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Abstract. Functional brain network has been widely studied in many previous 

work for brain disorder diagnosis and brain network analysis. However, most 

previous work focus on static dynamic brain network research. Lots of recent 

work reveals that the brain shows dynamic activity even in resting state. Such 

dynamic brain functional connectivity reveals discriminative patterns for identi-

fying many brain disorders. Current sliding window based dynamic brain con-

nectivity framework are not easy to be applied to real clinical applications due 

to many issues: First, how to set up the optimal sliding window size and how to 

determine the threshold for the brain connectivity patterns. Secondly, how to 

represent the high dimensional dynamic brain connectivity pattern in a low di-

mensional representations for diagnosis purpose. Last, how to deal with the dif-

ferent length dynamic brain network patterns especially when the raw data are 

of different length. In order to address all those above issues, we proposed a 

new framework, which employs multiple scale sliding windows and automati-

cally learns a sparse and low ran dynamic brain functional connectivity patterns 

from raw fMRI data. Furthermore, we are able to measure different length dy-

namic brain functional connectivity patterns in an equal space by learning a 

sparse coded convolutional filters. We have evaluated our method with state of 

the art dynamic brain network methods and the results demonstrated the strong 

potential of our methods for brain disorder diagnosis in real clinical applica-

tions.  

 

Keywords. Functional Magnetic Resonance Images, Convolutional Sparse 

Coding, Dynamic Brain Network, Computer Assisted Diagnosis  
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1 Introduction 

 
Fig. 1. (a) Comparing different length time series using frequency domain infor-

mation. (b) Comparing the dynamic connection changes with different length in fre-

quency domain and our learned sparse filter domain. 

    Functional magnetic resonance imaging (fMRI) provides a non-invasive way to 

examine human brain activity. This imaging technique is often referred to as blood 

oxygenation level dependent (BOLD) imaging [1] because it measures changes of 

cerebral blood oxygenation that are closely related to neuronal activity [2]. Tradition-

ally fMRI has been used to examine brain activation patterns in health [3-5] and dis-

ease [6-8] during the performance of a cognitive or motor task. However, recent stud-

ies have begun to use resting-state fMRI (rs-fMRI) to measure regional interactions 

that occur when a subject is not performing an explicit task [9, 10]. In resting state, 

fluctuations in spontaneous neural activity are thought to underlie the spontaneous 

BOLD signal fluctuations. Synchrony, or correlation, between the fluctuations among 

regions are used to assess inter-regional functional connectivity (FC) in human brain 

[11, 12]. 

 

Many works have been done to extract the functional brain networks from fMRI data. 

Those works can be divided into two folds: static brain networks and dynamic brain 

networks. In this work, we focused on the dynamic brain networks study and its ap-

plication on brain disorder diagnosis. Most of current functional brain network studies 

calculate the Pearson’s correlation to measure the strength of FC between two brain 

regions [12, 13]. The dynamic FC patterns are mostly calculated using sliding win-

dow techniques [14]. However, those methods suffers from many issues for real ap-

plications, such as sliding window size setting up issues, how to reduce high dimen-

sional dynamic brain FC patterns  to a low dimensional representations, how to deal 

with different length fMRI. In order to address those above issues, this work focus on 

learning a compact representation for dynamic brain networks from different length 
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fMRI data.  

 

In order to achieve this goal, we make several contributions to learn dynamic func-

tional brain network patterns from fMRI data. First, we propose using a one-step mul-

tiple scale sliding window to extract the raw dynamic FC patterns from fMRI data. In 

order to extract robust dynamic FC patterns, we constrain that the learn FC patterns 

are sparse since the brain connections are biologically sparse. We also constraint that 

the temporal dynamic changes are a low rank time space since the brain connection 

changes should always be slow and smooth. Secondly, in order to learn a compact 

representation for different length dynamic FC patterns, we borrow the idea of convo-

lutional filters from signal processing. As shown in Fig. 1. (a), different length time 

series could be represented as equal length frequency component in Fourier domain. 

We proposed to learn a sparse coded filters from the data and project the high dimen-

sional dynamic FC patterns on to the learned filters as shown in Fig. 1. (b). Using this 

technique, we are able to compare different length dynamic FC patterns extracted 

from different dataset in the same field. In order to show the performance of our pro-

posed method, we have applied the learned dynamic brain FCs to identify Autism 

using different training and testing dataset. We compared the performance of our 

method with state of art work. Experiments results shows that our method has strong 

potential in dynamic brain network based diagnosis in real clinical applications.  The 

following of this paper are organized as: We first introduce the methods of our work 

in Section 2. Then, we show the experiment evaluation in Section 3. Section 4 con-

cludes our work and discuss some future directions. 

