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Abstract
The application of traditional 3D reconstruction methods such as structure-from-motion
and simultaneous localization and mapping are typically limited by illumination conditions,
surface textures, and wide baseline viewpoints in the field of robotics. To solve this problem,
many researchers have applied learning-based methods with convolutional neural network
architectures. However, simply utilizing convolutional neural networks without taking other
measures into account is computationally intensive, and the results are not satisfying. In
this study, to obtain the most informative images for reconstruction, we introduce a residual
block to a 2D encoder for improved feature extraction, and propose an attentive latent unit
that makes it possible to select the most informative image being fed into the network rather
than choosing one at random. The recurrent visual attentive network is injected into the
auto-encoder network using reinforcement learning. The recurrent visual attentive network
pays more attention to useful images, and the agent will quickly predict the 3D volume. This
model is evaluated based on both single- and multi-view reconstructions. The experiment
results show that the recurrent visual attentive network increases prediction performance in
a way that is superior to other alternative methods, and our model has desirable capacity for
generalization.
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1 Introduction

Recently, understanding the 3D world has been demanded of various robotic applications,
such as navigation [1] and object manipulation. Many object reconstruction methods have
been proposed using RGB or depth views [2]. Because the depth of images is not sufficient
to explain the original input, it can only be used as additional information for reconstruction.
Therefore, automatic and effective 3D object reconstruction ismore inclined to leverageRGB
images, which are much easier to acquire.

Traditional 3D object reconstruction methods such as structured light, structure-from-
motion (SfM) [3], and simultaneous localization and mapping (SLAM) [4,5] use the
correspondence of geometric features to complete scene reconstruction effectively. How-
ever, they only work effectively under certain assumptions. Their limitations include the
following: 1) images are expected to have rich texture and high brightness for successful
feature extraction, 2) one perfect view or a number of dense views with small baselines are
required, 3) object with specular reflection error, and 4) cumulative error.

Many generated methods are inspired by prior knowledge [6,7], overcoming the draw-
backs of feature extraction and correspondences failure caused by a lack of texture. Shape
prior-based methods can repair and make up for missing parts for 3D reconstruction [8–
10], while semantic prior-based methods learn the prior category-level, which is used with
weighted warping and refinement mechanisms to complete high-quality 3D shape represen-
tations [11]. These approaches lead to reconstruction using fewer images, which have fewer
restrictions in illumination condition and surface texture. However, they operate under the
strong premise that the input contains a large amount of information, which is not the case
in many applications.

With the growing development of learning methods in many applications [12–16], many
studies have been devoted to achieving 3D representation through learning-based methods.
Inspired by this philosophy, this work leverages an end-to-end deep recurrent convolutional
network based on auto-encoder architecture to learn 2D-to-3Dmapping and recover the shape
of object categories from one or multiple images.

To improve efficiency in completing high-precision reconstruction, rather than taking
images randomly, we utilize a convolutional Long Short Term Memory (LSTM) encoder
to obtain an attention latent unit with attentive information and to implement a recurrent
attentional model for actively selecting those images that can be helpful. The main contribu-
tions of this study are summarized as follows: (1) The recurrent visual attentional model and
selection policy are established to achieve more accurate results of representation with fewer
input images. (2) A 2D convolutional LSTM encoder is utilized to gain an attentive latent
unit with beneficial properties, such as providing attractive information and smoothness. (3)
Extensive experiments show that this method is superior to state-of-the-art learning-based
methods.

This paper is structured as follows. Section 2 discusses related research on 3D reconstruc-
tion based on learning methods and recurrent attention models. The pipeline of our object
reconstruction network architecture and the detail of the proposed method are explained in
Section 3. Section 4 presents the experimental results and discussions while Sect. 5 states
the conclusions.
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2 RelatedWork

