Skip to main content
Log in

An Artificial Neural Network Model to Solve the Fuzzy Shortest Path Problem

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In the present research, we are going to obtain the solution of the fuzzy shortest path (FSP) problem. According to our search in the scientific reported papers, this is the first scientific attempt for resolving of FSP by artificial neural network model which has the global exponential stability property. Here, by reformulating the original problem to an interval program and then weighting problem, the Karush–Kuhn–Tucker (KKT) optimality conditions are suggested as a new strategy for the problem. Moreover, we apply the KKT conditions to proposed an artificial neural network model as a high-performance tool to provide the solution of the problem. In continuous, the global convergence and the global exponential stability of the model were approved in this research. In the final step, several numerical examples are presented to depict the performance of the method. Reported results were compared with some other published papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  2. Antonio JK, Huang GM, Tsai WK (1992) A fast distributed shortest path algorithm for a class of hierarchically clustered data networks. IEEE Trans Comput 41(6):710–724

    Article  Google Scholar 

  3. Bazaraa MS, Shetty C, Sherali HD (1990) Linear programming and network flows. John Wiley and Sons, New York

    Google Scholar 

  4. Bodin L, Golden BL, Assad A, Ball M (1983) Routing and scheduling of vehicles and crews: the state of the art. Comput Oper Res 10(2):63–211

    Article  MathSciNet  Google Scholar 

  5. Deng Y, Chen Y, Zhang Y, Mahadevan S (2012) Fuzzy Dijkstra algorithm for shortest path problem under uncertain environment. Appl Soft Comput 12:1231–1237

    Article  Google Scholar 

  6. Doua Y, Zhu L, Wang HS (2012) Solving the fuzzy shortest path problem using multi-criteria decision method based on vague similarity measure. Appl Soft Comput 12:1621–1631

    Article  Google Scholar 

  7. Dubois D, Prade H (1980) Fuzzy sets and systems: theory and applications. Academic Press, New York

    MATH  Google Scholar 

  8. Effati S, Mansoori A, Eshaghnezhad M (2015) An efficient projection neural network for solving bilinear programming problems. Neurocomputing 168:1188–1197

    Article  Google Scholar 

  9. Effati S, Ranjbar M (2011) A novel recurrent nonlinear neural network for solving quadratic programming problems. Appl Math Model 35(4):1688–1695

    Article  MathSciNet  MATH  Google Scholar 

  10. Ephremides A, Verdu S (1989) Control and optimization methods in communication network problems. IEEE Trans Autom Control 34(9):930–942

    Article  MathSciNet  MATH  Google Scholar 

  11. Eshaghnezhad M, Effati S, Mansoori A (2017) A neurodynamic model to solve nonlinear Pseudo-Monotone projection equation and its applications. IEEE Trans Cybern 47(10):3050–3062

    Article  Google Scholar 

  12. Fischer F, Helmberg C (2014) Dynamic graph generation for the shortest path problem in time expanded networks. Math Program 143(1):257–297

    Article  MathSciNet  MATH  Google Scholar 

  13. Friedman M, Ma M, Kandel A (1999) Numerical solution of fuzzy differential and integral equations. Fuzzy Set Syst 106:35–48

    Article  MathSciNet  MATH  Google Scholar 

  14. García MS, Lamata MT (2005) The fuzzy sets in maintenance process. In: Proceedings of the European society for fuzzy logic and technology

  15. Golovin D, Goyal V, Polishchuk V, Ravi R, Sysikaski M (2015) Improved approximations for two-stage min-cut and shortest path problems under uncertainty. Math Program 149(1):167–194

    Article  MathSciNet  MATH  Google Scholar 

  16. Hernandes F, Lamata MT, Verdegay JL, Yamakami A (2007) The shortest path problem on networks with fuzzy parameters. Fuzzy Sets Syst 158:1561–1570

    Article  MathSciNet  MATH  Google Scholar 

  17. Ji X, Iwamura K, Shao Z (2007) New models for shortest path problem with fuzzy arc lengths. Appl Math Model 31:259–269

    Article  MATH  Google Scholar 

  18. Jun S, Shin KG (1991) Shortest path planning in distributed workspace using dominance relation. IEEE Trans Robot Autom 7(3):342–350

