Skip to main content
Log in

Classification of EEG Signals Using Hybrid Feature Extraction and Ensemble Extreme Learning Machine

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Electroencephalogram (EEG) signals play an important role in clinical diagnosis and cognitive neuroscience. Automatic classification of EEG signals is gradually becoming the research focus, which contains two procedures: feature extraction and classification. In the phase of feature extraction, a hybrid feature extraction method is proposed and the features are derived by performing linear and nonlinear feature extraction methods, which can describe abundant properties of original EEG signals. In order to eliminate irrelevant and redundant features, feature selection based on class separability is employed to select the optimal feature subset. In the phase of classification, this paper presents a novel ensemble extreme learning machine based on linear discriminant analysis. Linear discriminant analysis is used to transform training subsets that are generated by bootstrap method, through which we can increase the differences of basic classifiers and reduce generalization errors of ensemble extreme learning machine. Experiments on two different EEG datasets are conducted in this study. Class separability is investigated to verify the effectiveness of feature extraction methods. The overall classification results show that compared with other similar studies, the proposed method can significantly enhance the performance of EEG signals classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain–computer interfaces. J Neural Eng 4(2):R1

    Article  Google Scholar 

  2. Mo H, Zhao Y (2016) Motor imagery electroencephalograph classification based on optimized support vector machine by magnetic bacteria optimization algorithm. Neural Process Lett 44(1):185–197

    Article  Google Scholar 

  3. Roebuck A, Monasterio V, Gederi E et al (2013) A review of signals used in sleep analysis. Physiol Meas 35(1):R1

    Article  Google Scholar 

  4. Song Y, Zhang J (2013) Automatic recognition of epileptic EEG patterns via extreme learning machine and multiresolution feature extraction. Expert Syst Appl 40(14):5477–5489

    Article  Google Scholar 

  5. Wang D, Ren D, Li K, Feng Y, Ma D, Yan X, Wang G (2018) Epileptic seizure detection in long-term EEG recordings by using wavelet-based directed transfer function. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2018.2809798

    Article  Google Scholar 

  6. Gallego-Jutglà E, Solé-Casals J, Vialatte FB, Elgendi M, Cichocki A, Dauwels J (2015) A hybrid feature selection approach for the early diagnosis of Alzheimer’s disease. J Neural Eng 12(1):016018

    Article  Google Scholar 

  7. Goldstein MR, Peterson MJ, Sanguinetti JL, Tononi G, Ferrarelli F (2015) Topographic deficits in alpha-range resting EEG activity and steady state visual evoked responses in schizophrenia. Schizophr Res 168(1):145–152

    Article  Google Scholar 

  8. Acharya UR, Sree SV, Swapna G, Martis RJ, Suri JS (2013) Automated EEG analysis of epilepsy: a review. Knowl Based Syst 45:147–165

    Article  Google Scholar 

  9. Wu W, Nagarajan S, Chen Z (2016) Bayesian machine learning: EEG/MEG signal processing measurements. IEEE Signal Process Mag 33(1):14–36

    Article  Google Scholar 

  10. Balli T, Palaniappan R (2010) Classification of biological signals using linear and nonlinear features. Physiol Meas 31(7):903–920

    Article  Google Scholar 

  11. Wei Q, Wang Y, Gao X, Gao S (2007) Amplitude and phase coupling measures for feature extraction in an EEG-based brain–computer interface. J Neural Eng 4(2):120

    Article  Google Scholar 

  12. Al-Fahoum AS, Al-Fraihat AA (2014) Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. ISRN Neurosci 2014:730218

    Article  Google Scholar 

  13. Polat K, Güneş S (2007) Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl Math Comput 187(2):1017–1026

    MathSciNet  MATH  Google Scholar 

  14. Chua KC, Chandran V, Acharya UR, Lim CM (2011) Application of higher order spectra to identify epileptic EEG. J Med Syst 35(6):1563–1571

    Article  Google Scholar 

  15. Goldfine AM, Victor JD, Conte MM, Bardin JC, Schiff ND (2011) Determination of awareness in patients with severe brain injury using EEG power spectral analysis. Clin Neurophysiol 122(11):2157–2168

