Skip to main content
Log in

Fast and Robust Active Contours Model for Image Segmentation

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Image segmentation using local region-based active contour models can segment images with intensity inhomogeneity effectively, but their segmentation results are sensitive to the initialization and easy to get incorrect results when dealing with texture images. This paper presents a novel active contour model (ACM) for image segmentation. The proposed method adopts local kernel mapping to enhance the discriminative ability to delineate nonlinear decision boundaries between classes. In addition, we introduce a modified convex model and propose a fast evolving scheme accordingly to deal with the minimization of the model energy function. The proposed approach is validated by a comparative study over a large number of experiments on synthetic and real images. The experiments demonstrate that our method is more efficient and robust for segmenting different kinds of images compared with the state-of-the-art image segmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  2. Ayed IB, Mitiche A, Belhadj Z (2005) Multiregion level-set partitioning of synthetic aperture radar images. IEEE Trans Pattern Anal Mach Intell 27(5):793–800

    Article  Google Scholar 

  3. Ben Ayed I, Mitiche A, Belhadj Z (2006) Polarimetric image segmentation via maximum-likelihood approximation and efficient multiphase level-sets. IEEE Trans Pattern Anal Mach Intell 28(9):1493–1500

    Article  Google Scholar 

  4. Ben Salah M, Mitiche A, Ben Ayed I (2010) Effective level set image segmentation with a kernel induced data term. IEEE Trans Image Process 19(1):220–232

    Article  MathSciNet  MATH  Google Scholar 

  5. Ayed IB, Mitiche A (2008) A region merging prior for variational level set image segmentation. IEEE Trans Image Process 17(12):2301–2311

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang XF, Min H, Zou L et al (2015) A novel level set method for image segmentation by incorporating local statistical analysis and global similarity measurement. Pattern Recogn 48(1):189–204

    Article  Google Scholar 

  7. Wang L, He L, Mishra A et al (2009) Active contours driven by local Gaussian distribution fitting energy. Sig Process 89(12):2435–2447

    Article  MATH  Google Scholar 

  8. Malladi R, Sethian J, Vemuri BC (1995) Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Mach Intell 17(2):158–175

    Article  Google Scholar 

  9. Li C, Xu C, Gui C et al (2005) Level set evolution without re-initialization: a new variational formulation. In: IEEE computer society conference on computer vision and pattern recognition, 2005. CVPR 2005. IEEE, 2005, vol 1, pp 430–436

  10. Vasilevskiy A, Siddiqi K (2002) Flux maximizing geometric flows. IEEE Trans Pattern Anal Mach Intell 24(12):1565–1578

    Article  MATH  Google Scholar 

  11. Yang X, Gao X, Li J et al (2014) A shape-initialized and intensity-adaptive level set method for auroral oval segmentation. Inf Sci 277:794–807

    Article  Google Scholar 

  12. Wang Y, Xiang S, Pan C et al (2013) Level set evolution with locally linear classification for image segmentation. Pattern Recogn 46(6):1734–1746

    Article  MATH  Google Scholar 

  13. Zhao YQ, Wang XH, Wang XF et al (2014) Retinal vessels segmentation based on level set and region growing. Pattern Recogn 47(7):2437–2446

    Article  Google Scholar 

  14. Thapaliya K, Pyun JY, Park CS et al (2013) Level set method with automatic selective local statistics for brain tumor segmentation in MR images. Comput Med Imaging Graph 37(7):522–537

    Article  Google Scholar 

  15. Wang XF, Min H, Zhang YG (2015) Multi-scale local region based level set method for image segmentation in the presence of intensity inhomogeneity. Neurocomputing 151:1086–1098

    Article  Google Scholar 

  16. Wang L, Shi F, Li G et al (2014) Segmentation of neonatal brain MR images using patch-driven level sets. NeuroImage 84:141–158

    Article  Google Scholar 

  17. Cote M, Saeedi P (2013) Automatic rooftop extraction in nadir aerial imagery of suburban regions using corners and variational level set evolution. IEEE Trans Geosci Remote Sens 51(1):313–328

    Article  Google Scholar 

  18. Andersson T, Lathen G, Lenz R et al (2013) Modified gradient search for level set based image segmentation. IEEE Trans Image Process 22(2):621–630

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang L, Pan C (2014) Robust level set image segmentation via a local correntropy-based K-means clustering. Pattern Recogn 47(5):1917–1925

    Article  Google Scholar 

  20. Le T, Luu K, Savvides M (2013) SparCLeS: dynamic sparse classifiers with level sets for robust beard/moustache detection and segmentation. IEEE Trans Image Process 22(8):3097–3107

    Article  Google Scholar 

  21. Hao M, Shi W, Zhang H et al (2014) Unsupervised change detection with expectation-maximization-based level set. IEEE Geosci Remote Sens Lett 11(1):210–214

    Article  Google Scholar 

  22. Yang X, Gao X, Tao D et al (2015) An efficient MRF embedded level set method for image segmentation. IEEE Trans Image Process 24(1):9–21

    Article  MathSciNet  MATH  Google Scholar 

  23. Chan TF, Vese L (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  24. Piovano J, Rousson M, Papadopoulo T (2007) Efficient segmentation of piecewise smooth images. In: Scale space and variational methods in computer vision. Springer, Berlin, Heidelberg, 2007, pp 709–720