2.1 3D Reconstruction Based on LearningMethods

Researchers focus on learning-based methods to predict single- and multi-view 3D shapes
[17,18]. For single-view shapes, [19] introduces the deep belief network to learn the proba-
bility of the voxel, and the author uses the image with 2.5D information to fill in the unknown
voxel to complete the reconstruction. Several pioneers have utilized the auto-encoder convo-
lutional network to predict 3D shapes when only one image of the object is given [20–23].
[24] generates point cloud coordinates rather than volumetric grids in a fully-supervised
manner, which avoids obscuring the natural invariance of 3D shapes under geometric trans-
formations. [25] proposes a 3D interpreter network to predict 3D object structure and 2D
keypoint heat maps sequentially. It is worth mentioning that this work simultaneously com-
pleted 2D keypoint estimation and 3D structure and viewpoint recovery. Related to our work,
[26] introduces perspective transformations leading to inferring 3D shapes without using the
ground truth 3D volumetric data for training, which proposes a novel perspective transformer
model for 3D reconstruction.

Single-view-based methods suffer from self-occlusion and a lack of enough information
from other viewpoints; hence, many researchers have increasingly focused on multi-view
reconstruction. [27] uses a projective generative adversarial network where projections of
3D models match the distributions of the input images, which assisted in shape predictions.
[28] presents a 3D Recurrent Neural Network (3D-R2N2) with a LSTM unit to make a
prediction using one or randommulti-view images, which is a state-of-the-art method for 3D
reconstruction.

2.2 Recurrent AttentionModel

Classic auto-encoder networks have benefitted from the attention mechanism [29]. [30] pro-
poses a recurrent network and novel attention model to extract features from images by
adaptively selecting a sequence of locations and regions. [31] addresses an improved model
and trains an attention-based deep recurrent neural network (RNN) with reinforcement learn-
ing to find the most relevant regions of the input image for multiple object recognition. [32]
attempts to train an attention-based model in a deterministic manner to generate image cap-
tions automatically. [23] proposes a method of target tracking combining soft attention and
an LSTM loop structure.

Inspired by these applications, our work develops auto-encoder networks combined with
a recurrent visual attentional model to build 3D volume to minimize reconstruction error. The
recurrent attention network is applied to induce the network to focus on more helpful views,
which allows reconstruction to use as few images as possible while maintaining quality.

3 Recurrent Convolutional Auto-Encoder Network

In this section, we introduce the overall description of our proposed network. There are three
main components to our network: a 2D convolutional LSTM encoder, a 3D convolutional
LSTM decoder, and an attentive-recurrent visual model, as shown in Fig. 1.

Given one or multiple images of an object, our objective is to reconstruct its 3D model. In
the training stage, beginning with an arbitrary view, we single out the rendered RGB images
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Fig. 1 Object reconstruction
model. Starting with an arbitrary
view, the rendered RGB image
corresponding to this view is feed
into the 2D convolutional LSTM
encoder to obtain an attentive
latent unit and then decode the
attentive latent unit to attain the
3D volume by utilizing a 3D
convolutional LSTM decoder. At
the same time, the
attentive-recurrent visual model
continuously regress the next
informative image parameterized
as camera azimuth. The new
parameterized image is then fed
into the 2D convolutional LSTM
encoder to begin the next
iteration
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corresponding to this view and feed them into a 2D convolutional LSTM encoder. The main
goal of the 2D convolutional LSTMnetwork is to encode the input images into attentive latent
units, which play an important role in spreading attentive information when new images are
fed into encoder. Then the network is split into two branches, and the attentive latent units
act as inputs for both branches. One branch is the 3D convolutional LSTM decoder, which
decodes the attentive latent unit and generates a 3D voxel prediction. The other branch is
the attentive-recurrent visual model, which takes the hidden states and converts them into
new parameterized images which contribute to the high-quality reconstruction in the next
training iteration. This allows the network to focus on views with rich information. The new
parameterized images are then fed into the 2D convolutional LSTM encoder to begin the next
training iteration. In the testing stage, when targeting an object, our network generates the
view of the object under the control of the attentive-recurrent visual model and predicts the
3D volume by utilizing the 2D convolutional LSTM encoder and 3D convolutional LSTM
decoder. We call this process the 2D-3D-attention network for convenience.