2 Methods 

     We attempt to achieve two goals together in this work: First, learn a clean dynamic 

FC patterns from the noisy fMRI time series using a set of overlapped multiple-scale 

sliding windows; Secondly, learn a set of sparse coded convolutional filters to code 

the learned high dimensional dynamic FC patterns of different length to be equal size. 

2.1 Robust Dynamic Functional Connectivity 

We first describe how we learn the dynamic FC patterns from the original time se-

ries in this section. Given a sliding window of size 𝑤, let 𝐱𝐢 ∈ 𝕽𝑤×1 denote the mean 

BOLD signal calculated in brain region Oi,(i = 1,··· ,N), where w is the length of time 

course within the sliding window and N is the total number of brain regions under 

consideration. Conventionally, a N × N connectivity matrix S is used to measure the 

FC in the whole brain, where each element sij quantitatively measures the strength of 

FC between region Oi and Oj (i ≠  j). Particularly, the strength of functional connectiv-

ity sij is assumed to be measurable based on Pearson’s correlation c(xi,xj) between 

observed BOLD signals xi and xj, where big value of Pearson’s correlation indicates 

strong functional connectivity. Thresholding on Pearson’s correlation values is com-

monly used to remove the spurious connection. However, it is not easy to find a good 

threshold that works for all subjects. 

Since fMRI is just an indirect reflection of brain activity, it is difficult to accurately 

quantify the FC strength only based on signal correlation. To address this issue, we 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 27, 2018. ; https://doi.org/10.1101/476663doi: bioRxiv preprint 

https://doi.org/10.1101/476663


follow the previous work which optimize the reasonable functional connectivities, 

which should (1) be in consensus with the Pearson’s correlation of low level signals 

between xi and xj; (2) use the high level information such as module-to-module con-

nection [15] to guide the measurement of low level region-to-region connectivity 

strength; and (3) represent sparsity since the brain network is intrinsically efficient to 

have sparse connections [16]. For convenience, we use 𝐬𝐢 ∈ 𝕽𝑵×𝟏 denote i-th column 

in connectivity matrix S, which characters the connections of region Oi with respect to 

other brain regions. Also, we arrange all Pearson’s correlation values into a N × N 

matrix 𝑪𝒊 = {𝑐𝑖𝑗|𝑗 = 1, ⋯ , 𝑁} Instead of calculating the connectivity sij just based on 

Pearson’s correlation c(xi,xj) between observed BOLD signals xi and xj, we optimize 

the connectivity matrix S by integrating the above three criteria: 

argminS||𝐒 − 𝐂||𝐅
𝟐 + 𝛂||𝐒||∗ + 𝛄||𝐒||𝟏                                                                                                    

(1) 
where α and γ are the scalars which balance the strength of the low rank constraint  

[17] on S (the second term) and the l1 sparsity constraint [18]on S (the third term). 

We extend the learning-based FC optimization method to the temporal domain, in 

order to capture dynamics of functional connectivity. First, we follow the sliding win-

dow technique to obtain T overlapped multiple scale sliding windows which cover the 

whole time course for one subject. Let St denote for the FC matrix in sliding window t. 

Then we stack all St along time and form a tensor 𝓢= {St|t = 1,··· ,T}∈ ℜ𝑁×𝑁×𝑇  which 

represents the complete information of dynamic connectivity for each subject. Simi-

larly, we can also construct another tensor 𝓒 = {Ct|t = 1,··· ,T}}∈ ℜ𝑁×𝑁×𝑇 , where 

each Ct = {ct
i,j|i,j = 1,··· ,N} is the N×N matrices in t-th sliding window. Next, we 

propose a learning-based optimization method to characterize dFC using tensor analy-

sis by: 

argmin𝓢|| 𝓢 − 𝓒||𝐅
𝟐 + 𝛂||𝓢||∗ + 𝛄||𝓢||𝟏,                                                                    (2) 

Compared to the objective function in Eq. 1, the objective function here also encour-

ages low rank on the brain connectivity patterns. Since brain in resting state generally 

transverses a small number of discrete stages during a short period of time, it is rea-

sonable to apply low rank constraint on 𝓢 ( by minimizing nuclear norm ||𝓢||∗ ) to 

penalize too rapid FC change in the temporal domain and also find the optimal con-

nectivity patterns in each sliding window. 

