
Noname manuscript No.
(will be inserted by the editor)

An efficient, low-cost routing architecture for spiking
neural network hardware implementations

Yuling Luo · Lei Wan · Junxiu Liu* · Jim
Harkin · Yi Cao

Received: date / Accepted: date

Abstract The basic processing units in brain are neurons and synapses that are
interconnected in a complex pattern and show many surprised information pro-
cessing capabilities. The researchers attempt to mimic this efficiency and build
artificial neural systems in hardware device to emulate the key information pro-
cessing principles of the brain. However, the neural network hardware system has a
challenge of interconnecting neurons and synapses efficiently. An efficient, low-cost
routing architecture (ELRA) is proposed in this paper to provide a communication
infrastructure for the hardware spiking neuron networks (SNN). A dynamic traffic
arbitration strategy is employed in ELRA, where the traffic status weights of input
ports are calculated in real-time according to the channel traffic statuses and the
port with the largest traffic status weight is given a high priority to forward pack-
ets. This strategy enables the router to serve congested ports preferentially, which
can balance the overall network traffic loads. Experimental results show the feasi-
bility of ELRA under various traffic scenarios, and the hardware synthesis result
using SAED 90nm technology demonstrates it has a low hardware area overhead
which maintains scalability for large-scale SNN hardware implementations.

Keywords Spiking neural networks · Networks-on-Chip · Routing arbitration

Yuling Luo, Lei Wan, Junxiu Liu
Guangxi Key Lab of Multi-Source Information Mining & Security,
Faculty of Electronic Engineering, Guangxi Normal University,
Guilin, China, 541004
E-mail: *liujunxiu@mailbox.gxnu.edu.cn of Junxiu Liu

Jim Harkin
School of Computing and Intelligent Systems,
University of Ulster, Londonderry, UK, BT48 7JL

Yi Cao
Department of Business Transformation and Sustainable Enterprise,
Surrey Business School,
University of Surrey, Surrey, UK, GU2 7XH

2 Yuling Luo et al.

1 Introduction

The mammalian brain functionality is based on the specialized signal processing
capabilities of massive neurons [1]. One key outcome from neuroscience research is
a computing neural model of spiking neural networks (SNN) [1–3], which has the
capability to emulate information processing of massive neurons in the brain. The
neurons in the SNN exchange information via transmitting the spikes through the
synapses [4]. The brain contains approximate 1010 neuron cells and 1015 synapses
in a parallel manner [1]. The SNN has the potential to emulate the information
processing capability of the brain. A large-scale SNN normally includes a signif-
icant number of neurons and synapses. In order to implement and simulate the
large-scale SNNs, current software simulations are too slow and consume lots of
power, thus cannot maintain the system scalability [4]. Therefore many researchers
attempted to use custom hardware devices for the SNN implementations in order
to address the challenge of scalability. However, the complexity of inter-neuron con-
nectivity in SNN limits the network implementation in hardware, as the number
of connections increases exponentially with the number of neurons and synapses.
The traditional hardware interconnection strategy, e.g. bus, point-to-point, cannot
overcome the SNN connection problems and is lack of scalability [5]. It is necessary
to develop an efficient interconnect architecture for the connections of neurons and
synapses in the SNN.

Recently, researchers proposed the networks-on-chip (NoC) interconnect paradigm
[1,4–6] as a promising solution to solve the inter-neuron connectivity problems and
achieved a satisfactory performance [1,4]. The NoC is similar to the computer net-
work where the processing elements (e.g. neurons in the SNN) are connected by
the routers and channels [6]. For the SNN, the spikes are packetized and can be
forwarded from any source node to any destination node; thus the information ex-
change between the neurons is established. In general, a group of neurons (e.g.∼ten
in the approach of Carrillo et al. [4]) are connected to one router, but the required
routers and channels increase if the number of neurons increases, which leads to the
hardware area and power dissipation consumption. Thus the NoC architecture (i.e.
routers and channels) constraints the system scalability [1], and it should achieve
a trade-off between performance (e.g. spike throughput and communication delay
etc.) and resource consumption (e.g. hardware area and power consumption). Per-
formance: the NoC routers are responsible for transmitting highly irregular spike
events. An effective router should forward as many spike events as possible in a
short time period for various traffic scenarios, i.e. to provide high throughput for
the communications. In addition, the irregular spike patterns occasionally intro-
duce traffic congestions [4], which require the router have the ability to monitor
the different traffic status (e.g. busy or congested etc.) and deal with various traf-
fic patterns [5]. Resource consumption: the number of required routers increases
proportionally with the number of neurons and synapses [1]. A low-cost routing
architecture is very crucial for large-scale SNN hardware systems. Therefore, for
the SNN hardware interconnection, the NoC router architecture should provide an
efficient communication mechanism for the neurons, and only need a low hardware
cost for implementation which maintains the SNN system scalability.