3.1 2D Convolutional LSTM Encoder

Figures. 2 and 3 illustrate the detailed network architecture, 2D convolutional LSTMencoder,
3D convolutional LSTM encoder, and attentive-recurrent visual model.

The 2D convolutional LSTM encoder is leveraged to extract compressed features. It is
composed of three layers of residual blocks [33], which help capture features from inputs
followed by the convolutional LSTM. The convolutional LSTM replaces the fully connected
operation in the traditional LSTM with a convolution operation, which considers the spa-
tial and temporal connections and improves feature extraction. Therefore, the convolutional
LSTM decreases the loss of detailed information and captures long-term dependencies in
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Fig. 2 Recurrent convolutional auto-encoder network architecture. Our network is composed of a 2D con-
volutional LSTM encoder and a 3D convolutional LSTM decoder combined with a perspective transformer.
Taking an image as the input, the 2D convolutional LSTM encoder generates an attentive latent unit, and then
the 3D convolutional LSTM decoder predicts the 3D shapes, using a perspective transformer map of the 3D
shapes to screen coordinates and project 2D silhouettes for back propagation

sequences of images. The convolutional LSTM formulas are as shown below:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ft = σ(Wx f ∗ Xt + Whf ∗ Ht−1 + Wcf ∗ Ct−1 + b f )

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ∗ Ct−1 + bi )
Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)
ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ∗ Ct + bo)
Ht = ot ◦ tanh(Ct )

where ft , it , and ot refer to the forget gate, input gate, and output gate, respectively. Ct

presents the memory cell, which is fed into the next LSTM, and Ht refers to the hidden state,
where output features are generated. We use ∗ and ◦ to represent convolutional and element-
wise multiplication operators, respectively, and Xt refers to the input features generated by
Residual blocks. W(x ·),W(h·), and W(c·) are weights that transform the current input Xt , the
previous hidden state Ht−1, and the memory cell, respectively, and b(·)refers to the biases.
Tanh function is a saturated activation, which means that when the input reaches a certain
value, the output will not change significantly. If we use an unsaturated activation function,
such as ReLU, it will be difficult to achieve the effect of gating.

Next, three convolutional layers generate an attentive latent unit by taking the previous
convolutional LSTM output features as their inputs, giving us At .

At = fconvLST M (I timage, H
t−1
convLST M )

where I timage refers to the input views, and Ht−1
convLST M are all past states of hidden layers at

t − 1 time step.
In the next stage, the attentive latent unit At will be fed into two parts: the decoder network

and attentive-recurrent visual model.

3.2 3D Convolutional LSTMDecoder

As shown in Fig. 2, the 3D convolutional LSTM decoder consists of two subnetworks: a
convolutional LSTM model and a perspective transformer network. The first part is com-
posed of one convolutional LSTM and three convolutional layers to establish the map from
the attentive latent unit for 3D reconstruction. The convolutional LSTM considers the spatial
connection and guarantees the validity of the 3D reconstruction. The other part is the perspec-
tive transformer network, which includes a perspective grid generator and a bilinear sampler
perspective. The perspective grid generator normalizes the voxel grid by transforming the
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3D world coordinates into screen coordinates.

Ps
i ∼ T4×4P

w
i

where Ps
i are screen coordinates in volume V, and Pw

i are 3D world coordinates in volume
W. T4×4 is a 4 x 4 transformation matrix:

T4×4 =
[
K 0
0 1

] [
R t
0 1

]

where K refers to the internal parameter matrix, and R and t are external parameters.
Bilinear sampler perspective maps pixels are converted to 3D mesh coordinates using

bilinear interpolation. This can be written as

Vi =
H∑

n

W∑

m

D∑

l
Wnml max(1 − ∣

∣xsi − m
∣
∣ , 0)

max(1 − ∣
∣ysi − n

∣
∣ , 0)max(1 − ∣

∣zsi − l
∣
∣ , 0)