Discussion. This above method is able to learn a robust dynamic FC patterns from 

noisy fMRI time series. However, there are several issues for using these learned 

dynamic FC patterns for further research or clinical applications. First, this learn dy-

namic FC pattern is highly redundant and also of high dimension.  Secondly, in real 

applications different patient may have different length fMRI time series, therefore, 

the learned dynamic FC pattern for each patient varies from each other.  If we want to 

compare them or use them for disease identification, a unified representation or equal 

size representation should be provided.    

 

2.2 Sparse Convolutional Sparse Coded Filters for Dynamic FCs  
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Motivated by the above two major issues in the learned dynamic FC patterns, we 

proposed a set of novel sparse coded convolutional dynamic filters for representing 

redundant dynamic FC patterns compactly with equal size representations. Our meth-

od includes two parts: we first learn an over-complete convolutional sparse coded 

dynamic filters as the dictionary for representing different dynamic FC patterns using 

training data; then we code each new testing subjects using those learned filters, thus, 

the different length dynamic FC patterns can be represented as the response of those 

learned filters, which lead to equal size representation finally. Suppose we have M 

training patients with fMRI times series data, denote the 𝒉𝒌 ∈ ℜ1×𝑄 , 𝑘 = 1 ⋯ , 𝐾, as a 

convolutional filter, 𝑄 (𝑄 ≪ 𝑇) is the length of this filter, 𝒈𝒌
𝑚(𝑖, 𝑘) ∈ ℜ𝑇−𝑄+1 as the 

response of this filter for ROI i, j dynamic connections from subject m, 𝑮𝒎 =
{𝒈𝒌

𝒎(𝑖, 𝑗), 𝑘 = 1, ⋯ , 𝐾, 𝑖, 𝑗 = 1, ⋯ , 𝑁}  as feature representation for subject m, 𝑦𝑚  is 

the clinical label for subject m, we learn an over-complete set of K filters using the 

following objective function, 

 

argmin𝓢𝐦,𝓗𝒌,𝒈𝒌
𝒎 ∑ || 𝓢𝐦 − 𝓒𝒎||𝐅

𝟐
m + 𝛼||𝓢𝐦||∗ + 𝛾||𝓢𝐦||𝟏 + ||𝒘𝑻𝝓(𝑮𝒎

) −

𝒚𝒎||𝟐
𝟐 + 𝛽 ∑ ∑ ||𝒈𝒌

𝒎(𝒊, 𝒋)||𝟏𝒊𝒋𝒌 ,                                                                   (3) 

 𝒔.  𝒕. ∀𝑚, 𝑖, 𝑗, 𝓢
𝐦

(𝒊, 𝒋) = ∑ 𝒉𝒌 ∗ 𝒈𝒌
𝒎(𝑖, 𝑗)𝒌 , ||𝒉𝒌||𝑭

𝟐 ≤ 𝟏.           

 

Convolutional Feature Coding Testing Subject. After a set of sparse coded 

filters are learned, for a new testing subject 𝑡𝑒,  we jointly learns the robust dy-

namic FC patterns 𝓢𝒕  and the filter response 𝒈𝒌
𝒕 (i, j) as,  

argmin𝓢𝐭𝐞,𝒈𝒌
𝒕𝒆||𝓢𝐭𝐞 − 𝓒𝒕𝒆||F

2 + 𝛼||𝓢𝒕𝒆||∗ + 𝛾||𝓢𝒕𝒆||𝟏 + 𝛽 ∑ ∑ ||𝒈𝒌
𝒎(𝑖, 𝑗)||𝟏𝒊𝒋𝒌 ,                          

(4) 

 𝒔.  𝒕. 𝓢𝒕𝒆(𝑖, 𝑗) = ∑ 𝒉𝒌 ∗ 𝒈𝒌
𝒕𝒆

𝒌 (i,j).                       

The learned filter response 𝑮𝒕𝒆 = {𝒈𝒌
𝒕𝒆(𝒊, 𝒋), 𝑖, 𝑗 = 1, ⋯ , 𝑁, 𝑘 = 1, ⋯ , 𝐾} is used as the 

compact representation for the dynamic FC pattern  𝓢𝐭𝐞. 
Discussion. Our proposed combined convolutional filters learning and robust dynam-

ic FC pattern learning method has several major improvements from Eq. (2). Firstly, 

our method automatically learn an over-complete sparse convolutional filters and use 

the filter response as the compact representation for each patient’s dynamic FC pat-

terns. Secondly, by applying these learned convolutional filters, we are able to repre-

sent different length dynamic FC patterns in the same size. Last, those learned convo-

lutional filters can be used for brain functional connectivity pattern related research, 

such as finding the important biomarkers for brain related diseases. 