In this paper, a compact NoC router for the SNNs is proposed which can pro-
vide an efficient routing mechanism for the neuron communications with a low
hardware cost. The rest of this paper is organized as follows: Section II describes

An Efficient, Low-cost Routing Architecture for SNN Hardware Implementations 3

the background and summarizes related works. Section III discusses the proposed
router architecture. Section IV provides performance analysis and hardware eval-
uation results, and Section V concludes the paper.

2 Background and related work

Various approaches have been explored for SNN implementation, including soft-
ware, application-specific integrated circuit (ASIC) and field programmable gate
array (FPGA) [7]. The software approaches are too slow for the large-scale SNNs
simulation and have limited scalability due to the huge power consumption [8].
For example, a computer reconstruction of a piece of the neocortex (∼31K neurons
and ∼37K million synapses) is completed by using the high-performance computer
(HPC) in the Blue Brain project [9], where the electrical behavior of the virtual
brain tissue was simulated on the IBM supercomputers. The main constraint of
using the HPC is a low level of parallelism and the extremely high power consump-
tion (in the order of hundreds of kilowatts generally). Thus researchers have looked
into using the hardware devices (e.g. ASICs, FPGAs) to accelerate the computing
speed and reduce power consumption and make the large-scale SNN implementa-
tion possible. The main drawback of using ASIC devices is the high cost for the
development and chip manufacturing. In addition, it only has a limited level of
flexibility as a tiny change would lead to a new development cycle. For large-scale
SNNs, FPGA device offers a high speed of execution and good scalability, which
also achieves a lower cost than ASICs.

In the hardware SNNs, a point-to-point connectivity method between neuromorphic
chips using address events was proposed in the approach of Boahen [10]. Another
FPGA design framework for large-scale SNN using all-to-all connection strategy
was implemented in the approached of Wang et al. [11]. Recently, the interconnection
strategy of NoC as an efficient SNN interconnect strategy has been mostly used
[12–14], where the topology (i.e. the structure regarding the neuron connections)
is an important factor for the system performance. It has been demonstrated that
the topology of bus is not scalable for the SNN as the number of required buses
is proportional to the number of neurons [4]. The mesh and torus are common
used topologies, e.g. a NoC-based routing architecture based on two-dimensional
mesh was proposed in the approach of Carrillo et al. [1], the FACETS in the
approach of Schemmel et al. [15] was based on a 2D torus which provided the
connections of several FACETS wafers, and the SpiNNaker [16] used a triangular
torus topology to connect the neuron computing cores. Additionally, a hierarchical
NoC architecture for SNN was proposed in the approach of Carrillo et al. [4], which
combined the mesh and star topologies for different layers of the SNNs. Similar
to the aforementioned approaches, most of current SNN hardware systems use
the topologies with limited degree (e.g. mesh, torus etc.) to connect the neurons
together [4,17], however these topologies do not meet the fan-in/out requirement
of layer-based SNN structures [18]. Therefore, it is necessary to look to a new
hardware interconnection architecture to address this challenge [18].

This paper presents a compact and efficient NoC router architecture for the
SNN implementations. It employs a traffic status weight-based arbitration and a
traffic congestion-avoidance mechanism to provide traffic balance for the informa-
tion transmission of multiple neurons. The main contributions of this work include:

4 Yuling Luo et al.

(a) N-layers SNN (c) ENA Tile(b) Architecture

Input

Layer

1st

Hidden

nth

Hidden Layer

Output

Layer

1

2

j

1

2

k

1

2

l

Router Infrastructure

In
p
u
t
L
a y
er

1
st
L
ay
e r

N
th
H
id
d
e n
L
ay
e r

O
u
tp
u
t
L
ay
e r

ENA Tile

[0,1]

ENA Tile

[1,1]

ENA Tile

[J,1]

ENA Tile

[0,N]

ENA Tile

[1,N]

ENA Tile

[S,N]

ENA Tile

[0,N+1]

ENA Tile

[1,N+1]

ENA Tile

[L,N+1]

ENA Tile

[0,0]

ENA Tile

[1,0]

ENA Tile

[K,0]

C
o
m
m
u
n
ic
at
io
n
In
te
rf
ac
e

Shared Synapse

L
ay
er
C
o
m
m
u
n
ic
at
io
n
In
te
rf
ac
e

Shared Neuron

S
y
n
ap
se
1

S
y
n
ap
se
n

N
eu
ro
n

1

N
eu
ro
n

m
S
y
n
ap
se
1

S
y
n
ap
s e
m

Fig. 1 The ENA architecture overview [19].

