Skip to main content
Log in

Robust Affine Subspace Clustering via Smoothed \(\ell _{0}\)-Norm

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In the past few years, sparse representation based method has been used in many fields with breathtaking speed due to its superior sparse recovery performance. Sparse subspace clustering (SSC), as one of its application hot-spots, has attracted considerable attention. Traditional sparse subspace clustering methods employ the \(\ell _{1}\)-norm to induce sparse representation of data points. Typically, the use of \(\ell _{1}\)-regularization instead of the \(\ell _{0}\) one can make the objective function convex while it also causes large errors on large coefficients in some cases. In this work, we propose using the non-convex smoothed \(\ell _{0}\)-norm to replace the \(\ell _{0}\) one for affine subspace clustering. This leads to a non-convex minimization problem. We then propose an effective method to solve the problem which minimizes the objective function by using the gradient method and proximal projection. In addition, the proposed algorithm is robust to noise and can provide a fast solution. Extensive experiments on real datasets demonstrate the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Basri R, Jacobs D (2003) Lambertian reflectance and linear subspaces. IEEE Trans Pattern Anal Mach Intell 25(2):218–233

    Article  Google Scholar 

  2. Chen G, Lerman G (2009) Spectral curvature clustering (SCC). Int J Comput Vis 81(3):317–330

    Article  Google Scholar 

  3. David A, Jean P (2002) Computer vision: a modern approach. Prentice Hall, Upper Saddle River, pp 654–659

    Google Scholar 

  4. Eftekhari A, Babaie-Zadeh M, Jutten C, Moghaddam HA (2009) Robust-SL0 for stable sparse representation in noisy settings. In: IEEE international conference on acoustics, speech and signal processing, ICASSP 2009. IEEE, pp 3433–3436

  5. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  Google Scholar 

  6. Flusser J, Suk T (1993) Pattern recognition by affine moment invariants. Pattern Recognit 26(1):167–174

    Article  MathSciNet  Google Scholar 

  7. Gabay D, Mercier B (1976) A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput Math Appl 2(1):17–40

    Article  MATH  Google Scholar 

  8. Georghiades AS, Belhumeur PN (1998) Illumination cone models for faces recognition under variable lighting. In: Proceedings of CVPR 1998

  9. Hong C, Yu J, Wan J, Tao D, Wang M (2015) Multimodal deep autoencoder for human pose recovery. IEEE Trans Image Process 24(12):5659–5670

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang S, Yeh Y, Eguchi S (2009) Robust kernel principal component analysis. Neural Comput 21(11):3179–3213

    Article  MathSciNet  MATH  Google Scholar 

  11. Hull JJ (1994) A database for handwritten text recognition research. IEEE Trans Pattern Anal Mach Intell 16(5):550–554

    Article  Google Scholar 

  12. Jolliffe I (2011) Principal component analysis. In: International encyclopedia of statistical science. Springer, Berlin, pp 1094–1096

  13. Lee K, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 5:684–698

    Google Scholar 

  14. Li C, Vidal R (2015) Structured sparse subspace clustering: a unified optimization framework. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 277–286

  15. Li J, Liang X, Shen S, Xu T, Feng J, Yan S (2018) Scale-aware fast r-cnn for pedestrian detection. IEEE Trans Multimed 20(4):985–996

    Google Scholar 

  16. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  17. Lowe DG (1999) Object recognition from local scale-invariant features. In: The proceedings of the 7th IEEE international conference on Computer vision, 1999, 2:1150–1157. IEEE

  18. Lu C, Min H, Zhao Z, Zhu L, Huang D, Yan S (2012) Robust and efficient subspace segmentation via least squares regression. In: European conference on computer vision. Springer, Berlin, pp 347–360

  19. Martinez AM (1998) The AR face database. CVC Technical Report 24

  20. Mohimani H, Babaie-Zadeh M, Jutten C (2009) A fast approach for overcomplete sparse decomposition based on smoothed \(\ell _{0}\) norm. IEEE Trans Signal Process 57(1):289–301

    Article  MathSciNet  MATH  Google Scholar 

  21. Nene SA, Nayar SK, Murase H et al (1996) Columbia object image library (coil-20)

  22. Ng AY, Jordan MI, Weiss Y (2002) On spectral clustering: Analysis and an algorithm. In: Advances in neural information processing systems, pp 849–856

  23. Siddiquie B, Feris RS, Davis LS (2011) Image ranking and retrieval based on multi-attribute queries. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 801–808

  24. Sonka M, Hlavac V, Boyle R (2014) Image processing, analysis, and machine vision. Cengage Learning

  25. Tron R, Vidal R (2007) A benchmark for the comparison of 3-D motion segmentation algorithms. In: IEEE conference on computer vision and pattern recognition, 2007. IEEE, pp 1–8

  26. Vidal R, Favaro P (2014) Low rank subspace clustering (LRSC). Pattern Recognit Lett 43:47–61

    Article  Google Scholar 

  27. Wang J, Shi D, Cheng D, Zhang Y, Gao J (2016) LRSR: low-rank-sparse representation for subspace clustering. Neurocomputing 214:1026–1037

    Article  Google Scholar 

  28. Wang Y, Xu H, Leng C (2013) Provable subspace clustering: When LRR meets SSC. In: Advances in Neural Information Processing Systems, pp 64–72

  29. Wei L, Wang X, Wu A, Zhou R, Zhu C (2018) Robust subspace segmentation by self-representation constrained low-rank representation. Neural Process Lett 48(3):1671–1691

    Article  Google Scholar 

  30. Wu Z, Yin M, Zhou Y, Fang X, Xie S (2017) Robust spectral subspace clustering based on least square regression. Neural Process Lett 48:1359–1372

    Article  Google Scholar 

  31. Yan J, Pollefeys M (2006) A general framework for motion segmentation: independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: European conference on computer vision. Springer, Berlin, pp 94–106

  32. Yang Y, Feng J, Jojic N, Yang J, Huang TS (2016) \(\ell _{0}\)-sparse subspace clustering. In: European conference on computer vision. Springer, Berlin, pp 731–747

  33. You C, Robinson D, Vidal R (2016) Scalable sparse subspace clustering by orthogonal matching pursuit. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3918–3927

  34. Yu J, Yang X, Gao F, Tao D (2017) Deep multimodal distance metric learning using click constraints for image ranking. IEEE Trans Cybern 47(12):4014–4024

    Article  Google Scholar 

  35. Zhang J, Yu J, Tao D (2018) Local deep-feature alignment for unsupervised dimension reduction. IEEE Trans Image Process 27(5):2420–2432

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang Y (2010) Recent advances in alternating direction methods: Practice and theory. In: IPAM workshop on continuous optimization

  37. Zheng X, Cai D, He X, Ma WY, Lin X (2004) Locality preserving clustering for image database. In: Proceedings of the 12th annual ACM international conference on Multimedia. ACM, pp 885–891

  38. Zou H, Li R (2008) One-step sparse estimates in nonconcave penalized likelihood models. Ann Stat 36(4):1509

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper is jointly supported by the 111 Project of Chinese Ministry of Education under Grant B12018 and the National Natural Science Foundation of China under Grant 61373055; 61672265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-jun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Wu, Xj. Robust Affine Subspace Clustering via Smoothed \(\ell _{0}\)-Norm. Neural Process Lett 50, 785–797 (2019). https://doi.org/10.1007/s11063-018-9962-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9962-x

Keywords

Navigation