(i)
π2(i+ 1)− π2(i)

)
∈
{(

0
1

)
,

(
1
0

)
,

(
1
1

)}
The length of these vectors is always equal or lower than the length of the

smallest series. For the sake of simplicity the two vectors that represent the align-
ment will be denoted as π. Note that, by definition, the alignments only consider
values of zero or one lag in both series.

After obtaining a satisfying alignment, the distance between the two series

can be obtained as: Dπ(s1, s2) =

|π|∑
i=1

d(xπ1(i), yπ2(i)), where the function d can be

any metric –most often an Euclidean one– or an arbitrary conditionally negative



Evaluation of Equity Premium Prediction using MKL 5

definite kernel. The optimal alignment will be the one that minimizes the distance
between the series, as given by:

MDTW(s1, s2) = min
π∈A(s1,s2)

Dπ(s1, s2)

|π| , (6)

where A(s1, s2) is the set of all possible alignments between s1 and s2. This dis-
tance measurement does not fulfill the p.s.d.-ness requirement to form a kernel,
even after applying and RBF transformation. Global Alignment (GA) [13] is a gen-
eralization of DTW which enables the creation of a structural similarity kernel.
The method follows the same computational steps as MDTW but, instead of se-
lecting the alignment with minimum distance, it considers all the alignments, and
combines them with an exponentiated soft-minimum,3 based on the idea that all
alignments provide valuable information about the similarities between the series.

The formulation of this kernel function can be expressed using several distance
metrics. The following formula is the one used in the context of this work:

kGA(s1, s2) =
∑

π∈A(s1,s2)

exp(−Dπ(s1, s2)) (7)

An improvement over GA was introduced under the name of Fast Global Align-
ment [15], aiming at reducing the computational time of the procedure. This is
accomplished by using an extra parameter T that restricts the number of align-
ments taken into account during the final calculation of kGA.

2.3 Multivariate Dynamic Euclidean Distance Kernel

In the same lines as the GA kernel, the Multivariate Dynamic Euclidean Dis-
tance Kernel (MDED) is a structural similarity model that creates an alignment
between two series of different size in order to be able to compute the distance
measure. The MDED opts for a simpler approach, as it removes the first ele-
ments of the longest series until it matches the size of the shortest time series.
Even if this alignment is potentially worse in most of the cases with respect to
MDTW, MDED is computationally much less expensive. The approach is backed
by financial theory: observations generated in later time stamps already contain
information from older ones. Having that N1 6 N2, where N1 and N2 are the
lengths s1 and s2 respectively, we define this alignment in the notation of DTW
as π1 = [0, 1, 2, . . . , N1−1, N1] and π2 = [N2−(N1−1), N2−(N1−2), . . . , N2−1, N2].
Using this alignment, the distance between the series is computed as in eq. (5).
The basic metric employed is again the Euclidean distance; in a way analogous to
the kVAR, the final expression for the MDED kernel is obtained as in [24]:

kMDED = exp

{
−Dπ(s1, s2)

2σ

}
(8)

The σ parameter of this kernel function is again estimated following the au-
thors’ past experience [24], using the median of all Dπ of the available data.

3 For a vector of positive scalars z = (z1, z2, . . . , zn)>, the softmin is defined as log
∑
e−zi .
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2.4 Multivariate Dynamic Arc-Cosine Kernel

The Arc-Cosine kernel relies on an integral representation, and provides interesting
connections with neural networks [9]. Specifically, given two vectors x,x′ ∈ Rd, the
kernel is defined as:

knARC(x,x′) = 2

∫
dw

exp(−‖w‖
2

2 )

(2π)d/2
Θ(w>x)Θ(w>x′)(w>x)n(w>x′)n (9)

where n is a “degree” parameter and Θ(z) = 1
2 (1 + sgn(z)). The solution of the

previous integral results in:

knARC(x,x′) = π−1‖x‖n‖x′‖nJn(θ) (10)

which shows a rather trivial dependence on the lenghts of x,x′, but a more complex
relation via the angle (θ) between them:

θ = cos−1

(
x>x′

‖x‖ · ‖x′‖

)
(11)

The function Jn is expressed as follows:

Jn(θ) = (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n(
π − θ
sin θ

)
(12)

where (−1)n
(

1
sin θ

∂
∂θ

)n (π−θ
sin θ

)
is the n−th partial derivative of

(
π−θ
sin θ

)
with respect

to cos θ. In particular, J0(θ) = π−θ and J1(θ) = sin(θ)+(π−θ) cos(θ). A structural
similarity model for time series can be built using this formulation [16], making
the kernel mainly depend on the angle between the series, given by knARC(s1, s2).
In the context of this work, only n = 0 and n = 1 will be considered.