(a) a low-cost router architecture is proposed for the SNN hardware implemen-
tations; (b) a dynamic traffic status weight strategy is employed in the proposed
router to sustain the quality of service under different spike traffic loads; (c) the
proposed router architectures also combines with a traffic congestion mechanism
to maintain the traffic load for the neurons of one input layer.

3 The ELRA router

This section presents the proposed ELRA and its application in the SNN hard-
ware applications. In general, the SNN is a layer-based network which includes
an input/output layer, and one or several hidden layers. Fig. 1(a) illustrates a
typical SNN with N-layers. Each neuron in one layer communicates to all the neu-
rons in next layer via the synapses. The interconnected architecture provides the
communication mechanism for all neurons. The proposed ELRA is such a commu-
nication mechanism for the layer-based hardware SNNs. In our previous work [19],
a hardware architecture, namely Efficient Neuron Architecture (ENA) is proposed,
which implemented a group of neurons in one layer in hardware. Fig. 1(b) is an
example to use ENAs to implement a typical SNN structure (i.e. Fig. 1(a)), where
one ENA corresponds to the neurons of a layer in the SNN. A single ENA has the
capability to implement up to ∼18,181 neurons and synapses. Each ENA utilizes a
computing resource sharing mechanism at two levels (i.e. synapse and neuron) to
reduce the occupied resources, see Fig. 1(c). If the number of neurons in one layer
is more than that, multiple ENAs can be employed for accommodation. Fig. 1(b)
shows that the ENAs are connected by a global communication infrastructure in
order to realize a larger-scale SNN system. The aim of this paper is to propose the
interconnected architecture for the communication of the layer-based SNNs and
the ENAs [19] are used as the neuron node example for the hardware SNNs. Note
that the ELRA is not constrained to the ENAs, however it can be applied to any
other layer-based SNN hardware systems.

In this work, an efficient low-cost router architecture (ELRA) is proposed,
which can forward the spike events efficiently for the communications of ENAs.
The interconnections between the ELRAs and ENA tiles are illustrated in Fig.
2(a) where each ENA connects to the local port of an ELRA, and the ELRA has a

An Efficient, Low-cost Routing Architecture for SNN Hardware Implementations 5

(b) ELRA router overview
S
p
ik
e
ev
en
t
fr
o
m

p
re
-l
ay
er
r o
u
t e
rs

S
ch
ed
u
le
r

Output

controller

Input

controller

E
N
A

N
e x
t
ro
u
te
r

ELRA router
architecture

FIFO

1

2

3

j

(a) Router connection

ENA

(2,1)

Router

2,1

ENA

(1,1)

Router

1,1

ENA

(j,1)

Router

j,1

ENA

(2,2)

Router

2,2

ENA

(1,2)

ENA

(s,2)

Router

s,2

1
2

1
2

(N+1)th Hidden LayerNth Hidden Layer

1
2

j

1
2

1
2

To next routers
Router

2,1

1
2

j

j

j

j

Traffic infor

To next routers

Traffic infor

To next routers

Traffic infor

T
ra
ff
ic

st
at
u
s
i n
f o
r m

M
u
lt
ic
as
t

m
ec
h
an
is
m

Fig. 2 Spiking neural network interconnection and ELRA structure overview.

one-to-all connection to the ones in the next layer. When a spike event arrives at
the ELRA, it forwards the event to the local ENA tile. After the ENA generates
the spike events, the ELRA forwards these events to the nodes in next layer.
The proposed ELRA can also receive the spike events from multiple sources (e.g.
all the nodes in previous layer), and this requires the ELRA have the ability to
arbitrate the various traffic loads. Fig. 2(b) is the overview of the proposed ELRA.
It comprises of four main modules, i.e. the input buffers, the input controller, the
scheduler module, and the output controller. The structure and functionality of
the ELRA are presented in detail in the following sub-sections.

3.1 The ELRA structure

The ELRA router diagram is shown in Fig. 3(a). It includes four modules - FIFO,
scheduler, input and output controller modules. When multiple spikes arrive at
input ports, the FIFO that corresponds to the individual input port firstly stores
the spike packets; then the scheduler provides the arbitration for the input ports
where the input port with the highest traffic status weight can achieve service
promptly; meanwhile, the input and output controllers control the packet for-
warding processes. The hardware structure of scheduler is depicted in Fig. 3(b). It
consists of three components, including traffic status weight computing unit, traf-
fic status weight comparator and round-robin arbiter. When multiple input ports
receive the packets, a traffic status weight comparison mechanism is employed to
arbitrate the access of the output channel. The traffic status weights of input ports
are calculated in real-time according to the input channel status, including channel
data present (labeled by ‘Present’ in Fig. 3(a)), traffic status (Busy/Congested)
and the channel wait (Wait) and grant (Grant) information. The arbitration of
input ports are based on three steps: (1) to separate all the input ports into N
groups and each group contains M ports. The values of N and M depends on the
applications. They are generally set to the power of 2 as the number of comparator
input ports is even; (2) to calculate the traffic status weights for every input port
in each group according to the traffic status; then to select the input port with

