Skip to main content
Log in

Exponential Lag Synchronization and Global Dissipativity for Delayed Fuzzy Cohen–Grossberg Neural Networks with Discontinuous Activations

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper investigates the qualitative behavior of a new class of fuzzy Cohen–Grossberg neural networks with discontinuous neuron activations and mixed delays. Roughly speaking, some novel sufficient conditions are established in order to demonstrate the global dissipativity and the exponential lag synchronization of the considered model by using the theory of Filippov systems and Lyapunov method. Finally, two examples are presented to show the effectiveness of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdurahman A, Hu C, Jiang H (2015) Exponential lag synchronization for delayed Cohen–Grossberg neural networks with discontinuous activations. Springer International Publishing Switzerland LNCS, vol 9377, pp 129–137

  2. Abdurahman A, Jiang H, Teng Z (2016) Finite-time synchronization for fuzzy cellular neural networks with time-varying delays. Fuzzy Sets Syst 297:96–111

    MathSciNet  MATH  Google Scholar 

  3. Aubin JP, Frankowska H (1990) Set-valued analysis. Birkauser, Boston

    MATH  Google Scholar 

  4. Cai Z, Huang L, Guo Z, Zhang L, Wan X (2015) Periodic synchronization control of discontinuous delayed networks by using extended Filippov-framework. Neural Netw 68:96–110

    MATH  Google Scholar 

  5. Cao J, Wan Y (2014) Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays. Neural Netw 53:165–172

    MATH  Google Scholar 

  6. Cao J, Yuan K (2006) Global point dissipativity of neural networks with mixed time-varying delays. Chaos 16:1–9

    MathSciNet  Google Scholar 

  7. Cohen M, Grossberg S (1983) Stability and global pattern formation and memory storage by competitive neural networks. IEEE Trans Syst Man Cybern 13:815–826

    MathSciNet  MATH  Google Scholar 

  8. Chen T, Huang L, Yu P, Huang W (2018) Bifurcation of limit cycles at infnity in piecewise polynomial systems. Nonlinear Anal Real World Appl 41:82–106

    MathSciNet  MATH  Google Scholar 

  9. Duan L, Huang L (2014) Global dissipativity of mixed time-varying delayed neural networks with discontinuous activations. Commun Nonlinear Sci Numer Simul 19(12):4122–4134

    MathSciNet  MATH  Google Scholar 

  10. Duan L, Huang C (2016) Existence and global attractivity of almost periodic solutions for a delayed differential neoclassical growth model. Math Methods Appl Sci 40(3):814–822

    MathSciNet  MATH  Google Scholar 

  11. Duan L, Fang X, Huang C (2017) Global exponential convergence in a delayed almost periodic Nicholson’s blowflies model with discontinuous harvesting. Math Methods Appl Sci 41(5):1954–1965

    MathSciNet  MATH  Google Scholar 

  12. Duan L, Huang L, Guo Z, Fang X (2017) Periodic attractor for reaction-diffusion high-order hopfield neural networks with time-varying delays. Comput Math Appl 73(2):233–245

    MathSciNet  MATH  Google Scholar 

  13. Duan L, Wei H, Huang L (2019) Finite-time synchronization of delayed fuzzy cellular neural networks with discontinuous activations. Fuzzy sets syst 361:56–70

    MathSciNet  MATH  Google Scholar 

  14. Duan L, Xianwen F, Yujie F (2017) Global exponential synchronization of delayed fuzzy cellular neural networks with discontinuous activations. Int J Mach Learn Cybern 10:579–589

    Google Scholar 

  15. Filippov AF (1988) Differential equations with discontinuous righthand sides. In: Arscott FM (ed) Mathematics and its applications. (Soviet series). Kluwer Academic, Boston

    Google Scholar 

  16. Forti M, Nistri P (2003) Global convergence of neural networks with discontinuous neuron activations. IEEE Trans Circuits Syst I 50:1421–1435

    MathSciNet  MATH  Google Scholar 

  17. Guo Z, Huang L (2009) LMI conditions for global robust stability of delayed neural networks with discontinuous neuron activations. Appl Math Comput 215:889–900

    MathSciNet  MATH  Google Scholar 

  18. Hu H, Zou X (2017) Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc Am Math Soc 145(11):4763–4771

    MathSciNet  MATH  Google Scholar 

  19. Huang Z (2016) Almost periodic solutions for fuzzy cellular neural networks with multi-proportional delays. Int J Mach Learn Cybern 8(4):1323–1331

    Google Scholar 

  20. Huang C, Zhang H (2019) Periodicity of non-autonomous inertial neural networks involving proportional delays and non-reduced order method. Int J Biomath 12(02):1950016

    MathSciNet  MATH  Google Scholar 

  21. Huang C, Liu B, Tian X, Yang L, Zhang X (2019) Global convergence on asymptotically almost periodic SICNNs with nonlinear decay functions. Neural Process Lett 49:625–641