2.5 ν-Support Vector Machines

In classical support vector regression (SVR), the proper value for the ε parameter
–which determines the specific error function being used– is difficult to determine
beforehand. This problem is partially addressed in ν-SVR, in which ε itself is
a variable in the optimization process and is controlled by another parameter
ν ∈ (0, 1), being an upper bound on the fraction of training errors and a lower
bound on the fraction of points inside the ε-insensitive tube, making it a more
convenient parameter. Suitable descriptions of the ν-SVR can be found elsewhere
[26], both for classification and regression tasks.

2.6 Multiple Kernel Learning

Multiple Kernel Learning (MKL) [3] aims at finding the best combination of kernels
to solve a task. It is possible for a problem to have several kernel functions that
cover different characteristics of the data, or different representations of the same
data. Those procedures create different kernel matrices that can be used to train
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a predictive model. Although it is possible to combine the information of those
matrices into a single combined kernel matrix, MKL makes possible to combine in
the same predictive model information obtained using P different techniques. The
mathematical formulation of this process is the following:

kη(xi,xj) = f
({

km(xmi , x
m
j )
}P
m=1

; η
)
, (13)

where kη represents the combined kernel, f is the (linear or may be non-linear)
combination function, km represents the m-th kernel function and η parametrizes
the combination. In this paper, the algorithm of choice is EasyMKL [1], which
obtains the combination parameters η using an optimization approach that starts
with defining the convex combination:

kη =
P∑

m=1

ηmkm, 0 6 ηm 6 1,
P∑

m=1

ηm = 1, (14)

where, in this case, ηm is the assigned weight to each kernel matrix. Specifically, a
max-min problem is solved involving the η parameters and the probability distri-
bution γ of each class. After the η weights are obtained they are combined convexly
(the optimization restrictions ensuring that the weights are positive and sum to
one). The L1 norm is used as a structural risk function to guide the process.
As base learner EasyMKL uses KOMD, a kernel classifier that performs direct
optimization of the margin distribution. The initial optimization equation is:

max
η:‖η‖=1

min
γ∈Γ

Q(η, γ) = max
η:‖η‖=1

min
γ∈Γ

(1− λ)γT ŷ

(
P∑
m

ηmK̂m

)
ŷγ + λ ‖γ‖2 (15)

where λ is an exogenous parameter of the optimization process, ŷ is the vector
of training set classes and K̂m is the m-th kernel matrix of the training set. The use
of MKL in computational finance is not new (see, e.g., [18]). Common implementa-
tions include the capability of predicting values using the KOMD classifier. In the
context of this paper, the chosen procedure is to extract the parameters yielded
by EasyMKL, build the combined kernel matrix and use it to train a ν-SVM.
This makes the method capable of more accurate predictions as the ν parameter
is of capital importance for these models. In this work, the explored values are in
{0.2, 0.4, 0.6, 0.8, 1}.

3 A non-linear predictability framework

As stated in the introduction, the aim of this work is to replicate the experiments
performed by Welch and Goyal in [28] with kernel methods and using multiple
kernel learning to weight each feature in order to determine its relative influence
in the prediction of the equity premium. The experimental work uses the same data
as in [28] for a partial set of the variables considered by the authors. It is a data set
that comprises several financial variables measured monthly, quarterly and yearly
in the range of years between 1871 and 2005, and compiled from several sources.4

4 Publicly available from http://www.hec.unil.ch/agoyal/.
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The experimental process follows two phases: the evaluation of each combination
of kernels using only endogenous variables and the comparison between exogenous
variables using multiple kernel learning.

3.1 Considered Variables

The dependent variable or target for our predictors is, as in [28], the S&P 500
index equity premium, formally computed as follows. Let SPX denote the price
series of the S&P 500 index, and r a short term risk-free interest rate. In practice r
is obtained as the interest rate of the three months U.S. Treasury bill. Let D12 be
the 12-month moving sums of dividends paid on the S&P 500 index.5 The equity

premium for the S&P 500 index, or SPXeqp, is the difference of the total rate of
returns, including dividends, and the risk-free interest rate:

SPXeqpt = log

(
SPXt +D12t
SPXt−1

)
− log(rt + 1) (16)

Specifications for each of the variables that we use as predictors follow. These
conform a subset of the variables considered by Welch and Goyal [28].