2.3 Optimization 

In this section, we will briefly describe how we solve Eq. (4).  Eq. (2) can be 

solved using sub-gradient approach for nuclear norm and 𝑙1 norm optimization.  The 

first part of Eq. (4) can be solve similarity. The convolutional part in Eq. (4) is very 

hard to be solved directly in the time domain due to the computation cost of convolu-

tion. However, it can be easily solved in the Fourier domain since that the convolution 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 27, 2018. ; https://doi.org/10.1101/476663doi: bioRxiv preprint 

https://doi.org/10.1101/476663


in time domain can be represented as multiplication in Fourier domain. Denote fft as 

the Fourier transform, we proposed the new objective function in Fourier domain as, 

argmin𝓢𝐦,𝓗𝒌,𝒈𝒌
𝒎 ∑ || 𝓢𝐦 − 𝓒𝒎||𝐅

𝟐
m + 𝛼||𝓢𝐦||∗ + 𝛾||𝓢𝐦||𝟏 + 𝛽 ∑ ||𝒈𝒌

𝒎||𝟏𝒌 ,                       

(5) 

 𝒔.  𝒕. ∀𝒎, 𝑓𝑓𝑡(𝓢𝐦) = ∑ 𝑓𝑓𝑡(𝓗𝒌)𝑓𝑓𝑡(𝒈𝒌
𝒎)𝒌 , ||𝓗𝒌||𝑭

𝟐 ≤ 𝟏.  
Eq. (5) can be solved iteratively with respect to each parameter iteratively until 

converge. When we solve the convolutional filter 𝓗𝒌 and filter response 𝒈𝒌
𝒎 , we will 

convert it in to FFT domain, after the conversion,  the convolution can be replaced as 

multiplication. After we computed the convolution, we will convert it back to time 

domain for the sparse and low rank constraints. We omit the detailed solutions here 

due to page limitation. This solution is not the major contribution of our work and we 

encourage the reviewers to read more details on  references [19]. 

3 Experiments  

In this section, we evaluate our proposed tensor connectome model of dynamic 

functional connectivity by comparing the discriminative power in identifying ASD 

subjects with respect to conventional state-of-the-art methods. 

 

Subject information. We conducted various experiments on resting-state fMRI 

images using two Autism data sets in order to demonstrate the generality of our meth-

od. We use the Autism Brain Imaging Data Exchange (ABIDE) database including 

both the data from University of Utah (UU) and University of California Davis (UCD) 

site. Specifically, 50 NC and 50 ASD subjects are selected from the UU site. 70 NC 

and 65 ASD subjects are selected from UCD site. 

 

Data preprocessing. The subjects in our experiments were scanned for six and ten 

minutes during resting state, respectively, producing 180 time points and 300 time 

points at a repetition time (TR) of 2s. We processed all these data using Data Pro-

cessing Assistant for 0 the AAL template with 116 ROIs to the subject image domain 

and compute the mean BOLD signal in each ROI, where conventional method calcu-

late the 116 × 116 connectivity matrix S based on the Pearson’s correlation of mean 

BOLD signals between any pair of two distinct brain regions. 

 

Evaluation measurements. We use several quantitative measurements to evaluate 

not only the classification performance. Besides the widely used Accuracy (ACC) and 

Accuracy Under ROC Curve (AUC). PCA represents Pearson’s correlation based 

dynamic FC and feature coded using PCA. OURS represents the learned dynamic FC 

patterns by our convolutional sparse coded method. 

Experiment setup. Ten-fold cross validation strategy is used in all following ex-

periments. Specifically, we randomly partition all subjects into 10 non-overlapping 

approximately equal size sets. Then, we use one fold for testing and the remaining 

folds are used for training. The training subjects are further divided into 5 subsets for 

another 5-fold inner cross validation, where 4 folds are used as training subset and the 
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last fold is used as the validation subset. The over-completed sparse coded filters are 

learned from the subjects in the training subset. The low dimension connectome fea-

tures representations of those training subjects, derived from the robust dynamic FC 

pattern are further used to train the classic SVM (Support Vector Machine) for classi-

fication. The optimal parameters are determined based on validation subset. For each 

testing subject, we use the approach summarized in Eq. (4) to estimate the dynamic 

