Skip to main content
Log in

Synchronization of Fractional Order Neutral Type Fuzzy Cellular Neural Networks with Discrete and Distributed Delays via State Feedback Control

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

The motivation behind this paper is to explore the issue of synchronization of fractional order neutral type fuzzy cellular neural networks with state feedback control. A novel fuzzy model state feedback controller is designed. By developing Lyapunov–Krasovskii (L–K) functional, utilizing improved Jensen’s inequalities we derived sufficient conditions in terms of linear matrix inequalities (LMIs). The condition is presented in terms of LMIs, which can be easily checked by using MATLAB LMI toolbox. Finally, numerical examples are provided to show the effectiveness of the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  2. Kilbas AA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. Elsevier, New York, pp 1–540

    MATH  Google Scholar 

  3. Machado JT, Kiryakova V, Mainardi F (2011) Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 16:1140–1153

    Article  MathSciNet  MATH  Google Scholar 

  4. He JM, Chen FQ (2017) A new fractional order hyper chaotic Rabinovich system and its dynamical behaviors. Int J Non Linear Mech 95:73–81

    Article  Google Scholar 

  5. Luo SK, He JM, Xu YL, Zhang XT (2016) Fractional generalized Hamilton method for equilibrium stability of dynamical systems. Appl Math Lett 60:14–20

    Article  MathSciNet  MATH  Google Scholar 

  6. He JM, Xu YL, Luo SK (2015) Stability for manifolds of the equilibrium state of fractional Birkhoffian systems. Acta Mech 226:2135–2146

    Article  MathSciNet  MATH  Google Scholar 

  7. Baleanu D, Inc M, Yusuf A, Aliyu AI (2017) Time fractional third-order evolution equation: symmetry analysis, explicit solutions, and conservation laws. J Comput Nonlinear Dyn 13:021011

    Article  MATH  Google Scholar 

  8. He J, Chen F (2018) Dynamical analysis of a new fractionalorder Rabinovich system and its fractional matrix projective synchronization. Chin J Phys 56:2627–2637

    Article  Google Scholar 

  9. He J, Chen F, Lei T (2018) Fractional matrix and inverse matrix projective synchronization methods for synchronizing the disturbed fractional-order hyper chaotic system. Math Methods Appl Sci 41:6907–6920

    Article  MathSciNet  MATH  Google Scholar 

  10. Jajarmi A, Hajipour M, Mohammadzadeh E, Baleanu D (2018) A new approach for the nonlinear fractional optimal control problems with external persistent disturbances. J Franklin Inst 355:3938–3967

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang CD, Cai LM, Cao JD (2018) Linear control for synchronization of a fractional-order time-delayed chaotic financial system. Chaos Solitons Fractals 113:326–332

    Article  MathSciNet  MATH  Google Scholar 

  12. Yang XJ, Machado JA (2017) A new fractional operator of variable order: application in the description of anomalous diffusion. Physica A 481:276–283

    Article  MathSciNet  Google Scholar 

  13. Kiani A, Fallahi BK, Pariz N, Leung H (2009) A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter. Commun Nonlinear Sci Numer Simul 14:863–879

    Article  MathSciNet  MATH  Google Scholar 

  14. Xu X, Qiao Z, Lei Y (2018) Repetitive transient extraction for machinery fault diagnosisusing multi scale fractional order entropy infogram. Mech Syst Signal Process 103:312–326

    Article  Google Scholar 

  15. Matychyn I, Onyshchenko V (2018) On time-optimal control of fractional order systems. J Comput Appl Math 339:245–257

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu H, Xie G, Yu M (2019) Necessary and sufficient conditions for containment control of fractional-order multi-agent systems. Neurocomputing 323:86–95

    Article  Google Scholar 

  17. Magin RL (2010) Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl 59:1586–1593

    Article  MathSciNet  MATH  Google Scholar 

  18. Gao Z, Liao X (2013) Robust stability criterion of fractional-order functions for interval fractional-order systems. IET Control Theory Appl 7:60–67