6 Yuling Luo et al.

(a) ELRA router

(b) Scheduler structure

R
o
u
n
d
R
o
b
in
A
rb
it
o
r

W
ei
g
h
t

C
o
m
p
ar
at
o
r

Port 0 Weight

Computing Unit

Port 1 Weight

Computing Unit

Port 7 Weight

Computing Unit

W
ei
g
h
t

C
o
m
p
ar
at
o
r

Port 0 Weight

Computing Unit

Port 1 Weight

Computing Unit

Port 7 Weight

Computing Unit
Optimal output section

Channel data present line
Channel traffic state line
Channel port grant line
Channel wait line

(c) Weight computing unit

Weight

Generator

Weight

Generator

Weight

Generator

Port weights

sum in real time

Data present (P)

Weight

Generator

Congested state (C)

Port wait (W)

Busy state (B)

Weight

Generator

Port grant (G)

Input controller

O
u
t p
u
t
co
n
tr
o
ll
er

Scheduler
Spike event from
pre-layer routers

FIFO write_en from pre-
layer routers

FIFO

Data out
FIFO read_en

G
r a
n
t(
G
)

P
o
si
ti
o
n

Data out to local ENA

Full flag from local ENA

Write_en to local ENA

Full flag to
pre-layer routers

Data in from local ENA

Full flag to local ENA

Write_en from local ENA

Present(P)

Congested(C)

Busy(B)

Data out

Full flag from next routers

Write_en to next routers

Data out to next routers

Wait(W)

Fig. 3 The ELRA structure: (a) an overview of the ELRA router; (b) the scheduler module;
(c) the traffic status weight computing unit.

largest traffic status weight via the traffic status weight comparator; and (3) to
grant the input port with largest traffic status weight in each group to access the
output channel using a round-robin arbiter. Fig. 3(c) illustrates the structure of
one traffic status weight computing unit. Five traffic status generators calculate
the corresponding traffic status weights in real-time according to the input channel
traffic status, which can be achieved by reading the statuses of corresponding FI-
FOs and grant information. For example, if the ‘present’ signal of FIFO is high, the
FIFO has received valid packet(s). If the number of free slots (Fs) is equal to zero,
the buffer is full and the channel is said to be ‘Congested’. If Fs ≤ Threshold v,
the channel is said to be ‘Busy’, where Threshold v denotes a threshold value
(normally half the size of the buffer). In addition, if a port has achieved a service
grant, the port status is ‘Grant’ and for other ports which are not granted in this
process, they are in the ‘Wait’ status if they have packet waiting for transmission

An Efficient, Low-cost Routing Architecture for SNN Hardware Implementations 7

(i.e. the ‘Present’ signal is high). The five traffic status weight factors are defined
as Present/Busy/Congested/Grant/Wait. The five status signals are connected
to the scheduler to aid making effective arbitration decisions. The traffic status
weight computing unit is explained in detail in the following sub-sections.

3.2 Dynamic traffic status weight strategy

In order to overcome the traffic imbalance caused by the irregular spike patterns
[1], a dynamic traffic status weight strategy is employed in ELRA to maintain the
performance and communication service quality under various traffic load scenar-
ios.

The traffic status weight values to be calculated include (1) the data Present
traffic status weight wp, (2) the channel Busy status traffic status weight wb, (3)
the channel Congested status traffic status weight wc, (4) the port Grant traffic
status weight wg, (5) the port Wait status traffic status weight ww. They are
determined by the corresponding signals in Fig. 3(a) and are calculated based
on the following dynamic traffic status weight mechanism: Firstly if the status,
s, of a channel has a data present, then sp = 1; if the channel is busy, status
sb = 1; if the channel is congested, status sc = 1; if the channel is granted, status
sg = 1 and if the channel is waiting the grant, status sw = 1. Using this status
information, the values of wp/wb/wc/wg/ww are calculated using Equation (1).
The data present traffic status weight wp has the most significant impact on the
channel to distinguish the state that the channel has data or not, therefore wp is 3
if there is a data present (i.e. sp = 1). Similarly, Congested has more impact than
Busy, so wc is 2, wb is 1 if the corresponding statuses are satisfied. If the channel
is granted (sg = 1), wg is -1. This is because this channel has been granted in
this round, it should decrease the probability to get grant again in next round,
therefore the traffic status weight is decreased by 1. However, if the channel does
not get the grant and is waiting (sw = 1), the probability to get the grant should
be increased, i.e. ww = 1. After all the traffic status weight values are generated,
the total traffic status weight, wsum, for each port i in each group, is calculated by
Equation (2) in real-time. The port with the largest traffic status weight in each
group is selected to be granted by the round-robin arbiter in the next step.