Dividend Price ratio (DP). Both this variable and the next are dependent on the
variable D12. The formula for Dividend Price Ratio at time t, is

DPt = log(D12t)− log(SPXt). (17)

Dividend Yield ratio (DY). Analogous to the Dividend Price, but considering past
values of SPX:

DYt = log(D12t)− log(SPXt−1). (18)

Earnings-to-Price (EP). Let earning price (E12) be the moving sum of earnings
from the S&P 500 index in a window of 12 months. 6 The Earning Price is then
calculated as

EPt = log(E12t)− log(SPXt). (19)

Stock Variance (SV). The sum of squared daily returns of the SPX.

Book-to-Market ratio (BM): The ratio of book value to market value for the Dow
Jones Industrial Average. From March to December, this is computed by dividing
book value at the end of the previous year by the price at the end of the current
month; for January and February, it is computed by dividing book value at the
end of two years ago by the price at the end of the current month.

5 The dividends data is obtained from R. Shiller’s website and the S&P Corporation.
6 Part of this data is extracted from R. Shiller’s website and part is the result from an

interpolation process by Welch and Goyal.
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3.2 Experimental Methodology

The available data has to be grouped in blocks of a given size, as the described
kernel functions need a sequence of events to extract their similarity. A simple
but effective approach is to group monthly data into yearly blocks, creating data
structures that contain 12 months, and then build moving windows of a certain
number of years. The target variable is the equity premium of the first month
(January) of the next year. The input variables are constructed as described in
the previous section. Included in the data frames are lagged values of each variable
in order to increase the information of each data entry and help the models form
better temporal dependencies.

Our approach is then divided in two steps. The first is to determine which
is the best kernel function or combination thereof to perform the predictive task
(classification and regression, see later). The second is to use the selected method
to determine the relative importance of each exogenous variable using the weights
of the trained Multiple Kernel Learning (MKL) model.

The first step is in accordance with the standard validation-based methodology
to evaluate several models: perform a predictive task using common data and
compare the results using a predefined metric. In this step, the different kernel
functions considered will be used both individually and in conjunction using MKL.
Each of these models will have its parameters ν, σ and λ individually tuned.

Our implementation considers two types of validation: Out-of-Sample (OOS)
and 5-fold Cross-Validation (CV). The inclusion of two validation procedures is
due to the historically controversial use of CV for the case of time series. By the
nature of this approach the folds do not respect any particular order (e.g., the
validation part could be the oldest, using a model trained with “future” data).
This can be considered unrealistic although, truly, all the data used has already
been observed at model construction time. However, it has been recently argued
that CV can be used with stationary time series provided that the predictor values
are lagged versions of the response value [4].

In the case of the single kernel functions, the creation and evaluation of the
model is straightforward: a ν-SVM is fitted using the training data and tested or
validated with the rest of the data. In the case of MKL, all kernel functions intro-
duced in section 2 will create a corresponding kernel matrix. Unfortunately, the
implementations of EasyMKL do not admit any parameter, reducing the adapt-
ability of the model. To correct this, the training procedure will fit an EasyMKL
model, extract the weights, build the combined matrix of kernels and then train
a standard ν-SVM. The second step tries to determine the relative importance of
each exogenous variable by using the MKL weights. To this end, one data frame
for each exogenous variable is created, each containing the exogenous variable and
SPX, with different lags. In the list of data frames for the MKL are also included
the matrix with the endogenous variable (SPX) and a data frame with all the
variables. Using this representation, the input to each experiment will be a list
containing seven matrices encapsulating the following features sets:

1. SPX only
2. SPX plus Dividend-Price Ratio
3. SPX plus Earning Price
4. SPX plus Dividend Yield
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5. SPX plus Stock Variance
6. SPX plus Book-to-Market Ratio
7. All of the above

4 Results and discussion

4.1 Equity Premium classification experiments

In this first set of experiments we will consider as target variable not the equity
premium but its sign, or direction. A positive value indicates a good precondition
to hold a share and a negative value indicates a proper time to sell the stock
shares. The main performance metric is the accuracy, the fraction of correctly
classified samples, reported as training, validation and test accuracies.7 A second
metric is given by the weights of the learned MKL models, which can be helpful
to determine the relative importance of each kernel function.

