Skip to main content
Log in

Neural Block Control via Integrator Backstepping for a Robotic Arm in Real-Time

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper presents an online neural identification and control scheme in continuous-time for trajectory tracking of a robotic arm evolving in the vertical plane. A recurrent high-order neural network (RHONN) structure in a block strict-feedback form is proposed to identify online in a series-parallel configuration, using the filtered error learning law, the dynamics of the plant. Based on the RHONN identifier structure, a stabilizing controller is derived via integrator backstepping procedure. The performance of the neural control scheme proposed is tested on a two degrees of freedom robotic arm, of our own design and unknown parameters, powered by industrial servomotors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nørgaard M, Ravn O, Poulsen NK, Hansen LK (2000) Neural networks for modelling and control of dynamic systems. Springer, London

    Book  MATH  Google Scholar 

  2. Liu GP (2001) Nonlinear identification and control a neural network approach. Springer, London

    Book  MATH  Google Scholar 

  3. Kosmatopoulos EB, Ioannou PA, Christodoulou MA (1992) Identification of nonlinear systems using new dynamic neural network structures. In: Proceedings of the 31st conference on decision and control, pp 20–25

  4. Kosmatopoulos EB, Polycarpou MM, Christodoulou MA, Ioannou PA (1995) High-order neural network structures for identification of dynamical systems. IEEE Trans Neural Netw 6(2):422–431

    Article  Google Scholar 

  5. Kosmatopoulos EB, Christodoulou MA, Ioannou PA (1997) Dynamical neural networks that ensure exponential identification error convergence. Neural Netw 10(12):299–314

    Article  Google Scholar 

  6. Mohammadzaheri M, Chen L, Grainger S (2011) A critical review of the most popular types of neuro control. Asian J Control 14(1):1–11

    Article  MathSciNet  MATH  Google Scholar 

  7. Sanchez EN, Gaytan A, Saad M (2006) Decentralized neural identification and control for robotics manipulators. In: Proceedings of the IEEE international symposium on intelligent control, October 4–6, Munich, Germany

  8. Rovithakis GA, Christodoulou MA (2000) Adaptive control with recurrent high-order neural networks. Springer, London

    Book  Google Scholar 

  9. Alvarez S, Castañeda CE, Jurado F (2012) Neural identification and control using high–order sliding modes. In Proceeding of the Latin American control conference (CLCA), Red Peruana de Control y Automatización (REPCA), Lima, Perú, pp 23–26

  10. Shiev K, Shakev N, Topalov AV, Ahmed S (2012) Trajectory control of manipulators using type-2 fuzzy neural friction and disturbance compensator. In: IEEE international conference on intelligent system (IS), pp 324–329

  11. He W, Ge SS, Ge Li Y, Chew E, Ng YS (2014) Neural network control of a rehabilitation robot by state and output feedback. J Int Robotic Syst. https://doi.org/10.1007/s10846-014-0150-6

  12. Tang ZL, Ge SS, Tee KP, He W (2015) Adaptive neural control for an uncertain robotic manipulator with joint space constraints. Int J Control. https://doi.org/10.1080/00207179.2015.1135351

  13. Wang M, Yang A (2016) Adaptive neural control of robot manipulator with prescribed performance. In: Proceedings of the 35th chinese control conference, July 27–29, Chengdu, China

  14. Na J, Yang C, Yang R (2016) Adaptive RBFNN control of robot manipulators with finite-time convergence. In: 42nd annual conference of the IEEE industrial electronics society, IECON, pp 42–47

  15. He W, Chen Y, Yin Z (2016) Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans Cybern 46(3):620629

    Article  Google Scholar 

  16. Mostefai L, Denai M, Oh S, Hori Y (2009) Optimal control design for robust fuzzy friction compensation in a robot joint. IEEE Trans Ind Electron 56:3832–3839

    Article  Google Scholar 

  17. Park SH, Han SI (2011) Robust-tracking control for robot manipulator with deadzone and friction using backstepping and RFNN controller. IET Control Theory Appl 5(12):1397–1417

    Article  MathSciNet  Google Scholar 

  18. Jin L, Li S (2016) Distributed task allocation of multiple robots: a control perspective. IEEE Trans Syst Man Cybernet: Syst. https://doi.org/10.1109/TSMC.2016.2627579

  19. Jin L, Li S, Luo X, Li Y, Qin B (2017) Neural dynamics for cooperative control of redundant robot manipulators. IEEE Trans Ind Inform. https://doi.org/10.1109/TII.2018.2789438

  20. Li S, Zhou M, Luo X (2017) Modified primal-dual neural networks for motion control of redundant manipulators with dynamic rejection of harmonic noises. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2017.2770172

  21. Farell JA, Polycarpou M (2006) Adaptive approximation based control unifying neural, fuzzy and traditional adaptive approximation approaches. Wiley, Hoboken

    Book  Google Scholar 

  22. Slotine JJE, Li W (1991) Applied nonlinear control. Prentice-Hall Inc, Englewood Cliffs

    MATH  Google Scholar 

  23. Sastry S, Bodson M (1989) Adaptive control: stability, convergence, and robustness. Prentice-Hall Inc., Englewood Cliffs

    MATH  Google Scholar 

  24. Ioannou PA, Datta A (1991) Robust adaptive control: a unified approach. Proc IEEE 79(12):1736–1768

    Article  Google Scholar 

  25. Pham DT, Liu X (1995) Neural networks for identification, prediction and control. Springer, London

    Book  Google Scholar 

  26. Landau ID (1979) Adaptive control. Marcel Dekker Inc., New York

    MATH  Google Scholar 

  27. Narendra KS, Annaswamy AM (1989) Stable adaptive systems. Prentice-Hall Inc., Englewood Cliffs

    MATH  Google Scholar 

  28. Raol JR, Girija G, Singh J (2004) Modelling and parameter estimation of dynamic systems. The Institution of Electrical Engineers, London

    Book  MATH  Google Scholar 

  29. Lewis FL, Jagannathan S, Yesildirek A (1999) Neural network control of robot manipulators and nonlinear systems. Taylor & Francis, Philadelphia

    Google Scholar 

  30. Kelly R, Santibáñez V (2003) Control de movimiento de robots manipuladores. PEARSON Prentice Hall, Madrid, pp 285–297

    Google Scholar 

  31. Jurado F, Flores MA, Santibáñez V, Llama MA, Castañeda CE (2011) Continuous-time neural identification for a 2 DOF vertical robot manipulator. In: Proceedings of the electronics, robotics and automotive mechanics conference (CERMA), pp 77–92

  32. Sanchez EN, Alanis AY, Loukianov AG (2008) Discrete time high order neural control. Springer, Berlin

    Book  MATH  Google Scholar 

  33. Krstić M, Kanellakopoulos I, Kokotović P (1995) Nonlinear and adaptive control design. Wiley, New York

    MATH  Google Scholar 

  34. Utkin V, Chen DS, Chang HC (2000) Block control principle for mechanical systems. J Dyn Syst Meas Control 122:1–10

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by CONACYT and TecNM Proyects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Castañeda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurado, F., Vázquez, L.A., Castañeda, C.E. et al. Neural Block Control via Integrator Backstepping for a Robotic Arm in Real-Time. Neural Process Lett 49, 1139–1155 (2019). https://doi.org/10.1007/s11063-018-9860-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9860-2

Keywords

Navigation