FC feature representations, which is considered as the connectome signature to identi-

fy the clinical label of the underlying testing subject. For the competing methods, we 

apply our multiple scale sliding window strategy to calculate the dynamic functional 

connectivity feature representation (based on Pearson’s correlation and optimal 

thresholding on validation dataset) for each subject. We first manually set up the slid-

ing window size which ranges from 20 to 100 of the entire time course. Please note 

that the brain connection pattern are unstable is the window size is smaller than 20. In 

optimizing the dynamic FC pattern, we set the shift of sliding window to 1 TR, in 

order to fully capture the dynamics of FC. In order to reduce feature dimension, we 

follow the work in to use classic PCA (Principle Component Analysis) model [20]to 

encode the low dimensional connectome feature representation for each subject for 

comparison. 

Evaluation of learned dynamic FC patterns in NC/ASD classification using the 

same dataset. We first evaluate the performance of our model using the same dataset 

for training and testing. 10-fold cross-validation strategy is employed here on UU and 

UCD dataset. The NC/ASD classification results using different sliding window setup 

on UU and UCD dataset are shown in Fig. 2 (a) and (b) respectively. It is shown that, 

first, the optimal sliding window size is 40 for two datasets; secondly, multiple scale 

sliding window setup achieves the best performance for all methods on two datasets, 

which improves > 2% in terms of Accuracy compared to best performance achieved 

by fixed sliding window size; our learned 4D tensor feature representation improves 

the performance at least 4.5% in terms of Accuracy compared with the conventional 

Pearson’s correlation method using multiple scale sliding windows.  
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Fig. 2. Evaluation of learned dynamic FC patterns using the same training and testing 

dataset. (a) Identifying ASD subjects on UU dataset w.r.t. sliding window size. (b) 

Identifying ASD subjects on UCD dataset w.r.t. sliding window size. 

Evaluation of learned dynamic FC patterns in NC/ASD classification using 

different dataset. To evaluate the generalization of the learned dynamic FC pattern 

representations, we select the training data and testing data from different sites. Two 

experiments are conducted here: first, we split the UU and UCD data into ten non-

overlapped folds and use 9 folds from UU as the training data and one fold from UU 

as the testing data; then, we switch the training and testing dataset. Fig. 3 shows the 

performance of conventional Pearson’s correlation patterns coded by PCA and our 

learned dynamic FC patterns with respect to different sliding window sizes. The per-

formance is sensitive to different window size setting up. All competing methods 

achieve the best performance when the sliding window is 40 and multiple scale slid-

ing window setting up improves the performance about > 1% compared to sliding 

window size 40 for all competing methods. Compared with the conventional Pear-

son’s correlation patterns coded by PCA [21], our learned dynamic FC pattern im-

proves the ASD classification performance > 4% on Accuracy using multiple scale 

sliding windows. 
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Fig. 3. Evaluation of learned dynamic FC patterns using different training and testing 

dataset. (a) Identifying ASD subjects on UU dataset w.r.t. sliding window size trained 

using UCD dataset. (b) Identifying ASD subjects on UCD dataset w.r.t. sliding win-

dow size trained using UU dataset. 

Convergence of our method. In order to show the convergence of our method. We 

select different size training data set. The training data size varies from 50 to 500. We 

show the computation time cost in Fig. 4.  One can see that the computation cost in-

creases linearly with the number of subjects. We expect that our method can handle 

large size data well. And since the most time consuming process in medical imaging 

based diagnosis is the data pro-processing, such as registration and segmentation, we 

believe that our method can be use in practical problems.  
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Fig. 3. The computation time of our method on different data size. As we can see, the 

computational cost increase linearly with the size of data. 

 

Fig. 4. Visualization of learned filters by our method. 

Visualization of learned convolutional filters. We show the top 12 learned convolu-

tional filters learned by our methods in Fig. 4. It is very smooth and have different 

slopes. This results suggest that the brain connectivity changes are smooth and period-

ically.  

4 Conclusion 

In this work, we aims at solving the dynamic brain functional network extraction 

problem. We proposed a multiple scale sliding window framework combined with 

low rank sparse constraint to learn a robust dynamic brain functional network patterns 

from fMRI data. In order to compare different length dynamic brain functional net-

work patterns, we further proposed to learn a sparse convolutional coded filters for 

representing different length dynamic brain networks. We have evaluated our method 
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using different dataset of different length fMRI data. Promising results shows the 

potential of our method for real clinical applications. Future work will explore the 

application of the dynamic brain network model for more brain disorder diagnosis and 

brain network analysis. 
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