    Article  MathSciNet  Google Scholar 

  19. Song L, Xu S, Yang J (2010) Dynamical models of happiness with fractional order. Commun Nonlinear Sci Numer Simul 15:616–628

    Article  MathSciNet  MATH  Google Scholar 

  20. Ullah S, Khan MA, Farooq M (2018) A fractional model for the dynamics of TB Virus. Chaos Solition Fractal 116:63–71

    Article  MathSciNet  MATH  Google Scholar 

  21. Chua LO, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circuits Syst I 35:1257–1272

    Article  MathSciNet  MATH  Google Scholar 

  22. Roska T, Chua LO (1992) Cellular neural networks with nonlinear and delay-type template elements and nonuniform grids. Int J Circuit Theory Appl 20:469–481

    Article  MATH  Google Scholar 

  23. Harrer H, Nossek JA (1992) Discrete-time cellular neural networks. Int J Circuit Theory Appl 20:453–467

    Article  MATH  Google Scholar 

  24. Yager RR, Zadeh LA (1992) An introduction to fuzzy logic application in intelligent systems. Springer, New York, pp 1–356

    Google Scholar 

  25. Kandel A (1982) Fuzzy techniques in pattern recognition, vol 356. Wiley, New York

    MATH  Google Scholar 

  26. Marks RJ II (1994) Fuzzy logic technology and applications. IEEE Trans Eng Manag 40:237–254

    MATH  Google Scholar 

  27. Zadeh LA, Fu KS, Tanaka K, Shimura M (1974) Fuzzy sets and their applications to cognitive and decision processes. IEEE Trans Circuits Syst 7:122–123

    Google Scholar 

  28. Ratnavelu K, Kalpana M, Balasubramaniam P, Wong K, Raveendran P (2017) Image encryption method based on chaotic fuzzy cellular neural networks. Signal Process 140:87–96

    Article  Google Scholar 

  29. Yang T, Yang LB (1997) Application of fuzzy cellular neural networks to Euclidean distance transformation. IEEE 44:242–246

    Google Scholar 

  30. Yang T, Yang LB (1996) The global stability of fuzzy cellular neural network. IEEE 43:880–883

    MathSciNet  Google Scholar 

  31. Ratnavelu K, Kalpana M, Balasubramaniam P (2018) Stability analysis of fuzzy genetic regulatory networks with various time delays. Bull Malays Math Sci Soc 41:491–505

    Article  MathSciNet  MATH  Google Scholar 

  32. Ali MS, Balasubramaniam P, Zhu Q (2017) Stability of stochastic fuzzy BAM neural networks with discrete and distributed time-varying delays. Int J Mach Learn Cybern 8:263–273

    Article  Google Scholar 

  33. Ali MS, Balasubramaniam P, Rihan FA, Lakshmanan S (2016) Stability criteria for stochastic T–S fuzzy Cohen–Grossberg BAM neural networks with mixed time-varying delays. Complexity 21:143–154

    Article  MathSciNet  Google Scholar 

  34. Yang J, Luo WP, Shi KB, Zhao X (2016) Robust stability analysis of uncertain TS fuzzy systems with time-varying delay by improved delay-partitioning approach. J Nonlinear Sci Appl 9:171–185

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen H, Zhong S, Liu X, Li Y, Shi K (2017) Improved results on nonlinear perturbed T–S fuzzy system with mixed delays. J Franklin Inst 354:2032–2052

    Article  MathSciNet  MATH  Google Scholar 

  36. Arik S (2014) An analysis of stability of neutral-type neural systems with constant time delays. J Franklin Inst 351:4949–4959

    Article  MathSciNet  MATH  Google Scholar 

  37. Balasubramaniam P, Vembarasan V (2011) Robust stability of uncertain fuzzy BAM neural networks of neutral-type with Markovian jumping parameters and impulses. Comput Math Appl 62:1838–1861

