Skip to main content
Log in

Self-Adaptive Clustering of Dynamic Multi-Graph Learning

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In the process of graph clustering, the quality requirements for the structure of data graph are very strict, which will directly affect the final clustering results. Enhancing data graph is the key step to improve the performance of graph clustering. In this paper, we propose a self-adaptive clustering method to obtain a dynamic fine-tuned sparse graph by learning multiple static original graph with different sparsity degrees. By imposing a constrainted rank on the corresponding Laplacian matrix, the method utilizes the eigenvectors of the Laplacian matrix to create a new and simple data sparse matrix to have exactly k connected components, so that the method can quickly and directly learn the clustering results. The experimental results on synthetic and multiple public datasets verify that the proposed method is meaningful and beneficial to discover the real cluster distribution of datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://archive.ics.uci.edu/ml/.

  2. http://www.escience.cn/people/fpnie/index.html/.

References

  1. Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for embedding and clustering. Adv Neural Inf Process Syst 14(6):585–591

    Google Scholar 

  2. Cahill ND, Hayes TL, Meinhold RT, Hamilton JF (2018) Compassionately conservative balanced cuts for image segmentation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1683–1691. https://doi.org/10.1109/CVPR.2018.00181

  3. Castellani M, Giuli M, Pappalardo M (2018) A ky fan minimax inequality for quasiequilibria on finite-dimensional spaces. J Optim Theory Appl 179(1):53–64

    Article  MathSciNet  Google Scholar 

  4. Feng J, Lin Z, Xu H, Yan S (2014) Robust subspace segmentation with block-diagonal prior. In: IEEE Conference on Computer Vision & Pattern Recognition, pp 3818–3825

  5. Froyland G, Padberg-Gehle K (2015) Normalized cuts and image segmentation. Chaos Interdisciplin J Nonlinear Sci 22(8):888–905

    MATH  Google Scholar 

  6. Guo Y, Wu Z, Shen D (2019) Learning longitudinal classification-regression model for infant hippocampus segmentation. Neurocomputing. https://doi.org/10.1016/j.neucom.2019.01.108

  7. Hagen L, Kahng A (1992) New spectral methods for ratio cut partitioning and clustering. IEEE Trans Comput Aided Des Integr Circuits Syst 11(9):1074–1085

    Article  Google Scholar 

  8. Hamerly G, Elkan C (2002) Alternatives to the k-means algorithm that find better clusterings. In: Eleventh International Conference on Information & Knowledge Management, pp 600–607

  9. Hao S, Zhou Y, Guo Y (2020) A brief survey on semantic segmentation with deep learning. Neurocomputing. https://doi.org/10.1016/j.neucom.2019.11.118

  10. Hu R, Zhu X, Zhu Y, Gan J (2020) Robust svm with adaptive graph learning. World Wide Web 23:1945–1968

    Article  Google Scholar 

  11. Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recognit Lett 31(8):651–666

    Article  Google Scholar 

  12. Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Article  Google Scholar 

  13. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

    Article  Google Scholar 

  14. Jin H, Nie F, Huang H (2015) A new simplex sparse learning model to measure data similarity for clustering. In: International Conference on Artificial Intelligence, pp 3569–3575

  15. Judd D, Mckinley PK, Jain AK (1998) Large-scale parallel data clustering. IEEE Trans Pattern Anal Mach Intell 20(8):871–876

    Article  Google Scholar 

  16. Kang Z, Lu X, Lu Y, Peng c, Chen W, Xu Z (2020) Structure learning with similarity preserving. Neural Netw 129:138–148

    Article  Google Scholar 

  17. Kang Z, Pan H, Hoi SC, Xu Z (2020) Robust graph learning from noisy data. IEEE Trans Cybern 50(5):1833–1843

    Article  Google Scholar 

  18. Kang Z, Zhao X, Shi, Peng c, Zhu H, Zhou JT, Peng X, Chen W Xu Z (2020) Partition level multiview subspace clustering. Neural Netw 12:279–288

    Article  Google Scholar 

  19. Krinidis S, Chatzis V (2010) A robust fuzzy local information c-means clustering algorithm. IEEE Trans Image Process 19(5):1328–1337

    Article  MathSciNet  Google Scholar 

  20. Lordo Robert A (2001) Learning from dat: concepts, theory, and methods. Technometrics 43(1):105–106

    Article  Google Scholar 

  21. Luxburg UV (2007) A tutorial on spectral clustering. Statistic Comput 17(4):395–416

    Article  MathSciNet  Google Scholar 

  22. Moon TK (1996) The expectation-maximization algorithm. IEEE Signal Process Magaz 13(6):47–60

    Article  Google Scholar 

  23. Murtagh F, Contreras P (2012) Algorithms for hierarchical clustering: an overview. Wiley Interdisciplin Rev Data Mining Knowl Discovery 2(1):86–97

