Skip to main content
Log in

Classification of Gait Patterns Using Kinematic and Kinetic Features, Gait Dynamics and Neural Networks in Patients with Unilateral Anterior Cruciate Ligament Deficiency

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

The anterior cruciate ligament (ACL) plays an important role in controlling knee joint stability. The literature provides conflicting information on whether patients with ACL deficiency exhibits gait adaptations. The aim of this study is to investigate if the use of neural networks with a new pattern recognition-based method can differentiate gait patterns between ACL deficient (ACL-D) knee and contralateral ACL-intact (ACL-I) knee in patients with unilateral ACL deficiency. The proposed method is divided into two stages. In the training stage, kinematic and kinetic gait variables are measured and compared between the two lower extremities. Gait dynamics underlying gait patterns of ACL-D and ACL-I knees are locally accurately modeled and approximated by radial basis function (RBF) neural networks via deterministic learning theory. The derived knowledge of approximated gait dynamics is preserved in constant RBF networks. In the classification stage, a bank of dynamical estimators is constructed using the preserved constant RBF networks to represent the learned training gait patterns. By comparing the set of estimators with a test gait pattern, the generated average \(L_1\) norms of errors are taken as the difference and classification measure between the training and test gait patterns. Finally, experiments are carried out on forty-three patients to assess the effectiveness of the proposed method. By using the leave-one-out cross-validation style under normal and fast walking speed conditions, the correct classification rates for discriminating between ACL-D and ACL-I knees are reported to be 95.9\(\%\) and 94.0\(\%\), respectively. Compared with other state-of-the-art methods, the results demonstrate that gait alterations in the presence of chronic ACL deficiency can be detected with superior performance and support the validity of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao B, Cordova ML, Zheng NN (2012) Three-dimensional joint kinematics of ACL-deficient and ACL-reconstructed knees during stair ascent and descent. Hum Mov Sci 31(1):222–235

    Article  Google Scholar 

  2. Houck JR, De Haven KE, Maloney M (2007) Influence of anticipation on movement patterns in subjects with ACL deficiency classified as noncopers. J Orthop Sports Phys Ther 37(2):56–64

    Article  Google Scholar 

  3. Thompson-Kolesar JA, Gatewood CT, Tran AA, Silder A, Shultz R, Delp SL, Dragoo JL (2018) Age influences biomechanical changes after participation in an anterior cruciate ligament injury prevention program. Am J Sports Med 46(3):598–606

    Article  Google Scholar 

  4. Lam MH, Fong DTP, Yung PSH, Ho EP, Chan WY, Chan KM (2009) Knee stability assessment on anterior cruciate ligament injury: clinical and biomechanical approaches. Sports Med Arthrosc Rehabilit Ther Technol 1(1):1

    Google Scholar 

  5. Takeda K, Hasegawa T, Kiriyama Y, Matsumoto H, Otani T, Toyama Y, Nagura T (2014) Kinematic motion of the anterior cruciate ligament deficient knee during functionally high and low demanding tasks. J Biomech 47(10):2526–2530

    Article  Google Scholar 

  6. Ismail SA, Button K, Simic M, Van Deursen R, Pappas E (2016) Three-dimensional kinematic and kinetic gait deviations in individuals with chronic anterior cruciate ligament deficient knee: a systematic review and meta-analysis. Clin Biomech 35:68–80

    Article  Google Scholar 

  7. Berchuck M, Andriacchi TP, Bach BR, Reider B (1990) Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Jt Surg 72(6):871–877

    Article  Google Scholar 

  8. Eitzen I, Eitzen TJ, Holm I, Snyder-Mackler L, Risberg MA (2010) Anterior cruciate ligament deficient potential copers and noncopers reveal different isokinetic quadriceps strength profiles in the early stage after injury. Am J Sports Med 38(3):586–593

    Article  Google Scholar 

  9. Muneta T, Seklya I, Ogiuchi T, Yagishita K, Yamamoto H, Shinomiya K (1998) Objective factors affecting overall subjective evaluation of recovery after anterior cruciate ligament reconstruction. Scand J Med Sci Sports 8(5):283–289

    Article  Google Scholar 

  10. Stajduhar I, Mamula M, Miletic D, Unal G (2017) Semi-automated detection of anterior cruciate ligament injury from MRI. Comput Methods Progr Biomed 140:151–164

    Article  Google Scholar 

  11. Zabala ME, Favre J, Scanlan SF, Donahue J, Andriacchi TP (2013) Three-dimensional knee moments of ACL reconstructed and control subjects during gait, stair ascent, and stair descent. J Biomech 46(3):515–520

    Article  Google Scholar 

  12. Chen HC, Wu CH, Wang CK, Lin CJ, Sun YN (2014) A Joint-constraint model-based system for reconstructing total knee motion. IEEE Trans Biomed Eng 61(1):171–181

    Article  Google Scholar 

  13. Andriacchi TP, Dyrby CO (2005) Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J Biomech 38:293–298

    Article  Google Scholar 

  14. Moraiti C, Stergiou N, Ristanis S, Georgoulis AD (2007) ACL deficiency affects stride-to-stride variability as measured using nonlinear methodology. Knee Surg Sports Traumatol Arthrosc 15:1406–1413