    Article  MathSciNet  MATH  Google Scholar 

  38. Park MJ, Kwon OM, Park JH, Lee SM (2012) Simplified stability criteria for fuzzy Markovian jumping Hopfield neural networks of neutral type with interval time-varying delays. Expert Syst Appl 39:5625–5633

    Article  Google Scholar 

  39. Arik S (2019) A modified Lyapunov functional with application to stability of neutral type neural networks with time delays. J Franklin Inst 356:276–291

    Article  MathSciNet  MATH  Google Scholar 

  40. Sathy R, Balasubramaniam P (2012) Direct delay decomposition approach to robust stability on fuzzy Markov-type BAM neural networks with time-varying delays. Springer, Berlin, pp 245–254

    Google Scholar 

  41. Yang LX, Jiang J (2014) Adaptive synchronization of drive response fractional-order complex dynamical networks with uncertain parameters. Commun Nonlinear Sci Numer Simul 19:1496–1506

    Article  MathSciNet  MATH  Google Scholar 

  42. Bao H, Park JH, Cao J (2016) Synchronization of fractional order complex-valued neural networks with time delay. Neural Netw 81:16–28

    Article  MATH  Google Scholar 

  43. Komanovskii VB, Nosov VR (1986) Stability of functional differential equations, vol 34. Academic Press, Cambridge, pp 682–684

    Google Scholar 

  44. Kuang Y (2012) Delay differential equations with applications in population dynamical system. Academic Press, Cambridge, p 412

    Google Scholar 

  45. Yao L (2017) Global exponential convergence of neutral type shunting inhibitory cellular neural networks with D operator. Neural Process Lett 45:401–409

    Article  Google Scholar 

  46. Yao L (2018) Global convergence of CNNs with neutral type delays and D operator. Neural Comput Appl 29:105–109

    Article  Google Scholar 

  47. Chen Z (2013) A shunting inhibitory cellular neural network with leakage delays and continuously distributed delays of neutral type. Neural Comput Appl 23:2429–2434

    Article  Google Scholar 

  48. Xu CJ, Li PL (2018) On anti-periodic solutions for neutral shunting inhibitory cellular neural networks with time-varying delays and D operator. Neurocomputing 275:377–382

    Article  Google Scholar 

  49. Balasubramaniam P, Vembarasan V (2011) Robust stability of uncertain fuzzy BAM neural networks of neutral-type Markovian jumping parameters and impulses. Comput Math Appl 62:1838–1861

    Article  MathSciNet  MATH  Google Scholar 

  50. Park JH (2009) Synchronization of cellular neural networks of neutral type via dynamic feedback controller. Chaos Solitons Fractals 42:1299–1304

    Article  MathSciNet  MATH  Google Scholar 

  51. Aouiti C, Dridi F, Karray F (2018) New results on neutral type fuzzy based cellular neural networks. In: IEEE international conference on fuzzy systems (FUZZ-IEEE), pp 1–8

  52. Kong F, Rathinasamy S (2020) Delay-dependent criteria for general decay synchronization of discontinuous fuzzy neutral-type neural networks with time-varying delays. Int J Robust Nonlinear Control 62:1–28

    MathSciNet  Google Scholar 

  53. Long S, Jia L (2011) Stability analysis of neutral-type fuzzy neural networks with distributed delays. In: Seventh international conference on computational intelligence and security, Hainan, pp 407–411

  54. Liu Y, Cao J, Sun L, Lu J (2016) Sampled-data state feedback stabilization of Boolean control networks. Neural Comput 28:778–799

    Article  MathSciNet  MATH  Google Scholar 

  55. Yang X, Cao J, Ho DW (2015) Exponential synchronization of discontinuous neural networks with time-varying mixed delays via state feedback and impulsive control. Cogn Neurodyn 9:113–128

    Article  Google Scholar 

  56. Rodrigues L, Boyd S (2005) Piecewise-affine state feedback for piecewise-affine slab systems using convex optimization. Syst Control Lett 54:835–853

    Article  MathSciNet  MATH  Google Scholar 

  57. Abdulwahhab OW, Abbas NH (2018) Design and stability analysis of a fractional order state feedback controller for trajectory tracking of a differential drive robot. Int J Control Autom Syst 16:2790–2800