wp =

{
0, sp = 0
3, sp = 1

wb =

{
0, sb = 0
1, sb = 1

wc =

{
0, sc = 0
2, sc = 1

wg =

{
0, sg = 0
−1, sg = 1

ww =

{
0, sw = 0
1, sw = 1

(1)

wsum[i] = wp[i] + wb[i] + wc[i] + wg[i] + ww[i] (2)

Secondly, a round-robin policy is used to arbiter the selected ports in each
group, which allows the fairness of all the groups to access to the output channel.

8 Yuling Luo et al.

Based on this dynamic traffic status weight mechanism, it can be noticed that
the traffic status weight of each port is calculated in real-time. When the traffic
status weight sum wsum[i] is big enough, the port has a high probability to obtain
the grant, and vice versa. This allows the priorities of all ports are updated in real-
time to access to the output channel, and avoids the problems of the fixed priority
scheduler (e.g. one port is occupied for a long time) and round-robin arbitrator
(e.g. no priority for the busy traffic path) [1].

4 Performance analysis

This section presents performance results on the packet delay and throughput for
various SNN traffic scenarios. The hardware area overhead and power consump-
tion are also highlighted by comparing with the existing approaches. The hard-
ware implementation is based on a Xilinx XC7Z020-CLG484 device. The system
frequency is 100 MHz and the packet data width is 62-bit. The area overhead and
power consumption have been evaluated based on a Synopsys Armenia Educational
Department (SAED) 90 nm CMOS technology.

4.1 Packet throughput and delay

The neuron outputs spikes under various patterns [1] e.g. regular, fast, bursting
and rebound as shown in Fig. 4. The rebound and bursting spiking events are
irregular, which have a major impact on the packet delivery latency and may lead
to traffic congestion. This requires the routers have the ability to balance the traffic
load across the neural network.

(a) Regular spikes

(d) Bursting spikes(c) Fast spikes

(b) Rebound spikes

Fig. 4 The typical spike patterns.

A key aspect for the performance verification of the proposed ELRA is to
analyse how the ELRA guarantees efficient routing ability (e.g. throughput) under
various spiking patterns. The neuron node ENA [19] connects to the ELRA. All
the ENAs use the packets to transmit the information [19]. The packet layout
is illustrated by Fig. 5 which includes five parts: ENA address, neuron address,
synapse address, packet type and maximum 32-bit width payload. The rate encoding
scheme is used in this paper, and the SNN can be trained using the learning
algorithm in our previous works [20,21]. In addition, the proposed routing architecture

An Efficient, Low-cost Routing Architecture for SNN Hardware Implementations 9

can be used for other applications, e.g. traditional neural networks. The packet
payload can accommodate the data that is required for transmission.

Packet type*
(4 bits)

Neuron address
(8 bits)

Synapse address
(10 bits)

Payload
(32 bits)

ENA address
(8 bits)

Header

Packet type Value

Spike Packet 0000

Configuration Packet 1***

Fig. 5 The packet layout for the ENA [19].

Fig. 6 illustrates the average throughput under the different number of enabled
ENAs with various SIRs. In this experiment the total number of ENAs is 16. The
router with round-robin scheme is used as a bench mark. In order to simulate
various spike traffic patterns, e.g. regular, fast, burst or rebound patterns, the
experiments are carried out with different SIRs and the number of enabled ENAs.
For example, in the regular or rebound spike patterns the SIR is relatively low; thus
it is set to be 0.03125 (i.e. one spike packet is generated every 32 clock cycles). Fig.
6 shows that for this scenario, the ELRA achieves a slightly higher throughput than
the round-robin scheme. However, if the spike traffic pattern is bursting or fast,
the ELRA achieves much higher throughput compared to round-robin scheme.
For these patterns, not all the neurons generate spike packets, i.e. the number
of enabled ENAs only occupies a small percentage of total ENAs, but SIR is
higher than regular traffic pattern (e.g. SIR is 0.5 which causes bursting activity).
Fig.6 shows that when the number of enabled ENAs decreases, the throughput
difference between ELRA and round-robin scheme becomes larger and ELRA has
a much higher throughput. For instance, if only 2 ENAs are enabled to generate
the spike packets which are a typical bursting traffic pattern, the ELRA has a
140% throughput improvement than round-robin scheme. Therefore, the ELRA
has the capability to achieve a good throughput performance under various traffic
patterns. Especially for the irregular traffic pattern of bursting and fast etc., it
has a much higher throughput. This is because the ELRA can efficiently arbitrate
the data request without wasting time on the channels with no data present. Thus
the experimental result in Fig.6 demonstrates that ELRA has the capability to
balance the traffic loads across the hardware interconnected SNN.