∀i ∈ [1...H ′
W

′
D

′ ]
where (H ,W , D) and (H

′
,W

′
, D

′
) are the height, width, and depth of input volume W

and output volume V . (xsi , y
s
i , z

s
i ) is the coordinate of input volume W, and n,m, and l

represent the nth, mth, and lth pixel, respectively. Finally, the projection is implemented by
max operation to generate a 2D silhouette S. We utilize 3D volume V and 2D silhouette S
to compute the loss. There are two loss functions in our networks: 3D volume loss and 2D
silhouette loss. We define the loss function as follows:

LMSE (m) = ∥
∥m − mgroundtruth

∥
∥2

then the 3D volume loss can be written as LMSE (V ), and 2D silhouette loss is shown as
follows:

LMSE (S) = 1

n

n∑

i=1

LMSE (Si )

where n refers to the number of images. Overall, the losses of our recurrent convolutional
auto-encoder network are shown as follows:

LMSE = λV LMSE (V ) + λS LMSE (S)

where λV and λS are the weights of the 3D volume and 2D silhouettes losses, respectively.

3.3 Attentive-Recurrent Visual Model

In the 3D shape prediction process, some images have less of an effect on reconstruction,
while others are extremely helpful for reconstruction. If we can discover which images have
an important impact on reconstruction, then we may be able to improve the accuracy of
reconstruction significantly. In some computer vision applications, the attention mechanism
is mainly used to find a piece of interest in a picture. However, we use the attentive-recurrent
visual model to find an image of interest in a series of images at each step. The overview of
the selection of the attentive-recurrent visual model is shown as Fig. 3.

This method can be considered the sequential decision process of an agent in a 3D visual
environment where the agent is built around a recurrent model, as shown in Fig. 4.
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Fig. 3 The selection of the
attentive-recurrent visual model

Fig. 4 The attentive-recurrent visual model, where the LSTM receives the parameterized input image and
attentive latent unit from the 2D convolutional LSTM encoder. The output hidden state is fed into a fully
connected convolutional layer to regress the parameter of the new image and baseline

The model regresses images which are parameterized as camera azimuth. At each step,
the parameterized image lt and attentive latent unit At constitute the glimpse feature vector
gt ,

gt = At ∗ lt

With anLSTMnetwork, ourmodel aggregates the glimpse feature vector gt and the hidden
states. The hidden state ht−1 is used to remember and store information from the past states,
and it can be written as follows:

ht = fLST M (gt , ht−1)

Then the hidden state ht is fed into the fully connected layer to predict the image parameters
which the agent feeds into the 2D–3D-attention network and the attentive-recurrent visual
model at next time step.

In this study, we calculate the cumulative reward for an entire episode to update the policy.
The reward is measure by intersection-over-union (IoU). The IoU formula is as follows:

I oU (PR) = Pr edict Result ∩ Ground Truth

Pr edict Result ∪ Ground Truth
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The selection at each step in the attentive recurrent visual model is a regress process.
The standard of the selection includes as follows: when the regressed view gets higher 3D
IoU reward and 2D IoU reward, it can be seen that the regressed view is better. Besides, the
regressed view has a low overlap rate with the previous view, it can be seen that the regressed
view is informative. Therefore, the reward should be considered from three perspectives.
First, we compare the 3D volume predicted by the 2D-3D-Attention network with the 3D
ground truth, and obtain the first part of the reward:

r t3D = I oU (Vt ) − I oU (Vt−1)

where Vt refers to the 3D shapes predicted by the 2D-3D attention network. Next, the per-
spective transformer is used to compute the 2D mapping of the predicted 3D model in the
decoder network. The 2D mapping can be used as the second part of the reward:

r t2D = 1

n

n∑

i=1

I oU (Pt
i ) − I oU (Pt−1

i )

where Pt
i is the 2D projection sampled by the perspective transformer model at t step.