Table 1 shows the evaluation of the different kernel methods and multiple
kernel learning using EasyMKL. These results are obtained using the same data
for each method but adjusting the parameters individually. All the methods are
compared using both OOS and CV.

Out Of Sample Validation

kVAR kGA kMDED k0ARC k1ARC MKL MKL (norm.)

Train 0.588 0.739 0.722 0.674 0.734 0.982 0.777
Validation 0.872 0.859 0.740 0.491 0.452 0.529 0.763
Test 0.631 0.640 0.640 0.640 0.658 0.640 0.694

Cross-Validation

kVAR kGA kMDED k0ARC k1ARC MKL MKL (norm.)

Train 0.610 0.762 0.742 0.675 0.729 1.000 0.898
Validation 0.751 0.691 0.674 0.559 0.445 0.417 0.568
Test 0.568 0.649 0.631 0.640 0.640 0.667 0.658

Table 1 Accuracy results for all kernel combinations. MKL (norm.) refers to MKL using
normalized kernel matrices.

All test accuracies fall within the range from 55% to 70%, which indicates the
general capacity of Multivariate Dynamic kernels for this task. Individual kernels
share similar test accuracies (around the 64% mark) including the simpler kernels
like kMDED and k0ARC. It is also worth to mention that the kernels based on the
arc-cosine perform as well if not better than other more common kernel functions.
In particular, k1ARC is the best performing individual kernel, surpassing even kGA

in the version using OOS validation.
By a considerable margin, the best performing method is the combination of

kernels created with EasyMKL, surpassing all the individual kernels. This tech-
nique tends to over-fit, as can be observed in the difference of accuracy between

7 The training results are computed refitting the model using the best set of parameters.
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training, validation and testing, and most prominent in the case of CV, were train-
ing accuracy is much higher than testing and validation figures. Kernel normaliza-
tion has remarkable consequences on the results: it reduces training accuracy and
increases validation accuracy, reducing over-fitting. The results of the normaliza-
tion technique seem to differ depending on the validation technique. In this vein,
there is no clear pattern to determine if CV is better or worse than OOS since
all kernels react differently. In the cases of kGA and standard MKL the results
improve, but the rest of kernel functions have similar or worse test accuracies.

Fig. 1 Weights of the kernels with different MKL procedures for the classification experi-
ments under Out of Sample (OOS) and 5-fold Cross-Validation (CV), both for normalized and
unnormalized matrices.

Figure 1 displays the resulting weights of the MKL process. It can be observed
that k1ARC usually is the kernel with most weight, further supporting the fact that
this kernel function is possibly the best performing one for the problem. However,
in the case of MKL with OOS validation and normalization, kGA is the kernel with
highest weight and this combination is also the one with higher test accuracy. k0ARC

also receives weights higher than their mean, signaling that it is also important
in the construction of the model and provides additional information. Finally, it
is worth to comment the impact of the normalization in the weights: in all the
cases it decreases the weights of kVAR and kMDED, the worst performing kernel
functions.

Table 2 and Fig. 2 display the results obtained using exogenous variables. These
experiments are carried out using the best performing kernel method: normalized
MKL using OOS validation. Each variable is contained in a data frame that will be
transformed into a kernel matrix using the MKL procedure. This creates four data
frames (one for each exogenous variable) plus one containing only the endogenous
variable (the S&P 500 index) and an additional data frame containing all the
variables. In order to extract more information from these variables, four different
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methods of building the data frames were tested. DF1 only considers the exogenous
variables without lags and SPX with four lags is included in each data frame. DF2
adds to the information of DF1 each exogenous variable with a lag of 3; this is
motivated by the fact that the resulting data frame will contain more information
but without adding too much redundancy. DF3 includes four lags of each exogenous
variable. DF4 contains the same information as DF3 for the exogenous variables,
but only includes the SPX without lags.

Accuracy

Train Validation Test

DF1 0.767 0.757 0.660
DF2 0.768 0.757 0.660
DF3 0.759 0.744 0.680
DF4 0.744 0.787 0.649

Table 2 Accuracy results for the data configurations with exogenous variables (see text).

Fig. 2 Weights of variables with different experimental settings using MKL.