In order to illustrate the packet delay of the proposed ELRA, hardware simulation
result of a single router is shown in Fig. 7. The signal of Data in fifo is the input
data channel for the FIFOs. It is used to temporarily store the generated spike
events from the ENAs. In this experiment the number of input groups is 3 (high
dimension is [2:0], i.e. N = 3), and the number of data channels in each group
is 8 ([7:0], i.e. M = 8), i.e. a total of 24 data input channels are used to receive
spike events. However N and M are not limited to these values which are only
used as an example for this experiment. It can be seen that for the first group
only one channel has packet for transmission (i.e. X“131311C44443”), see in

10 Yuling Luo et al.

0

10

20

30

40

50

60

70

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

T
h

ro
u

g
h

p
u

t
[G

b
p

s]

The number of enabled ENAs

ELRA (Spike Injection Rate (SIR): 0.03125)
Round-robin scheme (SIR: 0.03125)
ELRA(SIR: 0.5)
Round-robin scheme (SIR: 0.5)

Fig. 6 Relationship between the different number of enabled ENAs and throughput per router
under different SIRs.

clk

Data_in_fifo[2:0][7:0][61:0]

ReadRouterFIFO_en[2:0][7:0]

DataToENAFIFO[61:0]

ENAFIFOWrite_en

Weight_o[7:0][2:0]

Weight_o[7:0][2:0]

0..., 01,0...00000000,00000000,00000000

000, ,000

Weight_o[7:0][2:0]

(0...,0...,0...,0...,0...,0...,0...,131311C44443),(...),(...) (0..., ,0...),(0..., ,0...),(0..., ,0...)

01,0...,0... 0...,0..., 01 0..., 01,0... 01,0...,0... 0...,0..., 01

00000000 1212... 1313... 1111...

000,000, ,000,100 000,000, ,000,011 000, ,010

100,000, ,000,100 100, ,011 101,000, ,000,011 011,000, ,000,011000, ,000

000, ,000 100,100,000,000,000,000,100,100 101, ,101 101,101,000,000,000,000,101,011 101,

(0...,0...,0...,0...,0...,0...,0...,131311C44443),(121211844442,0...,0...,0...,0...,0...,0...,121211844442),
(111111444441,111111444441,0...,0...,0...,0...,111111444441,111111444441)

(a)

(b)

(c)

(d)

(e)

1212... 1313... 1111...

Fig. 7 Simulation result of ELRA router.

Fig. 7(a). The second and third groups have 2 and 4 channels receiving packets
and they are X“121211844442” and X“111111444441”, respectively. This is an
irregular spike patterns as the third group has more requests than others. Fig.
7(a) shows that the packet X“131311C44443” is injected into the first group
of Data in fifo for transmission. Then the corresponding traffic status weight
increases from “000” to “100”, see Fig .7(b). The grant decision is made by the
signal of ReadRouterFIFO en from the input controller module according to the
maximum traffic status weight, see Fig. 7(c). The granted packet is transmitted
through the signal of DataToENAFIFO in the output controller module, as shown
by Fig. 7(d). Next Fig. 7(e) shows that the corresponding traffic status weight
decreases from “100” to “011” via the dynamic traffic status weight mechanism.
It should be noted that only 3 clock cycles are needed from spike event arriving
to grant decision being made in the output controller module. The other two
groups adopt a similar arbitration process and a round-robin policy is employed for
selecting the granted spike packet between the different groups. Thus the proposed
ELRA senses transmission requests of these packets, provides arbitration for all
the input channels via the dynamic traffic status weight mechanism, and forwards
the packet promptly to the output ports.

An Efficient, Low-cost Routing Architecture for SNN Hardware Implementations 11

4.2 Analysis and comparison of area utilization, power and throughput

Fig. 8 summarizes the area utilization in hardware for a single ELRA router.
Results show that the ELRA router is 61,472 µm2 in total, where the FIFOs
for the input ports occupy the largest area (87.7%), scheduler, input and output
controllers occupy 4.99%, 6.78% and 0.53% of the entire router area. Table 1
compares the power, throughput and area utilization of the proposed ELRA router
with other state of the art approaches [4–6,22].

Fig. 8 Synthesis summary regarding the area utilization distributions of the proposed ELRA
router.