    Article  Google Scholar 

  15. Lindstrom M, Fellander-Tsai L, Wredmark T, Henriksson M (2010) Adaptations of gait and muscle activation in chronic ACL deficiency. Knee Surg Sports Traumatol Arthrosc 18(1):106–114

    Article  Google Scholar 

  16. Andriacchi TP, Briant PL, Bevill SL, Koo S (2006) Rotational changes at the knee after ACL injury cause cartilage thinning. Clin Orthop Relat Res 442:39–44

    Article  Google Scholar 

  17. Christian J, Kroll J, Strutzenberger G, Alexander N, Ofner M, Schwameder H (2016) Computer aided analysis of gait patterns in patients with acute anterior cruciate ligament injury. Clin Biomech 33:55–60

    Article  Google Scholar 

  18. Eskofier BM, Kraus M, Worobets JT, Stefanyshyn DJ, Nigg BM (2012) Pattern classification of kinematic and kinetic running data to distinguish gender, shod/barefoot and injury groups with feature ranking. Comput Methods Biomech Biomed Eng 15(5):467–474

    Article  Google Scholar 

  19. Altilio R, Paoloni M (2017) Selection of clinical features for pattern recognition applied to gait analysis. Med Biol Eng Comput 55(4):685–695

    Article  Google Scholar 

  20. Chau T (2001) A review of analytical techniques for gait data. Part 2: neural network and wavelet methods. Gait Posture 13(2):102–120

    Article  Google Scholar 

  21. El Habachi A, Moissenet F, Duprey S, Cheze L, Dumas R (2015) Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model. Med Biol Eng Comput 53(7):655–667

    Article  Google Scholar 

  22. Federolf P, Tecante K, Nigg B (2012) A holistic approach to study the temporal variability in gait. J Biomech 45(7):1127–1132

    Article  Google Scholar 

  23. Cabitza F, Locoro A, Banfi G (2018) Machine learning in orthopedics: a literature review. Front Bioeng Biotechnol 6:75

    Article  Google Scholar 

  24. Matic A, Savic SP, Ristic B, Stevanovic VB, Devedzic G (2016) Infrared assessment of knee instability in ACL deficient patients. Int Orthop 40(2):385–391

    Article  Google Scholar 

  25. Pandey G, Dukkipati A (2017) Unsupervised feature learning with discriminative encoder. In: 2017 IEEE international conference on data mining, pp 367–376.3

  26. Zhang J, Yu J, Tao D (2018) Local deep-feature alignment for unsupervised dimension reduction. IEEE Trans Image Process 27(5):2420–2432

    Article  MathSciNet  MATH  Google Scholar 

  27. Ning G, Zhang Z, He Z (2018) Knowledge-guided deep fractal neural networks for human pose estimation. IEEE Trans Multimed 20(5):1246–1259

    Article  Google Scholar 

  28. Rhodin H, Salzmann M, Fua P (2018) Unsupervised geometry-aware representation for 3D human pose estimation. In: European conference on computer vision

  29. Yu J, Rui Y, Tao D (2014) Click prediction for web image reranking using multimodal sparse coding. IEEE Trans Image Process 23(5):2019–2032

    Article  MathSciNet  MATH  Google Scholar 

  30. Yu J, Tao D, Wang M, Rui Y (2015) Learning to rank using user clicks and visual features for image retrieval. IEEE Trans Cybern 45(4):767–779

    Article  Google Scholar 

  31. Hong C, Yu J, Wan J, Tao D, Wang M (2015) Multimodal deep autoencoder for human pose recovery. IEEE Trans Image Process 24(12):5659–5670

    Article  MathSciNet  MATH  Google Scholar 

  32. Hong C, Yu J, Tao D, Wang M (2015) Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse retrieval. IEEE Trans Ind Electron 62(6):3742–3751

    Google Scholar 

  33. Yu J, Yang X, Gao F, Tao D (2017) Deep multimodal distance metric learning using click constraints for image ranking. IEEE Trans Cybern 47(12):4014–4024

    Article  Google Scholar 

  34. Mehdizadeh S (2017) The largest Lyapunov exponent of gait in young and elderly individuals: a systematic review. Gait Posture 60:241–250

    Article  Google Scholar 

  35. Jac Fredo AR, Josena TR, Palaniappan R, Mythili A (2017) Classification of normal and knee joint disorder vibroarthrographic signals using multifractals and support vector machine. Biomed Eng Appl Basis Commun 29(03):1750016

    Article  Google Scholar 

  36. Zhang Y, Ji X, Liu B, Huang D, Xie F, Zhang Y (2017) Combined feature extraction method for classification of EEG signals. Neural Comput Appl 28(11):3153–3161

    Article  Google Scholar 

  37. Yentes JM, Hunt N, Schmid KK, Kaipust JP, McGrath D, Stergiou N (2013) The appropriate use of approximate entropy and sample entropy with short data sets. Ann Biomed Eng 41(2):349–365

