Skip to main content
Log in

Structural Reweight Sparse Subspace Clustering

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Subspace clustering aims to segment a group of data points into a union of subspaces. Reweight sparse subspace clustering is one of the state-of-the-art algorithms which proposed an iterative weighted subspace clustering. The reweight matrix helps to improve the performance of the affinity matrix construction process but it easily falls into a local minimization. In this paper, we propose a structural reweight sparse subspace clustering algorithm which introduces the structural information into reweight subspace clustering. The structural information achieved in spectral clustering process is useful for the subsequent iterative optimization process which helps to obtain a better local minimization. The experimental results on the Extended Yale B, Hopkins 155, and COIL 20 datasets demonstrate that our algorithm achieves a better performance on subspace clustering problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wan M, Lai Z, Yang G et al (2017) Local graph embedding based on maximum margin criterion via fuzzy set. Fuzzy Sets Syst 318:120–131

    Article  MathSciNet  Google Scholar 

  2. Vidal R (2011) Subspace clustering. IEEE Signal Process Mag 28(2):52–68

    Article  Google Scholar 

  3. Vidal R, Ma Y, Sastry S (2005) Generalized principal component analysis (GPCA). IEEE Trans Pattern Anal Mach Intell 27(12):1945–1959

    Article  Google Scholar 

  4. Archambeau C, Delannay N et al (2008) Mixtures of robust probabilistic principal component analyzers. Neurocomputing 71(7):1274–1282

    Article  Google Scholar 

  5. Derksen H, Ma Y, Hong W et al (2007) Segmentation of multivariate mixed data via lossy coding and compression. IEEE Trans Pattern Anal Mach Intell (TPAMI) 29(9):1546–1562

    Article  Google Scholar 

  6. Fischler M, Bolles R (1981) RANSAC random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  Google Scholar 

  7. Zhang T, Szlam A, Wang Y et al (2012) Hybrid linear modeling via local best-fit flats. Int J Comput Vis 100(3):217–240

    Article  MathSciNet  MATH  Google Scholar 

  8. Yan J, Pollefeys M (2006) A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: European conference on computer vision, pp 94–106. Springer, Berlin

  9. Goh A, Vidal R (2007) Segmenting motions of different types by unsupervised manifold clustering. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–6

  10. Chen G, Lerman G (2009) Spectral curvature clustering (SCC). Int J Comput Vis 81(3):317–330

    Article  Google Scholar 

  11. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  Google Scholar 

  12. Liu G, Lin Z, Yan S et al (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  13. Dong W, Wu X J (2017) Robust low rank subspace segmentation via joint L21-norm minimization. Neural Process Lett 1–14

  14. Feng J, Lin Z, Xu H, et al (2014) Robust subspace segmentation with block-diagonal prior. In: IEEE conference on computer vision and pattern recognition, pp 3818–3825

  15. Candes E, Wakin M, Boyd S (2008) Enhancing sparsity by reweighted \({\ell _1}\) minimization. J Fourier Anal Appl 14(5):877–905

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu J, Xu K, Chen K et al (2015) Reweighted sparse subspace clustering. Comput Vis Image Underst 138:25–37

    Article  Google Scholar 

  17. Li CG, Vidal R (2015) Structured sparse subspace clustering: a unified optimization framework. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 277–286

  18. Wu Z, Yin M, Zhou Y, et al (2017) Robust spectral subspace clustering based on least square regression. Neural Process Lett 1–14

  19. Boyd S, Parikh N, Chu E et al (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    Article  MATH  Google Scholar 

  20. Fazel M, Hindi H, Boyd S (2003) Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices. In: Proceedings of American control conference, pp 2156–2162

  21. Xie Z, Hu J (2013) Reweighted L1-minimization for sparse solutions to underdetermined linear systems. In: Proceedings of international congress on image and signal processing (CISP), pp 1660–1664

  22. Chen X, Zhou W (2014) Convergence of the reweighted L1 minimization algorithm for L2-Lp minimization. Comput Optim Appl 59(1–2):47–61

    Article  MathSciNet  Google Scholar 

  23. Li CG, You C, Vidal R (2017) Structured sparse subspace clustering: a joint affinity learning and subspace clustering framework. IEEE Trans Image Process 26(6):2988–3001

    Article  MathSciNet  MATH  Google Scholar 

  24. You C, Robinson D, Vidal R (2016) Scalable sparse subspace clustering by orthogonal matching pursuit. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3918–3927

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant U1605252, in part by the National Key Research and Development Program of China under Grant 2016QY01W0200, the National Natural Science Foundation of China (41031064, 61572384, 61432014), China’s postdoctoral fund first-class funding (2014M560752), Shanxi province postdoctoral science fund, The central university basic scientific research business fee (JBG150225), Shaanxi Key Technologies Research Program (2017KW-017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Han, B., Li, J. et al. Structural Reweight Sparse Subspace Clustering. Neural Process Lett 49, 965–977 (2019). https://doi.org/10.1007/s11063-018-9859-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9859-8

Keywords

Navigation