    Google Scholar 

  22. Huang C, Zhang H, Huang L (2019) Almost periodicity analysis for a delayed Nicholson’s bloflies model with nonlinear density-dependent mortality term. Commun Pure Appl Anal 18(6):1–13

    MathSciNet  Google Scholar 

  23. Huang C, Yang Z, Yi T, Zou X (2014) On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J Differ Equ 256(7):2101–2114

    MathSciNet  MATH  Google Scholar 

  24. Huang C, Peng C, Chen X, Wen F (2013) Dynamics analysis of a class of delayed economic model. Abstr Appl Anal 2013:1–12

    MathSciNet  MATH  Google Scholar 

  25. Huang C, Liu B (2019) New studies on dynamic analysis of inertial neural networks involving non-reduced order method. Neurocomputing 325:283–287

    Google Scholar 

  26. Huang C, Qiao Y, Huang L, Agarwal Ravi P (2018) Dynamical behaviors of a food-chain model with stage structure and time delays. Adv Differ Equ 2018:186. https://doi.org/10.1186/s13662-018-1589-8

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang C, Zhang H, Cao J, Hu H (2019) Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator. Int J Bifurc Chaos 29(7):23

    MathSciNet  MATH  Google Scholar 

  28. Jiang Y, Zhai J (2019) Further results on quasi-synchronisation of delayed chaotic systems with parameter mismatches via intermittent control. Asian J Control 21(1):1–12

    MathSciNet  Google Scholar 

  29. Konnur R (2003) Synchronization-based approach for estimating all model parameters of chaotic systems. Phys Rev E 67:027204

    Google Scholar 

  30. Li N, Cao J (2014) Intermittent control on switched networks via w-matrix measure method. Nonlinear Dyn 77:1363–1375

    MathSciNet  MATH  Google Scholar 

  31. Liao X, Wang J (2003) Global dissipativity of continuous-time recurrent neural networks with time delay. Phys Rev 68:1–7

    MathSciNet  Google Scholar 

  32. Li L, Huang L (2009) Global asymptotic stability of delayed neural networks with discontinuous neuron activations. Neurocomputing 72:3726–3733

    Google Scholar 

  33. Liu J, Liu X, Xie W (2012) Global convergence of neural networks with mixed time-varying delays and discontinuous neuron activations. Inf Sci 183:92–105

    MathSciNet  MATH  Google Scholar 

  34. Li X, Liu Z (2019) Existence and controllability for nonlinear fractional control systems with damping in Hilbert spaces. Acta Mathematica Scientia 39(1):229–242

    MathSciNet  Google Scholar 

  35. Liu X, Cao J, Huang G (2010) Complete periodic synchronization of delayed neural networks with discontinuous activations. Int J Bifurc Chaos 20(7):2151–2164

    MathSciNet  MATH  Google Scholar 

  36. Liu X, Chen T, Cao J, Lu W (2011) Dissipativity and quasi-synchronization for neural networks with discontinuous activations and parameter mismatches. Neural Netw 24:1013–1021

    MATH  Google Scholar 

  37. Liu Y, Zheng Y, Lu J, Cao J, Rutkowski L (2019) Constrained quaternion-variable convex optimization: a quaternion-valued recurrent neural network approach. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2019.2916597

    Article  Google Scholar 

  38. Liu Y, Zhang D, Lou J, Lu J, Cao J (2018) Stability analysis of quaternion-valued neural networks: decomposition and direct approaches. IEEE Trans Neural Netw Learn Syst 29:4201–4211

    Google Scholar 

  39. Liu Y, Xu P, Lu J, Liang J (2016) Global stability of Clifford-valued recurrent neural networks with time delays. Nonlinear Dyn 84:767–777

    MathSciNet  MATH  Google Scholar 

  40. Long X, Gong S (2019) New results on stability of Nicholson’s blowflies equation with multiple pairs of time-varying delays. Appl Math Lett. https://doi.org/10.1016/j.aml.2019.106027

    Article  MATH  Google Scholar 

  41. Lu W, Chen T (2005) Dynamical behaviors of Cohen–Grossberg neural networks with discontinuous activation functions. Neural Netw 18:231–242

    MATH  Google Scholar 

  42. Liua C, Gong Z, Teo KL, Sun J, Caccetta L (2017) Robust multi-objective optimal switching control arising in 1,3-propanediol microbial fed-batch process. Nonlinear Anal Hybrid Syst 25:1–20

    MathSciNet  MATH  Google Scholar 

  43. Li J, Ying J, Xie D (2019) On the analysis and application of an ion size-modified Poisson–Boltzmann equation. Nonlinear Anal Real World Appl 47:188–203

    MathSciNet  MATH  Google Scholar 

  44. Li J, Ying J, Xie D (2019) An efficient two grid method for miscible displacement problem approximated by mixed finite element methods. Comput Math Appl 77(3):752–764

    MathSciNet  Google Scholar 

  45. Long x, Gong S (2020) New results on stability of Nicholson’s blowflies equation with multiple pairs of time-varying delays. Appl Math Lett 100:106027