    Article  Google Scholar 

  16. Bhattacharyya A, Sharma M, Pachori RB, Sircar P, Acharya UR (2018) A novel approach for automated detection of focal EEG signals using empirical wavelet transform. Neural Comput Appl 29(8):47–57

    Article  Google Scholar 

  17. Zhang Y, Liu B, Ji X, Huang D (2017) Classification of EEG signals based on autoregressive model and wavelet packet decomposition. Neural Process Lett 45(2):365–378

    Article  Google Scholar 

  18. Güler NF, Übeyli ED, Güler İ (2005) Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst Appl 29(3):506–514

    Article  Google Scholar 

  19. Shayegh F, Sadri S, Amirfattahi R, Ansari-Asl K (2014) A model-based method for computation of correlation dimension, Lyapunov exponents and synchronization from depth-EEG signals. Comput Methods Progr Biomed 113(1):323–337

    Article  MATH  Google Scholar 

  20. Bai Y, Liang Z, Li X, Voss LJ, Sleigh JW (2015) Permutation Lempel-Ziv complexity measure of electroencephalogram in GABAergic anaesthetics. Physiol Meas 36(12):2483–2501

    Article  Google Scholar 

  21. Song Y, Liò P (2010) A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine. J Biomed Sci Eng 3(6):556–567

    Article  Google Scholar 

  22. Ocak H (2009) Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 36(2):2027–2036

    Article  Google Scholar 

  23. Kannathal N, Choo ML, Acharya UR, Sadasivan PK (2005) Entropies for detection of epilepsy in EEG. Comput Methods Progr Biomed 80(3):187–194

    Article  Google Scholar 

  24. Acharya UR, Fujita H, Sudarshan VK, Bhat S, Koh JE (2015) Application of entropies for automated diagnosis of epilepsy using EEG signals: a review. Knowl Based Syst 88:85–96

    Article  Google Scholar 

  25. Subha DP, Joseph PK, Acharya UR, Lim CM (2010) EEG signal analysis: a survey. J Med Syst 34(2):195–212

    Article  Google Scholar 

  26. Yoon H, Yang K, Shahabi C (2005) Feature subset selection and feature ranking for multivariate time series. IEEE Trans Knowl Data Eng 17(9):1186–1198

    Article  Google Scholar 

  27. Wu W, Chen Z, Gao X, Li Y, Brown EN, Gao S (2015) Probabilistic common spatial patterns for multichannel EEG analysis. IEEE Trans Pattern Anal Mach Intell 37(3):639–653

    Article  Google Scholar 

  28. Qi F, Li Y, Wu W (2015) RSTFC: a novel algorithm for spatio-temporal filtering and classification of single-trial EEG. IEEE Trans Neural Netw Learn Syst 26(12):3070–3082

    Article  MathSciNet  Google Scholar 

  29. Long J, Li Y, Yu T, Gu Z (2012) Target selection with hybrid feature for BCI-based 2-D cursor control. IEEE Trans Biomed Eng 59(1):132–140

    Article  Google Scholar 

  30. Smart O, Burrell L (2015) Genetic programming and frequent itemset mining to identify feature selection patterns of iEEG and fMRI epilepsy data. Eng Appl Artif Intell 39:198–214

    Article  Google Scholar 

  31. Löfhede J, Thordstein M, Löfgren N, Flisberg A, Rosa-Zurera M, Kjellmer I, Lindecrantz K (2010) Automatic classification of background EEG activity in healthy and sick neonates. J Neural Eng 7(1):016007

    Article  Google Scholar 

  32. Sun ZR, Cai YX, Wang SJ, Wang CD, Zheng YQ, Chen YH, Chen YC (2018) Multi-view intact space learning for tinnitus classification in resting state EEG. Neural Process Lett. https://doi.org/10.1007/s11063-018-9845-1

    Article  Google Scholar 

  33. Hu HW, Chen YL, Tang K (2013) A novel decision-tree method for structured continuous-label classification. IEEE Trans Cybern 43(6):1734–1746

    Article  Google Scholar 

  34. Thomas EM, Temko A, Lightbody G, Marnane WP, Boylan GB (2010) Gaussian mixture models for classification of neonatal seizures using EEG. Physiol Meas 31(7):1047–1064

    Article  Google Scholar 

  35. Zhang GP (2000) Neural networks for classification: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 30(4):451–462