    Article  Google Scholar 

  58. Jagannathan S, He P (2008) Neural-network-based state feedback control of a nonlinear discrete-time system in nonstrict feedback form. IEEE Trans Neural Netw 19:2073–2087

    Article  Google Scholar 

  59. Debbache G, Bennia A, Golea N (2007) Neural networks-based adaptive state feedback control of robot manipulators. Int J Comput Commun Control 2:328–339

    Article  MATH  Google Scholar 

  60. Huang C, Long X, Cao J (2020) Stability of antiperiodic recurrent neural networks with multiproportional delays. Math Methods Appl Sci 43:6093–6102

    Article  MathSciNet  MATH  Google Scholar 

  61. Arik S (2002) An analysis of global asymptotic stability of delayed cellular neural networks. IEEE Trans Neural Netw 13:1239–1242

    Article  Google Scholar 

  62. Faydasicok O (2020) New criteria for global stability of neutral-type Cohen–Grossberg neural networks with multiple delays. Neural Netw 125:330–337

    Article  MATH  Google Scholar 

  63. Guo Y, Xu C (2014) Global asymptotic stability of a class of neural networks with time varying delays. In: Proceedings of 2014 IEEE Chinese guidance, navigation and control conference, pp 72–76

  64. Huang C, Qiao Y, Huang L, Agarwal RP (2018) Dynamical behaviors of a food-chain model with stage structure and time delays. Adv Differ Equ 2018:186

    Article  MathSciNet  MATH  Google Scholar 

  65. Huang C, Yang X, Cao J (2020) Stability analysis of Nicholson’s blowflies equation with two different delays. Math Comput Simul 171:201–206

    Article  MathSciNet  MATH  Google Scholar 

  66. Rajchakit G, Pratap A, Raja R, Cao J, Alzabut J, Huang C (2019) Hybrid control scheme for projective lag synchronization of Riemann–Liouville sense fractional order memristive BAM neural networks with mixed delays. Mathematics 7:759

    Article  Google Scholar 

  67. Zhang H, Qian C (2020) Convergence analysis on inertial proportional delayed neural networks. Adv Differ Equ 2020:277

    Article  MathSciNet  Google Scholar 

  68. Wang W (2018) Finite-time synchronization for a class of fuzzy cellular neural networks with time-varying coefficients and proportional delays. Fuzzy Sets Syst 338:40–49

    Article  MathSciNet  MATH  Google Scholar 

  69. Pratap A, Raja R, Alzabut J, Cao J, Rajchakit G, Huang C (2020) Mittag–Leffler stability and adaptive impulsive synchronization of fractional order neural networks in quaternion field. Math Methods Appl Sci 43:1–31

    Article  MathSciNet  MATH  Google Scholar 

  70. Chen J, Zeng Z, Jiang P (2014) Global Mittag–Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw 51:1–8

    Article  MATH  Google Scholar 

  71. Gu K (2000) An integral inequality in the stability problem of time-delay systems, pp 2805–2810. IEEE

  72. Liu S, Zhou XF, Li XY, Jiang W (2016) Stability of fractional nonlinear singular systems and its applications in synchronization of complex dynamical networks. Nonlinear Dyn 84:2377–2385

    Article  MathSciNet  MATH  Google Scholar 

  73. Boyd S, Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  74. Maboobi SH, Shahrokhi M, Pishkenari HN (2006) Observer-based control design for three well-known chaotic systems. Chaos Solitions Fractals 29:381–392

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of author was supported by CSIR . 25(0274)/17/EMR-II dated 27/04/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Syed Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.S., Hymavathi, M. Synchronization of Fractional Order Neutral Type Fuzzy Cellular Neural Networks with Discrete and Distributed Delays via State Feedback Control. Neural Process Lett 53, 929–957 (2021). https://doi.org/10.1007/s11063-020-10413-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-020-10413-6

Keywords

Navigation