Skip to main content
Log in

Quantized Sampled-Data Control for Exponential Stabilization of Delayed Complex-Valued Neural Networks

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper addresses the problem of quantized sampled-data control for CVNNs with time-varying delay under the assumption that only quantized measurements are transmitted to the controller. Based on the discrete-time Lyapunov stability theory, reciprocally convex approach, a sector bound approach, and some estimation techniques, a reduced conservative stabilization criterion is obtained to guarantee the exponential stabilization of the considered CVNNs. The desired quantized sampled-data controller is designed via converting the complex-valued linear matrix inequality into real-valued ones. The effectiveness of the derived criteria are shown via an illustrative simulation example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aizenberg I (2011) Complex-valued neural networks with multi-valued neurons. Springer, New York

    Book  Google Scholar 

  2. Hirose A (2012) Complex-valued neural networks, 2nd edn. Springer, New York

    Book  Google Scholar 

  3. Aizenberg I, Aizenberg N, Vandewalle J (2000) Multi-valued and universal binary neurons: theory, learning, applications. Springer, New York

    Book  Google Scholar 

  4. Tripathi B, Kalra P (2011) On efficient learning machine with root-power mean neuron in complex domain. IEEE Trans Neural Netw 22(5):727–738

    Article  Google Scholar 

  5. Chen S, Hanzo L, Tan S (2008) Symmetric complex-valued RBF receiver for multiple-antenna-aided wireless systems. IEEE Trans Neural Netw 19(9):1659–1665

    Article  Google Scholar 

  6. Jankowski S, Lozowski A, Zurada J (1996) Complex-valued multistate neural associative memory. IEEE Trans Neural Netw 7(6):1491–1496

    Article  Google Scholar 

  7. Savitha R, Suresh S, Sundararajan N (2009) A fully complex-valued radial basis function network and its learning algorithm. Int J Neural Syst 19(4):253–267

    Article  Google Scholar 

  8. Fiori S (2008) Learning by criterion optimization on a unitary unimodular matrix group. Int J Neural Syst 18:87–103

    Article  Google Scholar 

  9. Zhang Y, Huang H (2020) Adaptive complex-valued stepsize based fast learning of complex-valued neural networks. Neural Netw 124:233–242

    Article  Google Scholar 

  10. Wu R, Huang H, Qian X, Huang T (2018) A L-BFGS based learning algorithm for complex-valued feedforward neural networks. Neural Process Lett 47(3):1271–1284

    Article  Google Scholar 

  11. Liu Y, Huang H, Huang T, Qian X (2016) An improved maximum spread algorithm with application to complex-valued RBF neural networks. Neurocomputing 216:261–267

    Article  Google Scholar 

  12. Yan Z, Huang X, Cao J (2020) Variable-sampling-period dependent global stabilization of delayed memristive neural networks via refined switching event-triggered control. Sci China Inf Sci 63:212201:1–212201:16

  13. Wang Z, Li L, Li Y, Cheng Z (2018) Stability and Hopf bifurcation of a three-neuron network with multiple discrete and distributed delays. Neural Process Lett 48(3):1481–1502

    Article  Google Scholar 

  14. Li YY, Lou JG, Wang Z, Alsaadi FE (2018) Synchronization of nonlinearly coupled dynamical networks under hybrid pinning impulsive controllers. J Frank Inst 355:6520–6530

    Article  Google Scholar 

  15. Ji XR, Lu JQ, Lou JG, Qiu JL, Shi KB (2020) A unified criterion for global exponential stability of quaternion-valued neural networks with hybrid impulses. Int J Robust Nonlinear Control 30:8098–8116

    Article  MathSciNet  Google Scholar 

  16. Li L, Wang Z, Li Y, Shen H, Lu J (2018) Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays. Appl Math Comput 330:152–169

    MathSciNet  MATH  Google Scholar 

  17. Wang X, Wang Z, Song Q, Shen H, Huang X (2020) A waiting-time-based event-triggered scheme for stabilization of complex-valued neural networks. Neural Netw 121:329–338