Consequently, the higher the content overlap between the selected and previous images,
the less information is available for the agent. Therefore, it is valuable to select an image with
a relatively low overlap rate with the previous input image to calculate the distance between
the current and previous images to measure the reward. The smaller the distance, the greater
the penalty for the action performed by the agent. The distance can be formulated as follows:

r tdis tan ce = 1

(currentimage − pastimage)
2

where currentimage is the value parameterized as the camera azimuth, and the value is set
at [0, 2π]. Finally, the reward can be expressed as the sum of the above three parts as the
formula:

rt = r t3D + r t2D + r tdis tan ce

In this research, we use the gradient policy algorithm used in the partially observable
Markov decision processes (POMDPs) to control the policy. If an action makes the reward
larger, then it should be associated with a higher probability in the strategy. In contrast, if
the reward obtained by an action is small, then the probability of its occurrence in the policy
should be lower. The strategy formula is as follows:

J (θ) =
T∑

t=1

− logπ(ut |θ; st )(rt − bt )

where π(ut |θ; st ) is represented by a normal distribution function with the following
formula:

π(ut |θ; st ) = 1√
2πσ

e
−(loc−μloc)2

2σ2

where (rt − bt ) refers the evaluation index, and rt is the cumulative reward for executing an
action. To prevent a high variance, bt is used as a baseline [23], which is obtained from the
hidden layers in the LSTM network.
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4 Experiments and Analysis

In this section, we carry out several experiments to demonstrate and validate the goals of the
study. First, we describe the datasets and implementation of ourmethods (Sect. 4.1). Next, we
demonstrate the improvement in reconstruction accuracy using the attentive-recurrent visual
model (Sect. 4.2). Third, the hyper-parameter influence is tested and analyzed (Sect. 4.3).
Then we compare the capacity of our network with state-of-the-art methods for single-view
reconstruction (Sect. 4.4). In addition, we validate the ability of our approach to perform
multi-view reconstruction predictions (Sect. 4.5). We also analyze the computational time
for each step of the proposed network (Sect. 4.6). Finally, we conduct extended experiments
to evaluate the generalization ability of our method (Sect. 4.7).

4.1 Dataset and Training Details

Experiments are conducted using two datasets: ShapeNet and PASCAL 3D+. The ShapeNet
dataset is composed of 55 object categories with more than 51,300 3D models. We use 13
major classes as the 3D-R2N2 set for the single- and multi-view reconstruction comparison.
It is composed of rendered images taken from 24 azimuth angles and representative models
with sizes of 32 × 32 × 32 based on their canonical orientations. In this experiment, the
rendered images are cropped and rescaled according to their centering region to 64× 64× 3
[26]. The PASCAL 3D+ dataset consists of 12 rigid categories of the PASCAL VOC 2012
[34] data with a 3D CAD model. For the convenience of training and testing, we used the
rendered images in the ShapeNet dataset format [26].

We implement the system using the public Pytorch framework. We use a batch size
of 16 to fit in an NVIDIA Titan X GPU. During training, we set Adam optimizer with
β1= 0.9,β2= 0.99 and learning rate of 0.0001.

4.2 Network Structure Variance Comparison

Todemonstrate that incorporating the attentive-recurrent visualmodel improves performance,
we compared the 2D-3D network, with the 2D-3D-attention network, which combines the
encoder-decoder network and the attentive-recurrent visual model. We trained both models
on the couch category using different views in the experiments. Table 1 shows the quantitative
results of loss and IoU, and Fig. 5 describes the trend of loss and IoU when taking in multiple
images. We observe that the 2D-3D-attention network outperforms the 2D-3D network. For
each network, reconstruction results improve as the number of views increases.

Table 1 Multi-view reconstruction using our variant model

Loss IoU

view 1 2 3 4 5 1 2 3 4 5

2D–3D 0.138 0.129 0.104 0.090 0.088 0.635 0.639 0.642 0.678 0.688

2D–3D-attention 0.108 0.091 0.088 0.072 0.064 0.698 0.699 0.704 0.720 0.724

123



662 Z. Gao et al.

Fig. 5 Reconstruction
performance of 2D–3D network
variations. The loss and IoU for
the couch category

4.3 Hyper-Parameter Influence

To compare the influence of hyper-parameters λV and λS of the loss function, the network
was trained and tested using the motorbike classes of the PASCAL 3D+ dataset. In this
experiment, we set up several sets of parameters and compared the IoUs of training and
testing under different hyper-parameter combinations. When λV is equal to 0 or 1, we only
use 2D silhouette loss or 3D volume loss, respectively.