    Article  Google Scholar 

  19. Khalil HK (1996) Nonlinear systems. Prentice-Hall, Michigan

    Google Scholar 

  20. Klein CM (1991) Fuzzy shortest paths. Fuzzy Sets Syst 39:27–41

    Article  MathSciNet  MATH  Google Scholar 

  21. Lawler EL (1976) Combinatorial optimization: networks and matroids. Holt, Rinehart and Winston, New York

    MATH  Google Scholar 

  22. Lin K, Chen M (1994) The fuzzy shortest path problem and its most vital arcs. Fuzzy Sets Syst 58:343–353

    Article  MathSciNet  Google Scholar 

  23. Lin PL, Chang S (1993) A shortest path algorithm for a nonrotating object among obstacles of arbitrary shapes. IEEE Trans Syst Man Cybern 23(3):825–833

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu ST, Kao C (2004) Network flow problems with fuzzy arc lengths. IEEE Trans Syst Man Cybern Part B Cybern 34:765–769

    Article  Google Scholar 

  25. Liou T-S, Wang M-J (1992) Ranking fuzzy numbers with integral interval. Fuzzy Sets Syst 50:247–255

    Article  MATH  Google Scholar 

  26. Miettinen KM (1999) Non-linear multiobjective optimization. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  27. Mahdavi I, Nourifar R, Heidarzade A, Amiri NM (2009) A dynamic programming approach for finding shortest chains in a fuzzy network. Appl Soft Comput 9:503–511

    Article  Google Scholar 

  28. Mansoori A, Effati S, Eshaghnezhad M (2017) An efficient recurrent neural network model for solving fuzzy non-linear programming problems. Appl Intell 46:308–327

    Article  Google Scholar 

  29. Mansoori A, Effati S, Eshaghnezhad M (2018) A neural network to solve quadratic programming problems with fuzzy parameters. Fuzzy Optim Decis Mak 17(1):75–101

    Article  MathSciNet  MATH  Google Scholar 

  30. Mansoori A, Erfanian M (2018) A dynamic model to solve the absolute value equations. J Comput Appl Math 333:28–35

    Article  MathSciNet  MATH  Google Scholar 

  31. Mansoori A, Eshaghnezhad M, Effati S (2018) An efficient neural network model for solving the absolute value equations. IEEE Trans Circuits Syst II Express Br 65(3):391–395

    Article  MATH  Google Scholar 

  32. Nazemi A (2018) A capable neural network framework for solving degenerate quadratic optimization problems with an application in image fusion. Neural Process Lett 47(1):167–192

    Article  Google Scholar 

  33. Noga A, Yuval E, Michal F, Moshe T (2014) Economical graph discovery. Oper Res 62(6):1236–1246

    Article  MATH  Google Scholar 

  34. Okada S, Soper T (2000) A shortest path problem on a network with fuzzy arc lengths. Fuzzy Sets Syst 109:129–140

    Article  MathSciNet  MATH  Google Scholar 

  35. Pang JS (1987) A posteriori error bounds for the linearly-constrained variational inequality problem. Math Oper Res 12:474–484

    Article  MathSciNet  Google Scholar 

  36. Smith OJ, Boland N, Waterer H (2012) Solving shortest path problems with a weight constraint and replenishment arcs. Comput Oper Res 39:964–984

    Article  MathSciNet  MATH  Google Scholar 

  37. Stefanini L, Sorini L, Guerra ML (2006) Parametric representation of fuzzy numbers and application to fuzzy calculus. Fuzzy Sets Syst 157:2423–2455

    Article  MathSciNet  MATH  Google Scholar 

  38. Soueres P, Laumond J-P (1996) Shortest paths synthesis for a car-like robot. IEEE Trans Autom Control 41(5):672–688

    Article  MathSciNet  MATH  Google Scholar 

  39. Wu H-C (2004) Evaluate fuzzy optimization problems based on biobjective programming problems. Comput Math Appl 47:893–902

    Article  MathSciNet  MATH  Google Scholar 

  40. Xia Y, Wang J (2015) A bi-projection neural network for solving constrained quadratic optimization problems. IEEE Trans Neural Netw Learn Syst 27(2):214–224

    Article  MathSciNet  Google Scholar 

  41. Xia Y, Wang J (1998) A general methodology for designing globally convergent optimization neural networks. IEEE Trans Neural Netw 9:1331–1343

    Article  Google Scholar 

  42. Yager RR (1981) A procedure for ordering fuzzy subsets of the unit interval. Inf Sci 24:143–161

    Article  MathSciNet  MATH  Google Scholar 

  43. Yu H, Bertsekas DP (2013) On boundedness of q-learning iterates for stochastic shortest path problems. Math Oper Res 38(2):209–227

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freydoon Rahbarnia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshaghnezhad, M., Rahbarnia, F., Effati, S. et al. An Artificial Neural Network Model to Solve the Fuzzy Shortest Path Problem. Neural Process Lett 50, 1527–1548 (2019). https://doi.org/10.1007/s11063-018-9945-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9945-y

Keywords

Navigation