    Article  MathSciNet  Google Scholar 

  36. Angulo C, Ruiz FJ, González L, Ortega JA (2006) Multi-classification by using tri-class SVM. Neural Process Lett 23(1):89–101

    Article  Google Scholar 

  37. Subasi A, Gursoy MI (2010) EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 37(12):8659–8666

    Article  Google Scholar 

  38. Termenon M, Graña M, Barrós-Loscertales A, Ávila C (2013) Extreme learning machines for feature selection and classification of cocaine dependent patients on structural MRI data. Neural Process Lett 38(3):375–387

    Article  Google Scholar 

  39. Yuan Q, Zhou W, Li S, Cai D (2011) Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res 96(1):29–38

    Article  Google Scholar 

  40. Liu N, Wang H (2010) Ensemble based extreme learning machine. IEEE Signal Process Lett 17(8):754–757

    Article  Google Scholar 

  41. Samat A, Du P, Liu S, Li J, Cheng L (2014) E2LMs: ensemble extreme learning machines for hyperspectral image classification. IEEE J Sel Top Appl Earth Obs Remote Sens 7(4):1060–1069

    Article  Google Scholar 

  42. Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation and active learning. In: Tesauro G, Touretzky D, Leen T (eds) Advances in neural information processing systems, vol 7. MIT Press, Cambridge, MA, pp 231–238

    Google Scholar 

  43. Sun S, Zhang C, Zhang D (2007) An experimental evaluation of ensemble methods for EEG signal classification. Pattern Recognit Lett 28(15):2157–2163

    Article  Google Scholar 

  44. Übeyli ED (2008) Wavelet/mixture of experts network structure for EEG signals classification. Expert Syst Appl 34(3):1954–1962

    Article  Google Scholar 

  45. Zhang Y, Dong Z, Wang S, Ji G, Yang J (2015) Preclinical diagnosis of magnetic resonance (MR) brain images via discrete wavelet packet transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM). Entropy 17(4):1795–1813

    Article  Google Scholar 

  46. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circul Physiol 278(6):H2039–H2049

    Article  Google Scholar 

  47. Han M, Liu X (2013) Feature selection techniques with class separability for multivariate time series. Neurocomputing 110:29–34

    Article  Google Scholar 

  48. Niu P, Ma Y, Li M, Yan S, Li G (2016) A kind of parameters self-adjusting extreme learning machine. Neural Process Lett 44(3):813–830

    Article  Google Scholar 

  49. Huang GB (2014) An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput 6(3):376–390

    Article  MathSciNet  Google Scholar 

  50. Yao C, Lu Z, Li J, Xu Y, Han J (2014) A subset method for improving linear discriminant analysis. Neurocomputing 138:310–315

    Article  Google Scholar 

  51. Blake CL, Merz CJ (1998) UCI Repository of machine learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.html. Accessed 1 Nov 2014

  52. Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 64(6):061907

    Article  Google Scholar 

  53. Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A (2010) OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw 21(1):158–162

    Article  Google Scholar 

  54. Skurichina M, Duin RPW (2002) Bagging, boosting and the random subspace method for linear classifiers. Pattern Anal Appl 5(2):121–135

    Article  MathSciNet  MATH  Google Scholar 

  55. Orhan U, Hekim M, Ozer M (2011) EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst Appl 38(10):13475–13481

    Article  Google Scholar 

  56. Acharya UR, Molinari F, Sree SV, Chattopadhyay S, Ng KH, Suri JS (2012) Automated diagnosis of epileptic EEG using entropies. Biomed Signal Process Control 7(4):401–408

    Article  Google Scholar 

  57. Acharya UR, Sree SV, Alvin APC, Suri JS (2012) Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework. Expert Syst Appl 39(10):9072–9078

    Article  Google Scholar 

  58. Peker M, Sen B, Delen D (2016) A novel method for automated diagnosis of epilepsy using complex-valued classifiers. IEEE J Biomed Health Inform 20(1):108–118

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61773087 and 61374154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Han.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, W., Han, M. Classification of EEG Signals Using Hybrid Feature Extraction and Ensemble Extreme Learning Machine. Neural Process Lett 50, 1281–1301 (2019). https://doi.org/10.1007/s11063-018-9919-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9919-0

Keywords

Navigation