The approaches of Liu and Harkin et al. [5,6,22]are based on 2D mesh topology.
Each router contains five input FIFOs for the North/E/S/W and local ports.
For the fairness of comparison, five input ports are set in proposed ELRA. The
approach of Harkin et al. [22] provides an architecture for the hardware SNNs,
incorporating analogue spiking neurons, and interconnected architecture using
a 2D mesh-based NoC. However it does not have the traffic balance capability,
therefore the area overhead and power consumption are relative low (i.e. 0.2012

and 1.72 mW). Other NoC routers [4–6] and the proposed ELRA are all equipped
with a traffic congestion avoidance mechanism. A hierarchical NoC architecture for
hardware SNN was proposed in the approach of Carrillo et al. [4], which combined
the mesh and star topologies for different layers of the SNNs. It can be seen
that the routers have a higher power and area overhead due to the complex
routing algorithms. Similarly, the approach of Liu et al. [6] provides adaptive
fault-tolerant routing algorithm for the 2D mesh/torus-based NoCs. It can be
used for the interconnection of SNN. But it also suffers from the high power and
area consumption. Compared with the approach of Liu et al. [6], the EDAR [5] is
based on a simpler routing algorithm and has a slightly lower power consumption.
The proposed ELRA provides the interconnected architecture for the layer-based
SNNs. The area overhead and power consumption of the ELRA are 0.062 mm2

and 3.161 mW. Compared with the EDAR [5], the ELRA has a slightly higher
power consumption, but the hardware area utilization is much less than it.

For the large-scale SNNs, the required router increase with the number of
neurons in each layer. Fig. 9 shows the required router areas of two approaches,
ELRA in this work and the approach of Carrillo et al. [1]. In the approach of
Carrillo et al. [1], one neuron connects to a router, therefore the hardware area of

12 Yuling Luo et al.

Table 1 Performance comparison with other approaches

Project Reference
Congestion
Mechanism

Area
Utilization

Throughput
(Gbps)

Power(mW)

EMBRACE [22] No
0.201 mm2

(90nm CMOS)
16.0 1.72

H-NoC [4] Yes
0.587 mm2

(TSMC 65nm)
3.33 13.16

EDAR [5] Yes
0.241 mm2

(SAED 90nm)
18.0 2.291

FG [6] Yes
0.268 mm2

(SAED 90nm)
NA 72.31

This work Yes
0.062 mm2

(SAED 90nm)
18.0 3.161

routers increase linearly with the number of neurons. In this work, the hardware
area of a single router is less than the router in the approach of Carrillo et al.
[1]. In addition, the ELRA is for the layer-based SNNs. It achieves much less area
overhead for a large network, e.g. for one layer with 1,440 neurons only 8 ELRAs
are required; the approach of Carrillo et al. [1] needs one router per neuron which
requires more area than the ELRA.

0

200

400

600

800

1,000

1,200

1,440 2,880 4,320 5,760 7,200 8,640 10,080

R
o
u

te
r

ar
ea

 [
m

m
2
]

The number of nerurons each layer

ELRA
2D mesh scheme [1]

Fig. 9 The comparison of router area overhead.

5 Conclusion

This paper proposed an efficient, low-cost routing architecture (ELRA) as a fabric
for interconnections of neurons and synapses in the SNN hardware implementa-
tions. A novel dynamic traffic status weight calculation and selection strategy was
employed in ELRA to provide an efficient routing policy under various spike traffic
patterns of SNN. The hardware area of ELRA is only 0.062 mm2 based on a 90nm
CMOS technology which demonstrated the scalability for the large SNN system.

An Efficient, Low-cost Routing Architecture for SNN Hardware Implementations 13

Acknowledgments

This research was supported by the National Natural Science Foundation of China
under grants 61603104 and 61661008, the Guangxi Natural Science Foundation
under grants 2015GXNSFBA139256 and 2016GXNSFCA380017, the funding of
Overseas 100 Talents Programme of Guangxi Higher Education, the Research
Project of Guangxi University of China under grant KY2016YB059, Guangxi
Key Lab of Multi-source Information Mining & Security under grant MIMS15-07,
the Doctoral Research Foundation of Guangxi Normal University, the Research
Project of Guangxi Centre of Humanities & Social Sciences - Ecological Environ-
ment Forecast and Harnessing in Ecologically Vulnerable Region of Pearl River
and Xijiang Economic Zone (ZX2016030), and the Innovation Project of Guangxi
Graduate Education (YCSZ2016034).