    Article  Google Scholar 

  24. Nie F, Wang X, Huang H (2014) Clustering and projected clustering with adaptive neighbors. In: Acm Sigkdd International Conference on Knowledge Discovery & Data Mining, pp 977–986

  25. Nie F, Wang X, Jordan MI, Huang H (2016) The constrained laplacian rank algorithm for graph-based clustering, pp 1969–1976

  26. Omran MGH, Engelbrecht AP, Salman A (2007) An overview of clustering methods. Intell Data Anal 11(6):583–605

    Article  Google Scholar 

  27. Rui X, Ii DCW (2005) Survey of clustering algorithms. IEEE Trans Neural Netw 16(3):645–678

    Article  Google Scholar 

  28. Shen HT, Zhu X, Zhang Z, Wang Sh, Chen Y, Xu X, Shao J (2021) Heterogeneous data fusion for predicting mild cognitive impairment conversion. Inform Fusion 66:54–63. https://doi.org/10.1016/j.inffus.2020.08.023

    Article  Google Scholar 

  29. Shen HT, Zhu Y, Zheng W, Zhu X (2020) Half-quadratic minimization for unsupervised feature selection on incomplete data. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2020.3009632

    Article  Google Scholar 

  30. Song W, Siskind JM (2003) Image segmentation with ratio cut—supplemental material. IEEE Trans Pattern Anal Mach Intell 25(6):675–690

    Article  Google Scholar 

  31. Spielman DA (2007) Spectral graph theory and its applications, pp. 29–38

  32. Wen J, Fang X, Xu Y, Tian C, Fei L (2018) Low-rank representation with adaptive graph regularization. Neural Netw 108:83–96

    Article  Google Scholar 

  33. Xie J, Ying Z, Ding L (2018) Local standard deviation spectral clustering. In: 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), pp 242–250

  34. Zelnikmanor L, Perona P (2004) Self-tuning spectral clustering, pp 1601–1608

  35. Zhang S, Li X, Zong M, Zhu X, Cheng D (2017) Learning k for knn classification. ACM Trans Intell Syst Technol 8(3):1–19

    Google Scholar 

  36. Zhou Y, Tian L, Zhu C, Jin X, Sun Y (2020) Video coding optimization for virtual reality 360-degree source. J Sel Topics Signal Process 14(1):118–129

    Article  Google Scholar 

  37. Zhu X, Gan J, Lu G, Li J, Zhang S (2020) Spectral clustering via half-quadratic optimization. World Wide Web 23:1969–1988

    Article  Google Scholar 

  38. Zhu X, Li X, Zhang S, Xu Z, Yu L, Wang C (2017) Graph pca hashing for similarity search. IEEE Trans Multimedia 19(9):2033–2044

    Article  Google Scholar 

  39. Zhu X, Zhang S, Zhu Y, Zhu P, Gao Y (2020) Unsupervised spectral feature selection with dynamic hyper-graph learning. IEEE Trans Knowl Data Eng. https://doi.org/10.1109/TKDE.2020.3017250

    Article  Google Scholar 

  40. Zhu X, Zhu Y, Zheng W (2019) Spectral rotation for deep one-step clustering. Pattern Recognit. https://doi.org/10.1016/j.patcog.2019.107175

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61836016); the Natural Science Foundation of China (Grants Nos. 61876046, 61672177 and 81701780); the Project of Guangxi Science and Technology (Grants Nos. GuiKeAD17195062, GuiKeAD19110133); the Guangxi Natural Science Foundation (Grant No. 2017GXNSFBA198221); the Hunan Provincial Science & Technology Project Foundation (Grants Nos. 2018TP1018, 2018RS3065); the Promoting Project of Basic Capacity for Young and Middleaged University Teachers in Guangxi (Grants No. 2018KY0493); the Guangxi High Institutions Program of Introducing 100 High-Level Overseas Talents; the Guangxi Bagui Teams for Innovation and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangding Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Li, Y., Huang, X. et al. Self-Adaptive Clustering of Dynamic Multi-Graph Learning. Neural Process Lett 54, 2533–2548 (2022). https://doi.org/10.1007/s11063-020-10405-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-020-10405-6

Keywords

Navigation