    Article  Google Scholar 

  18. Duan L, Shi M, Wang Z, Huang L (2019) Global exponential synchronization of delayed complex-valued recurrent neural networks with discontinuous activations. Neural Process Lett 50:2183–2200

    Article  Google Scholar 

  19. Hu J, Zeng C (2017) Adaptive exponential synchronization of complex-valued Cohen-Grossberg neural networks with known and unknown parameters. Neural Netw 86:90–101

    Article  Google Scholar 

  20. Zhou C, Zhang W, Yang X, Xu C, Feng J (2017) Finite time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations. Neural Process Lett 46:271–291

    Article  Google Scholar 

  21. Liu Y, Qin Y, Huang J, Huang T, Yang X (2019) Finite-time synchronization of complex-valued neural networks with multiple time-varying delays and infinite distributed delays. Neural Process Lett 50:1773–1787

    Article  Google Scholar 

  22. Zhao D, Wang Z, Ding D, Wei G (2020) \(H_\infty \) PID control with fading measurements: the output-feedback case. IEEE Trans Syst Man Cybern Syst 50(6):2170–2180

    Article  Google Scholar 

  23. Gong W, Liang J, Kan X, Wang L, Dobaie A (2019) Robust state estimation for stochastic complex-valued neural networks with sampled-data. Neural Comput Appl 31:523–542

    Article  Google Scholar 

  24. Zhang R, Zeng D, Park J, Liu Y, Zhong S (2018) Quantized sampled-data control for synchronization of inertial neural networks with heterogeneous time-varying delays. IEEE Trans Neural Netw Learn Syst 29(10):6385–6395

    Article  MathSciNet  Google Scholar 

  25. Yang X, Cao J, Xu C, Feng J (2018) Finite-time stabilization of switched dynamical networks with quantized couplings via quantized controller. Sci China Technol Sci 61(2):299–308

    Article  Google Scholar 

  26. Yang X, Wan X, Cheng Z, Cao J, Liu Y, Rutkowski L (2020) Synchronization of switched discrete-time neural networks via quantized output control with actuator fault. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2020.3017171

    Article  Google Scholar 

  27. Xiong X, Yang X, Cao J, Tang R (2020) Finite-time control for a class of hybrid systems via quantized intermittent control. Sci China Inf Sci 63(9):192201

    Article  MathSciNet  Google Scholar 

  28. Wang Y, Shen H, Duan D (2017) On stabilization of quantized sampled-data neural-network-based control systems. IEEE Trans Cybern 47(10):3124–3135

    Article  Google Scholar 

  29. Xi Z (2018) Dynamic sliding mode controller design for networked control systems with random packet loss and event driven quantisation. IET Control Theory Appl 12(17):2433–2440

    Article  MathSciNet  Google Scholar 

  30. Wakaiki M, Yamamoto Y (2017) Stabilization of switched systems with sampled and quantized output feedback. IET Control Theory Appl 11(12):1913–1921

    Article  MathSciNet  Google Scholar 

  31. Li P, Liu X, Zhao W, Zhong S (2020) A new looped-functional for stability analysis of the linear impulsive system. Commun Nonlinear Sci Numer Simul 83:105140

    Article  MathSciNet  Google Scholar 

  32. Zeng H, Teo K, He Y (2017) A new looped-functional for stability analysis of sampled-data systems. Automatica 82:328–331

    Article  MathSciNet  Google Scholar 

  33. Seuret A, Briat C (2015) Stability analysis of uncertain sampled-data systems with incremental delay using looped-functionals. Automatica 55:274–278

    Article  MathSciNet  Google Scholar 

  34. Lee S, Selvaraj R, Park M, Kwon O (2020) Improved results on \(H_\infty \) stability analysis of sampled-data systems via looped-functionals and zero equalities. Appl Math Comput 373:125003

    Article  MathSciNet  Google Scholar 

  35. Wu Z, Shi P, Su H, Chu J (2013) Sampled-data synchronization of chaotic Lur’e systems with time delays. IEEE Trans Neural Netw Learn Syst 24(3):410–421