References

1. S. Carrillo, J. Harkin, L. Mcdaid, S. Pande, S. Cawley, B. Mcginley, and F. Morgan (2012)
Advancing interconnect density for spiking neural network hardware implementations using
traffic-aware adaptive Network-on-Chip routers. Neural Networks 33:42-57

2. W. Yang, J. Yang, and W. Wu (2012) A modified spiking neuron that involves derivative
of the state function at firing time. Neural Process. Lett. 36:135-144

3. B. Meftah, O. Lezoray, and A. Benyettou (2010) Segmentation and edge detection based
on spiking neural network model. Neural Process. Lett. 31:131-146

4. S. Carrillo, J. Harkin, L. J. McDaid, F. Morgan, S. Pande, S. Cawley, and B. McGinley
(2013) Scalable hierarchical Network-on-Chip architecture for spiking neural network hard-
ware implementations. IEEE Trans. Parallel Distrib. Syst. 24:2451-2461

5. J. Liu, J. Harkin, Y. Li, and L. Maguire (2015) Low cost fault-tolerant routing algorithm
for Networks-on-Chip. Microprocess. Microsyst. 39:358-372

6. J. Liu, J. Harkin, Y. Li, and L. P. Maguire (2016) Fault-tolerant Networks-on-Chip routing
with coarse and fine-grained look-ahead. IEEE Trans. Comput. Des. Integr. Circuits Syst.
35:260-273

7. S. Cawley, F. Morgan, B. McGinley, S. Pande, L. McDaid, S. Carrillo, and J. Harkin (2011)
Hardware spiking neural network prototyping and application. Genet. Program. Evolvable
Mach. 12:257-280

8. H. de Garis, C. Shuo, B. Goertzel, and L. Ruiting (2010) A world survey of artificial brain
projects, Part I: large-scale brain simulations. Neurocomputing 74:3-29

9. H. Markram (2006) The blue brain project. Nat. Rev. Neurosci. 7:153-160
10. K. A. Boahen (2000) Point-to-point connectivity between neuromorphic chips using ad-

dress events. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47:416-434
11. R. Wang, T. J. Hamilton, J. Tapson, A. van Schaik, A. Topology, and G. Dp (2014)

An FPGA design framework for large-scale spiking neural networks. In: IEEE International
Symposium on Circuits and Systems, 457-460

12. S. Jovanovic, C. Tanougast, C. Bobda, and S. Weber (2009) CuNoC: A dynamic scalable
communication structure for dynamically reconfigurable FPGAs. Microprocess. Microsyst.
33:24-36

13. W. J. Dally and B. Towles (2001) Route packets, not wires: on-chip interconnection net-
works. In: Proceedings of the 38th Design Automation Conference, 684-689

14. L. Benini and G. De Micheli (2002) Networks on chips: a new SoC paradigm. IEEE Com-
put. 35:70-78

15. J. Schemmel, J. Fieres, and K. Meier (2008) Wafer-scale integration of analog neural
networks. In: Proceedings of the International Joint Conference on Neural Networks, 431-
438

16. X. Jin, M. Lujn, L. A. Plana, S. Davies, S. Temple, and S. B. Furber (2010) Modeling
spiking neural networks on SpiNNaker. Comput. Sci. Eng. 12:91-97

17. S. Pande, F. Morgan, S. Cawley, T. Bruintjes, G. Smit, B. McGinley, S. Carrillo, J. Harkin,
and L. McDaid (2013) Modular neural tile architecture for compact embedded hardware
spiking neural network. Neural Process. Lett. 38:131-153

14 Yuling Luo et al.

18. L. P. Maguire, T. M. McGinnity, B. Glackin, A. Ghani, A. Belatreche, and J. Harkin
(2007) Challenges for large-scale implementations of spiking neural networks on FPGAs.
Neurocomputing 71:13-29

19. L. Wan, Y. Luo, S. Song, J. Harkin, and J. Liu (2016) Efficient neuron architecture for
FPGA-based spiking neural networks. In: Proceedings of the 27th Irish Signals and Systems
Conference, 1-6

20. Y. Luo, Q. Fu, J. Liu, J. Harkin, L. McDaid, and Y. Cao (2017) An extended algorithm
using adaptation of momentum and learning rate for spiking neurons emitting multiple
spikes. In: Proceedings of the International Work Conference on Artificial Neural Networks,
1-11

21. J. J. Wade, L. J. McDaid, J. A. Santos, and H. M. Sayers (2010) SWAT: A spiking
neural network training algorithm for classification problems. IEEE Trans. Neural Networks
21:1817-1830.

22. J. Harkin, F. Morgan, L. McDaid, S. Hall, B. McGinley, and S. Cawley (2009) A recon-
figurable and biologically inspired paradigm for computation using Network-on-Chip and
spiking neural networks. Int. J. Reconfigurable Comput. 2009:1-13