The best performing method is DF3 in terms of test accuracy. DF1 and DF2
are fairly similar, indicating that the inclusion of the third lag does not affect the
model too much. DF4 is the worst, which means that the model heavily relies
on the lags of SPX for its predictions. The weights of DF1 and DF2 are near
the mean, with slightly higher weight for the endogenous variable. This result
does not imply that the rest of variables are not important to predict the result
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(that would be represented by weights near zero) but that they are mostly equally
important. DF3 shows a shift in the weights, as SV (Stock Variance) is near SPX.
The data frame containing all the variables also increases in weight, indicating
a better predictive capability of all the variables by including all their lags until
4. Further experimental research shows that the fourth lag of the stock variance
provides relevant information that helps the predictive process. Finally, DF4 has
its weights shifted towards the exogenous variables. As those data frames lack lags
of the SPX, it is possible that the information contained in the exogenous variables
takes a more active role in the prediction procedure; however, the model performs
worse in comparison to the rest. It is also worth noting that stock variance is still
one of the most relevant variables in this case.

4.2 Regression experiments

In order to provide robustness to the experimental framework constructed, the
regression task is also explored. In this case the target values change from a cate-
gorical label to the Equity Premium itself. The structures of data compression and
frame grouping are kept the same as in the classification experiment. The ν-SVM
for classification is replaced by its regression counterpart and the performance
metric is now the mean squared error.

Tables 3 and 4 show the evaluation of the different kernel methods and MKL.
These results are obtained using the same data for each method but adjusting the
parameters individually. Again, the impact of using OOS validation and CV is
also tested. All the methods are validated in the same range of hyper-parameters.

kVAR kGA kMDED k0ARC k1ARC MKL MKL (norm.)
Train 0.0140 0.0029 0.0039 0.0045 0.0015 0.0032 0.0132
Validation 0.0269 0.0119 0.0171 0.0137 0.0355 0.0091 0.0140
Test 0.0472 0.0295 0.0326 0.0304 0.0645 0.0252 0.0351

Table 3 Results of kernel combinations using OOS validation. MKL (norm.) refers to MKL
using normalized kernel matrices.

kVAR kGA kMDED k0ARC k1ARC MKL MKL (norm.)
Train 0.0122 0.0014 0.0015 0.0030 0.0009 0.0017 0.0109
Validation 0.0305 0.0141 0.0184 0.0172 0.0326 0.0106 0.0184
Test 0.0434 0.0265 0.0297 0.0275 0.0618 0.0251 0.0313

Table 4 Results of kernel combinations using CV. MKL (norm.) refers to MKL using nor-
malized kernel matrices.

The results fall in a determined range that states the capabilities of these
methods in financial prediction tasks. This time, however, larger differences can
be observed between the different methods, some methods being nearly thrice more
accurate than others. Simpler kernels like kMDED and k0ARC perform relatively well;
k1ARC has worse results, probably due to an over-fitting effect.
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The best performing technique is MKL, as it was in the classification case. A
clear case of over-fitting can also be observed in this case, considering the difference
between the training and test errors. The normalization only increases the error
of the methods, indicating a loss of information during this process.

The different validation techniques have a revealing impact on the regression
task. As it can be observed, the results obtained using CV as a parameter validation
technique are always better than those using OOS. These results support [4],
contradicting the conclusions reached in the classification task.

Fig. 3 Weights of kernel methods with different MKL procedures for regression.

Figure 3 contains the weights of the MKL process. It can be observed that kGA

obtains the higher percentage of weight in all of the variations of the experiment,
with even higher values in the best performing settings of MKL. This fact is
reinforced by the better results obtained by this kernel in the individual tests. The
normalization procedure impacts the weights by making them closer to their mean
and at the same time assigning a much higher weight to k1ARC. These results for
k1ARC are opposite to the ones in the classification task, which indicates how much
these tasks are different. k0ARC has a significant impact on the resulting vector of
weights, which further mirrors the individual results.

Table 5 and Fig. 4 display the experiments performed with exogenous variables.
Again, these experiments are run using the best performing method for the task:
non-normalized MKL using CV for validation.