The results of this experiment are presented in Table 2. The network performs better
when 2D silhouette loss accounts for a larger weight. We can conclude that the effect of
2D silhouette loss is greater than that of 3D volume loss. The proposed network performs
best when λV and λS are 0.4 and 0.6, respectively. Therefore, this hyper-parameter set is
introduced in all other experiments.

4.4 Single-View Reconstruction

To validate the performance of our 2D-3D-attention network, we compared the results with
several different reconstruction networks including the 3D-R2N2, Perspective Transformer
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Table 2 IoU predictions using
different hyper-parameter
combinations

λV λS Mean IoU

Training Test

0 1 0.592 0.523

0.2 0.8 0.604 0.530

0.4 0.6 0.606 0.533

0.5 0.5 0.604 0.529

0.6 0.4 0.546 0.485

0.8 0.2 0.505 0.415

1 0 0.488 0.462

Table 3 Per-category average
IoU using single view

3D-R2N2 OGN PTN Ours

Plane 0.513 0.587 0.553 0.602

Bench 0.421 0.481 0.482 0.508

Cabinet 0.716 0.729 0.711 0.757

Chair 0.466 0.483 0.458 0.468

Car 0.798 0.816 0.712 0.788

Monitor 0.468 0.502 0.535 0.566

Lamp 0.381 0.398 0.354 0.398

Speaker 0.662 0.637 0.586 0.700

Firearm 0.544 0.593 0.582 0.598

Couch 0.628 0.646 0.643 0.698

Table 0.513 0.536 0.471 0.624

Cellphone 0.661 0.702 0.728 0.758

Watercraft 0.513 0.632 0.536 0.532

Nets (PTN), and Octree Generating Network (OGN) [35]. The 3D-R2N2 takes in one or
more images and predicts the voxel using a 3D RNN. The PTN uses proposed perspective
transformations to reconstruct the volumetric structure from a single view. TheOGNexplores
octree representation to generate high-resolution 3D outputs. Because the 3D reconstruction
networks that PTN and OGN designed are suitable for inputting an image, we carried out
single-view reconstruction experiments with them on the ShapNet datasets. To ensure a fair
comparison,we trained and tested the proposed 2D-3Dattention network on the same datasets
and settings as with the 3D-R2N2 and OGN, which is split by Choy et al. In addition, we
retrained the released the PTN model using these categories because they only conducted
experiments using the chair category. The results are presented in Table 3.

Table 3 shows that performance varied depending on the category in the single-view tests.
Our model has the best performance for most categories due to the presence of the attentive-
recurrent visual model. The OGN outperforms our model in the chair, car, and watercraft
categories because they have greater differences in shape variance between different types
than other classes. For example, a chair can be an armchair or a rocking chair, which have
different frameworks, and it is difficult to reconstruct 3D outputs from a random single
view due to self-occlusion. However, our proposed network makes up for this deficiency
when producing multiple-view reconstructions. The trends of mean reconstruction IoU of
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Fig. 6 The performance is
reported in median(black line)
and mean (white square)
intersection over union (IoU)
values

Fig. 7 3D prediction examples on
PASCAL 3D+ dataset

the compared networks were plotted in Fig. 6. The results indicate that the proposed network
structure is superior to that of the other methods overall.

In addition, to further evaluate the performance of the proposed network, the single-view
reconstruction results on PASCAL 3D+ dataset are tested comparing with the method by Kar
et al. [20]. This method predicts the 3D surfaces learning from single image using ground
truth segmentations and keypoints. A network trained on the ShapeNet dataset was fine-tuned
for training and testing on the PASCAL 3D+ dataset. Fig. 7 shows the visible reconstruction
results. It can be seen that our 3D prediction results are better than the results of the Kar et
al. in each class. Our network can predicts more details such as the legs of bed.