    MathSciNet  MATH  Google Scholar 

  46. Pan L, Cao J, Hu J (2015) Synchronization for complex networks with Markov switching via matrix measure approach. Appl Math Model 39:5636–5649

    MathSciNet  MATH  Google Scholar 

  47. Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64(8):821–824

    MathSciNet  MATH  Google Scholar 

  48. Qin S, Xue X (2009) Global exponential stability and global convergence in finite time of neural networks with discontinuous activations. Neural Process Lett 29:189–204

    Google Scholar 

  49. Rajchakit G, Anbalagan P, Ramachandran R, Cao J, Alzabut J, Huang C (2019) Hybrid control scheme for projective lag synchronization of Riemann–Liouville sense fractional order memristive BAM neural networks with mixed delays. Mathematics 7(8):759. https://doi.org/10.3390/math7080759

    Article  Google Scholar 

  50. Song Q, Cao J (2008) Global dissipativity analysis on uncertain neural networks with mixed time-varying delays. Chaos 18:1–10

    MathSciNet  MATH  Google Scholar 

  51. Song C, Fei S, Cao J, Huang C (2019) Robust synchronization of fractional-order uncertain chaotic systems based on output feedback sliding mode control. Mathematics 7(7):599. https://doi.org/10.3390/math7070599

    Article  Google Scholar 

  52. Wang CC, Su JP (2004) A new adaptive variable structure control for chaotic synchronization and secure communication. Chaos Solitons Fractals 20:967–977

    MathSciNet  MATH  Google Scholar 

  53. Wang J, Chen X, Huang L (2019) The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J Math Anal Appl 469:405–427

    MathSciNet  MATH  Google Scholar 

  54. Wang J, Huang C, Huang L (2019) Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type. Nonlinear Anal Hybrid Syst 33:162–178

    MathSciNet  MATH  Google Scholar 

  55. Wang P, Hu H, Jun Z, Tan Y, Liu L (2013) Delay-dependent dynamics of switched Cohen–Grossberg neural networks with mixed delays. Abstr Appl Anal 2013:1–11

    MathSciNet  MATH  Google Scholar 

  56. Wu S, Li K, Huang T (2011) Global dissipativity of delayed neural networks with impulses. J Frankl Inst 348:2270–91

    MathSciNet  MATH  Google Scholar 

  57. Xing Z, Peng J (2012) Exponential lag synchronization of fuzzy cellular neural networks with time-varying delays. J Frankl Inst 349:1074–1086

    MathSciNet  MATH  Google Scholar 

  58. Yang T, Chua LO (1997) Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication. Int J Bifurc Chaos 7:645–664

    MathSciNet  MATH  Google Scholar 

  59. Yang C, Xiong Z, Yang T (2019) Dissipativity analysis of neutral-type memristive neural network with two additive time-varying and leakage delays. Adv Differ Equ 2019:6

    MathSciNet  MATH  Google Scholar 

  60. Yang X, Zhu Q, Huang C (2011) Generalized lag-synchronization of chaotic mix-delayed systems with uncertain parameters and unknown perturbations. Nonlinear Anal Real World Appl 12(1):93–105

    MathSciNet  MATH  Google Scholar 

  61. Yao C, Zhao Q, Yu J (2013) Complete synchronization induced by disorder in coupled chaotic lattices. Phys Lett A 377:370–377

    MATH  Google Scholar 

  62. Yang C, Huang L, Li F (2018) Exponential synchronization control of discontinuous nonautonomous networks and autonomous coupled networks. Complexity 2018:1–10

    MATH  Google Scholar 

  63. Yang R, Bo Wu, Yang Liu (2015) A Halanay-type inequality approach to the stability analysis of discrete-time neural networks with delays. Appl Math Comput 265:696–707

    MathSciNet  MATH  Google Scholar 

  64. Yang T, Yang L (1996) The global stability of fuzzy cellular neural networks. IEEE Trans Circuit Syst 43(10):880–883

    MathSciNet  Google Scholar 

  65. Yang W, Yu W, Cao J, Alsaadi Fuad E, Tasawar Hayat (2018) Global exponential stability and lag synchronization for delayed memristive fuzzy Cohen–Grossberg BAM neural networks with impulses. Neural Netw 98:122–153

    Google Scholar 

  66. Yang X, Wen S, Liu Z, Li C, Huang C (2019) Dynamic properties of foreign exchange complex network. Mathematics 7(9):832. https://doi.org/10.3390/math7090832

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers and the editor for their constructive comments, which greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meryem Abdelaziz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelaziz, M., Chérif, F. Exponential Lag Synchronization and Global Dissipativity for Delayed Fuzzy Cohen–Grossberg Neural Networks with Discontinuous Activations. Neural Process Lett 51, 1653–1676 (2020). https://doi.org/10.1007/s11063-019-10169-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-019-10169-8

Keywords

Navigation