The best performing method is DF1 in terms of test MSE, albeit there is not
much difference between the four experiments. It is noteworthy that all the results
are worse than the versions without the exogenous variables. On the other hand,
the weights are somewhat different. The SPX index is clearly the feature that gets
more weight in most of the variations, ranging between 60% and almost 80%. DF1
is an interesting result, as it gives more weight to the Stock Variance than to the



Evaluation of Equity Premium Prediction using MKL 15

Train MSE Validation MSE Test MSE
DF1 0.0025 0.0129 0.0321
DF2 0.0024 0.0131 0.0332
DF3 0.0024 0.0131 0.0332
DF4 0.0024 0.0135 0.0344

Table 5 MSE results for the data configurations with exogenous variables (see text).

Fig. 4 Weights of variables with different experimental settings using exogenous variables.

SPX. This experiment also has the best results in the test set, however those results
are bad in comparison to the errors of the endogenous variable. It would appear
that the regression does not give any relevant weight to the exogenous variables
in most cases, but relies mostly on the SPX itself. It is conceptually possible that
the stock variance has an impact on the predictions, but the results contradict this
fact.

The instability of these results was clearly reported in [28]. Not only the re-
sults are worse with the introduction of exogenous variables, but the weights also
fluctuate with each different configuration of lags and variables. This can also be
attributed to the capabilities of MKL as a learning model. The problem of over-
fitting was present in both tasks, reporting low training error values contrasted by
high errors in the validation and test sets.

In summary, in this experimental setting, the exogenous variables have a ques-
tionable importance in the predictive models. The results also support this fact
given the high weights assigned to the endogenous variable. The overarching con-
clusion, including the results obtained from the classification task, is that exoge-
nous variables do not seem to increase the predictive capabilities of the model.
Actually, in some cases, they worsen it.
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5 An exhaustive experiment

We present in this last section results of an exhaustive comparative analysis of the
predictability of equity premium by the MKL method against each of the kernels
considered, using the financial exogenous variables as features. The purpose of
these experiments is to ascertain if MKL is hindering the predictive capabilities of
the exogenous variables when learning the best combination of kernels, regardless
of the used variables. In other words, is MKL an overkill, may a single kernel
suffice to best exploit the information content of the variables?

The experimental procedure is analogous to the one used in the previous re-
gression and classification tasks. The only changes to the procedure are:

– Only regression is considered: the results from classification may be useful for
investment tasks but the classes are created using a threshold, which makes
the resulting binary division unstable, hard to predict, and hard to evaluate.

– Normalization is not used: as seen in the previous results, normalizing the
kernels in regression tasks does not yield to an improvement.

– The data is not structured in experiments: instead all the data frames created
for those experiments is used individually to test each algorithm.

– The capabilities of the kernels for time series will be also tested against a non-
time dependant model in the form of a standard RBF kernel, named kRBF.

In order to arrange for all the involved experiments and to obtain more solid
conclusions, a factorial experiment design has been created, as described next.

5.1 Factorial Design settings

The Factorial Design [5] is a methodology to define tests and to compare results in
problems that have several decisions to be made and several possible combinations.
This procedure determines if a decision is statistically better than other and if there
are relevant interactions between decisions. In our case, the decisions (factors) of
the factorial experiment were as follows:

– Use MKL or any of the single kernel functions
– Use a combination of exogenous variables or only the endogenous variable
– Use Cross-Validation (CV) or not

Even though the decisions are clear, the number of factors on each decision are
not that straightforward. In order to decide this, an exhaustive experimentation
procedure has been performed with all the combinations of single kernels and
exogenous variables. In the lines of the decisions presented in the experimental
definition, the following a priori conclusions were obtained:

– The best result of the MKL method is surpassed by the best results of kRBF

and k0ARC kernels by a very slim margin (0.02505 vs 0.02448 and 0.02497)
– All kernel methods except MKL perform better with the inclusion of exogenous

variables, but with different degree of improvement.
– Cross-Validation seems to produce small but general improvements applied

with any kernel function.
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Factor Levels - +
1 Kernel Method(KM) RBF MKL
2 Variables(Var) Endogenous Exogenous
3 Validation Method(VM) OOS CV

Table 6 The different factor levels for each decision of the Factorial Experiment.

Formulation 1 2 3 Result Variance
1 - - - 0.0293 0.0121
2 + - - 0.0252 0.0104
3 - + - 0.0249 0.0090
4 + + - 0.0292 0.0120
5 - - + 0.0284 0.0123
6 + - + 0.0251 0.0116
7 - + + 0.0250 0.0098
8 + + + 0.0273 0.0115

Table 7 The results of each experiment of the Factorial Experiment.