4.5 Multi-View Reconstruction

In this section, we compared our 2D-3D-attention network to the 3D-R2N2 in multi-view
reconstruction. The experiments used five views to make a prediction. Based on the visual-
ization results shown in Fig. 8, our method is more advantageous than the 3D-R2N2 approach
in reconstructing thin parts of an object, such as the legs of tables and speakers. This shows
that our 2D-3D-attention model can find images more effectively and boost the performance
under certain views.
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Fig. 8 Multi-view reconstruction comparison

4.6 Shannon Entropy Evaluation

To evaluate the performance of view prediction, we compared our method with random
selection. The random selection means the module selects random view as the next view. We
use the table category to do this experiment and we employ Shannon Entropy as the measure.
Shannon Entropy formula is as follows:

H(P pre
t ) = −

32∑

i=1

32∑

j=1

32∑

k=1

P pre
t (i, j, k)log(P pre

t (i, j, k))

where P pre
t (i, j, k) refers to the predicted value of each voxel. When a new view is taken

into the model, the more the Shannon entropy decreases, the more information the newly
added image has. The Fig. 9 shows the Shannon Entropy over the number of views. It can
be seen that our method reduce Shannon entropy more than random selection, and it means
predicted view is informative than random view.
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Fig. 9 The Shannon Entropy and IoU for the table category

4.7 Evaluation on computational time

In this experiment, we validated the computational efficiency when the network takes in
different views. The proposed network ran on the Ubuntu16.04 platform equipped with a
3.6GHz Intel i7-7700 CPU, 32GB system memory, and NVIDIA Titan X GPU with 11
GB frame buffer memory. The reconstruction process can be divided into four steps: pre-
processing data, loading models, making prediction, and preserving outputs. We recorded
the average computational time for each step. Table 4 shows the average processing time for
single-view reconstruction. Loading models costs the most time for the network followed
by making prediction, pre-processing data, and preserving outputs. There is still room for
improvement regarding the computational efficiency.
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Table 4 Average processing time
in each step for single-view
reconstruction

Step Time (s) Percentage (%)

Pre-processing data 0.455 11.34

Loading models 2.774 69.13

Making prediction 0.516 12.85

Preserving outputs 0.268 6.68

Total 4.013

Fig. 10 Computational time in making prediction step for multi-view reconstruction

Moreover, we tested the timing of making prediction for the multi-view reconstruction.
As shown in Fig. 10, the prediction time increases slightly as the number of input images
increases, and it has no serious impact on the total time.

4.8 Generalization Evaluation

In robotics applications, it is important for intelligent robots to have robust learning capa-
bilities. We chose the bed, motorbike, and bookshelf categories belonging to the PASCAL
3D+ dataset to be fed into our network that was trained by the ShapeNet dataset to evaluate
prediction performance. The bed category was predicted to be the most difficult because it
is challenging to find categories that are similar in shape to the training set. Table 5 shows
that the proposed method obtains sufficient IoU values, and our network predicted volumes
reasonably well for all three categories. The reconstruction performance improves when we
increase the input views. As shown in Fig. 11, the proposed approach has sufficient gen-
eralization abilities for the bookshelf and motorbike categories. As we expected, the bed
category is reconstructed the most poorly. This experiment demonstrates that our 2D-3D-
attention network model has excellent generalization capabilities for unseen categories and
can infer more representations in robotic applications.
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Table 5 Predicted IoU values
using the 2D-3D-attention tested
on bookshelf, bed, and motorbike
categories

Input views 1 3 5

Bookshelf 0.369 0.417 0.515

Bed 0.140 0.217 0.228

Motorbike 0.281 0.362 0.514

Fig. 11 Results of generalization

5 Conclusions

In this paper, we introduced a learning-based 3D object reconstruction approach. The
approach leverages a recurrent convolutional auto-encoder network with the attentive-
recurrent visualmodel. The2DconvolutionalLSTMencoder of the network learns long-range
dependencies and contains stable learning dynamics, which are effective in extracting fea-
tures, and the attentive-recurrent visual model adaptively selects useful images for volume
prediction. Our experiments show that our model can improve both the accuracy and effi-
ciency of object reconstruction. For robotic applications, the proposed extension model may
be promising in achieving scene reconstruction.
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