  25. Li C, Kao C Y, Gore JC et al (2007) Implicit active contours driven by local binary fitting energy. In: IEEE conference on computer vision and pattern recognition, 2007. CVPR’07. IEEE, pp 1–7

  26. Wang L, He L, Mishra A et al (2009) Active contours driven by local Gaussian distribution fitting energy. Signal Process 89(12):2435–2447

    Article  MATH  Google Scholar 

  27. Paragios N, Deriche R (2002) Geodesic active regions and level set methods for supervised texture segmentation]. Int J Comput Vis 46(3):223–247

    Article  MATH  Google Scholar 

  28. Wang XF, Huang DS, Xu H (2010) An efficient local Chan–Vese model for image segmentation. Pattern Recogn 43(3):603–618

    Article  MATH  Google Scholar 

  29. Sun K, Chen Z, Jiang S (2012) Local morphology fitting active contour for automatic vascular segmentation. IEEE Trans Biomed Eng 59(2):464–473

    Article  Google Scholar 

  30. Zhang K, Song H, Zhang L (2010) Active contours driven by local image fitting energy. Pattern Recogn 43(4):1199–1206

    Article  MATH  Google Scholar 

  31. Zhang J, Yu J, Tao D (2018) Local deep-feature alignment for unsupervised dimension reduction. IEEE Trans Image Process. https://doi.org/10.1109/TIP.2018.2804218

    Article  MathSciNet  MATH  Google Scholar 

  32. Yu J, Liu D, Tao D, Seah HS (2011) Complex object correspondence construction in 2D animation. IEEE Trans Image Process 20(11):3257–3269

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang K, Song H, Zhang L (2010) Active contours driven by local image fitting energy. Pattern Recogn 43(4):1199–1206

    Article  MATH  Google Scholar 

  34. Zhang K, Zhang L, Lam KM et al (2015) A level set approach to image segmentation with intensity inhomogeneity. IEEE Trans Cybern 46(2):546–557

    Article  Google Scholar 

  35. Goldstein T, Bresson X, Osher S (2010) Geometric applications of the split Bregman method: segmentation and surface reconstruction. J Sci Comput 45(1–3):272–293

    Article  MathSciNet  MATH  Google Scholar 

  36. Houhou N, Thiran J, Bresson X (2009) Fast texture segmentation based on semilocal region descriptor and active contour. Numer Math Theory Methods Appl 2(4):445–468

    Article  MathSciNet  MATH  Google Scholar 

  37. Müller KR, Mika S, Rätsch G et al (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12(2):181–201

    Article  Google Scholar 

  38. Dhillon IS, Guan Y, Kulis B (2007) Weighted graph cuts without eigenvectors a multilevel approach. IEEE Trans Pattern Anal Mach Intell 29(11):1944–1957

    Article  Google Scholar 

  39. Wu KL, Yang MS (2002) Alternative c-means clustering algorithms. Pattern Recogn 35(10):2267–2278

    Article  MATH  Google Scholar 

  40. Li C, Xu C, Gui C et al (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 19(12):3243–3254

    Article  MathSciNet  MATH  Google Scholar 

  41. Booth S, Clausi D (2001) Image segmentation using MRI vertebral cross-sections. In: Canadian conference on electrical and computer engineering, 2001. IEEE, 2001, vol 2, pp 1303–1307

  42. Wang T, Ji Z, Sun Q, Chen Q, Han S (2015) Image segmentation based on weighting boundary information via graphcut. J Vis Commun Image Represent 33(c):10–19

    Article  Google Scholar 

  43. Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vis 7:11–32

    Article  Google Scholar 

  44. Unnikrishnan R, Pantofaru C, Hebert M (2005) A measure for objective evaluation of image segmentation algorithms. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), vol 3, pp 34–41

  45. Olveresa J, Navaa R, Moya-Alborb E, Escalante-Ramírez B, Brievab J, Cristóbal G, Vallejo E (2014) Texture descriptor approaches to level set segmentation in medical images. In: Proceedings of SPIE 9138, optics, photonics, and digital technologies for multimedia applications, vol III, 91380 J (15 May 2014). http://dx.doi.org/10.1117/12.2054527

  46. Martin D, Fowlkes C, Malik J (2004) Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans Pattern Anal Mach Intell 26:530–549

    Article  Google Scholar 

  47. Peng B, Zhang L (2012) Evaluation of image segmentation quality by adaptive ground truth composition. In: 12th European conference on computer vision (ECCV). Lecture notes in computer science, vol 7574, pp 287–300

  48. Liu W, Zhang H, Tao D, Wang Y, Lu K (2013) Large-scale paralleled sparse principal component analysis. Multimedia Tools Appl 75(3):1–13

Download references

Acknowledgements

This work has been partially supported by National Science Foundation of China (6100318, 61371168), National High Technology Research and Development Program of China (No. 2013AA014604), National key research and development program of China (2016YFC0801304, 2017YFC0803705), Jiangsu Province Regular Institutions of Higher Learning Academic Degree Graduate Student Innovation Plan (KYZZ16_0192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Cao, G., Yu, Q. et al. Fast and Robust Active Contours Model for Image Segmentation. Neural Process Lett 49, 431–452 (2019). https://doi.org/10.1007/s11063-018-9827-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9827-3

Keywords

Navigation