In terms of the decision of using MKL or not, the results of kRBF are sur-
prising, as it surpasses the much more complex MKL algorithm. k0ARC also gets
an improvement by using the exogenous variables and it becomes the single best
performing, time-dependent kernel function. The inclusion of exogenous variables
has an impact on the result: most notably kRBF improves the most compared with
other methods shifting its results from 0.0293 using only endogenous variables to
0.0245. Other improvements near the 15% performance increase can be appreci-
ated in the VAR kernel. k0ARC also improves in about 10% its test MSE. The rest
of kernels only increase their results by 5% or less. In the methods with increased
performance by the introduction of exogenous variables, the endogenous variable
has a reduced impact contrary to the methods that saw little or no impact in the
use of exogenous variables. Looking at the results it is possible that models like
MKL and k1ARC over-fit towards the SPX index as it is the most similar to the
output variable, but the models like kRBF and k0ARC unravel correlations between
the output and the exogenous variables that the other methods apparently do not
do.

5.2 Results and Discussion

Each of the decisions were reduced to two levels (options). The first decision was
reduced to use MKL or the best performing single kernel method, which is kRBF.
The second decision boiled down to consider the best performing exogenous vari-
able combination, which is SPX with zero lags and Dividend Yield with lags from
zero to four, for each method. The third decision remained unaltered, testing both
validation techniques.

The different levels of each decision are represented in Table 6, and the different
formulations (experiments) in Table 7, with the test MSE of each combination
along with the variance of the results.

Table 8 shows the calculated effects. The effects of these decisions are very
small, even including the interactions between them. This indicates that the deci-
sions taken do not change the capabilities of the model by any significant factor,
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Name Effect ± standard error
Kernel Methods(KM) −0.000117± 0.052615

Variables(Var) −0.000500± 0.052615
Validation Method(VM) 0.000605± 0.052615

KM x Var 0.003613± 0.052615
KM x VM −0.000412± 0.052615
Var x VM −0.0000797± 0.052615

KM x Var x VM −0.000790± 0.052615

Table 8 Calculated effects of the Factorial Experiment.

which is an expected result looking at the very small differences between the com-
pared methods. Without looking at the standard errors it can be seen that: MKL
yields worst results than RBF on average, the same can be said for the use of
exogenous variables over endogenous variables, and the cross-validation technique
is better on average than out-of-sample validation. These results, however, are
strongly influenced by the noise in the model reflected in the high values for the
variance. Nonetheless, the interaction between the kernel methods and the selected
economic variables is notable and this effect can appear in other versions of the
problem.

The results of the factorial experiment indicate that most of the possible im-
provements that can be observed in the MSE of these decisions are ultimately
not reliable due to the high amount of noise in the samples. This unreliability in
the models was reported previously in [28]. Some interesting issues, however, do
stand out: MKL integrating five kernels for time-series is matched by a simple
RBF kernel and, to a lesser extent, by k0ARC. Furthermore, those simple models
achieve the predictive capabilities of MKL using exogenous variables. The relation
between the kernel methods and the exogenous variables can be also observed
in the relatively high interaction between those decisions. CV points itself as a
possibly better validation method than OOS.

6 Conclusions

In this article, a non-linear approach has been applied to the Welch and Goyal
experiments [28] to measure the influence of several economic indicators in the
prediction of the equity premium. The experiment is designed around several kernel
functions for time series that aimed to extract relevant information from these
variables and create a predictive model. The experimental procedure was based
on selecting the best kernel or combination thereof for this problem, applying
the selected model to each of the variables creating several kernel matrices and
then obtaining the multiple kernel learning weights of each matrix. These weights
indicate the relative importance of each variable.

The results indicate that, in this experimental procedure, the exogenous vari-
ables have a relative importance comparable with the S&P 500 index. However,
the predictive capabilities of the model are not improved upon the introduction of
these variables and the weights are not consistent across the different experiments.
This instability was previously reported in Welch and Goyal’s work for linear mod-
els, and it is now confirmed in our work for a family of non linear models based
on single or linear compositions of machine learning kernels.
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As future works, the influence of each individual variable and the number of
lags included could be further explored to find deeper relationships. More powerful
kernels could be introduced and studied to enrich the descriptive capabilities of
the multiple kernel learning models. In this sense, a finer tuning of the parameters
of each kernel should be performed to extract the most of the approach.
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