    Article  Google Scholar 

  38. Kaipust JP, Huisinga JM, Filipi M, Stergiou N (2012) Gait variability measures reveal differences between multiple sclerosis patients and healthy controls. Mot Control 16(2):229–244

    Article  Google Scholar 

  39. Wang C, Hill DJ (2006) Learning from neural control. IEEE Trans Neural Netw 17(1):130–146

    Article  Google Scholar 

  40. Wang C, Hill DJ (2007) Deterministic learning and rapid dynamical pattern recognition. IEEE Trans Neural Netw 18(3):617–630

    Article  Google Scholar 

  41. Wang C, Hill DJ (2009) Deterministic learning theory for identification, recognition and control. CRC Press, Boca Raton

    Google Scholar 

  42. Wang C, Chen T, Chen G, Hill DJ (2009) Deterministic learning of nonlinear dynamical systems. Int J Bifurc Chaos 19(4):1307–1328

    Article  MathSciNet  MATH  Google Scholar 

  43. Farrell J (1998) Stability and approximator convergence in nonparametric nonlinear adaptive control. IEEE Trans Neural Netw 9(5):1008–1020

    Article  Google Scholar 

  44. Azar AT, El-Said SA (2014) Performance analysis of support vector machines classifiers in breast cancer mammography recognition. Neural Comput Appl 24:1163–1177

    Article  Google Scholar 

  45. Chu K (1999) An introduction to sensitivity, specificity, predictive values and likelihood ratios. Emerg Med Australas 11(3):175–181

    Google Scholar 

  46. Yuan Q, Cai C, Xiao H, Liu X, Wen Y (2007) Diagnosis of breast tumours and evaluation of prognostic risk by using machine learning approaches. In: Huang DS, Heutte L, Loog M (eds) Advanced intelligent computing theories and applications. With aspects of contemporary intelligent computing techniques. Springer, Berlin, pp 1250–1260

    Chapter  Google Scholar 

  47. Kaplan Y (2015) Identifying individuals with an anterior cruciate ligament deficient knee as copers and non-copers: a narrative literature review. J Sci Med Sport 19:e26

    Article  Google Scholar 

  48. Iliopoulos E, Galanis N, Iosifidis M, Zafeiridis A, Papadopoulos P, Potoupnis M, Kirkos J (2017) Anterior cruciate ligament deficiency reduces walking economy in copers and non-copers. Knee Surg Sports Traumatol Arthrosc 25(5):1403–1411

    Article  Google Scholar 

  49. Robinson MA, Donnelly CJ, Tsao J (2014) Impact of knee modeling approach on indicators and classification of anterior cruciate ligament injury risk. Med Sci Sports Exercise 46(7):1269–1276

    Article  Google Scholar 

  50. Atarod M, Frank CB, Shrive NG (2014) Kinematic and kinetic interactions during normal and ACL-deficient gait: a longitudinal in vivo study. Ann Biomed Eng 42(3):566–578

    Article  Google Scholar 

  51. Huang H, Guo J, Yang J, Jiang Y, Yu Y, Müller S, Ao Y (2017) Isokinetic angle-specific moments and ratios characterizing hamstring and quadriceps strength in anterior cruciate ligament deficient knees. Sci Rep 7(1):7269

    Article  Google Scholar 

  52. Almosnino S, Brandon SC, Day AG, Stevenson JM, Dvir Z, Bardana DD (2014) Principal component modeling of isokinetic moment curves for discriminating between the injured and healthy knees of unilateral ACL deficient patients. J Electromyogr Kinesiol 24(1):134–143

    Article  Google Scholar 

  53. Berruto M, Uboldi F, Gala L, Marelli B, Albisetti W (2013) Is triaxial accelerometer reliable in the evaluation and grading of knee pivot shift phenomenon? Knee Surg Sports Traumatol Arthrosc 21(4):981–985

    Article  Google Scholar 

  54. Kopf S, Kauert R, Halfpaap J, Jung T, Becker R (2012) A new quantitative method for pivot shift grading. Knee Surg Sports Traumatol Arthrosc 20(4):718–723

    Article  Google Scholar 

  55. Xu G, Wang Z, Huang H, Li W, Liu C, Liu S (2018) A model for medical diagnosis based on plantar pressure. arXiv preprint arXiv:1802.10316

  56. Hua J, Xiong Z, Lowey J, Suh E, Dougherty ER (2004) Optimal number of features as a function of sample size for various classification rules. Bioinformatics 21(8):1509–1515

    Article  Google Scholar 

  57. Kamruzzaman J, Begg RK (2006) Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait. IEEE Trans Biomed Eng 53(12):2479–2490

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61773194, 61304084), by the Natural Science Foundation of Fujian Province (Grant No. 2018J01542) and by the Program for New Century Excellent Talents in Fujian Province University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zeng.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, W., Ismail, S.A., Lim, Y.P. et al. Classification of Gait Patterns Using Kinematic and Kinetic Features, Gait Dynamics and Neural Networks in Patients with Unilateral Anterior Cruciate Ligament Deficiency. Neural Process Lett 50, 887–909 (2019). https://doi.org/10.1007/s11063-018-9965-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9965-7

Keywords

Navigation