    Article  Google Scholar 

  36. Yao L, Wang Z, Huang X, Li Y, Shen H, Chen G (2020) Aperiodic sampled-data control for exponential stabilization of delayed neural networks: a refined two-sided looped-functional approach. IEEE Trans Circuits Syst II Express Briefs. https://doi.org/10.1109/TCSII.2020.2983803

    Article  Google Scholar 

  37. Elia E, Mitter K (2001) Stabilization of linear systems with limited information. IEEE Trans Autom Control 46:1384–1400

    Article  MathSciNet  Google Scholar 

  38. Fu M, Xie L (2005) The sector bound approach to quantized feedback control. IEEE Trans Autom Control 50:1698–1712

    Article  MathSciNet  Google Scholar 

  39. Xu S, Chen T, Lam J (2003) Robust \(H_\infty \) filtering for uncertain Markovian jump systems with mode-dependent time delays. IEEE Trans Autom Control 48:900–907

    Article  Google Scholar 

  40. Park P, Ko J, Jeong C (2011) Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47(1):235–238

    Article  MathSciNet  Google Scholar 

  41. Fridman E, Shaked U (2006) Input–output approach to stability and \(L_2\)-gain analysis of systems with time-varying delays. Syst Control Lett 55(12):1041–1053

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Nos. 61973199, 61573008, 61773207) and the Shandong University of Science and Technology Research Fund (2018TDJH101).

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the manuscript.

Corresponding author

Correspondence to Zhen Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof

For any \(t\in [t_k,t_{k+1})\), according to Eq. (4), we have

$$\begin{aligned} \begin{aligned} ||z(t)||&\le ||z(t_k)||+||\int _{t_k}^tDz(\alpha )d\alpha ||+||Af(z(\alpha ))d\alpha ||\\&\quad +||Bg(z(\alpha _{\tau }))d\alpha ||+||\int _{t_k}^tKz(t_k)d\alpha ||\\&\quad +||\int _{t_k}^tK\varDelta (t_k)z(t_k)d\alpha ||. \end{aligned} \end{aligned}$$
(24)

Based on the Cauchy–Schwarz inequality, it follows from (24) that

$$\begin{aligned} \begin{aligned} ||z(t)||^2&\le 6||z(t_k)||^2+6||\int _{t_k}^tDz(\alpha )d\alpha ||^2\\&\quad +6||\int _{t_k}^tAf(z(\alpha ))d\alpha ||^2+6||\int _{t_k}^tB{g}(z(\alpha _{\tau }))d\alpha ||^2\\&\quad +6||\int _{t_k}^tKz(t_k)d\alpha ||^2+6||\int _{t_k}^tK\varDelta (t_k)z(t_k)d\alpha ||^2. \end{aligned} \end{aligned}$$
(25)

For (25), we utilize the Cauchy–Schwarz inequality again and then we can get

$$\begin{aligned} \begin{aligned} ||z(t)||^2&\le 6||z(t_k)||^2+6h\int _{t_k}^t||Dz(\alpha )||^2d\alpha \\&\quad +6h\int _{t_k}^{t}||Af(z(\alpha ))||^2d\alpha +6h\int _{t_k}^{t}||Bg(z(\alpha _{\tau }))||^2d\alpha \\&\quad +6h\int _{t_k}^t||Kz(t_k)||^2d\alpha +6h\int _{t_k}^t||K\varDelta (t_k)z(t_k)||^2d\alpha . \end{aligned} \end{aligned}$$

According to Assumption 1, we have

$$\begin{aligned} \begin{aligned} ||f(z(\alpha ))||^2\le ||F||^2||z(\alpha )||^2, ~||g(z(\alpha _{\tau }))||^2\le ||G||^2||z(\alpha _{\tau })||^2. \end{aligned} \end{aligned}$$

Thus, we further obtain

$$\begin{aligned} \begin{aligned} ||z(t)||^2&\le 6||z(t_k)||^2+6h(||D||^2\int _{t_k}^t||z(\alpha )||^2d\alpha +||A||^2||F||^2\\&\quad \times \int _{t_k}^t||z(\alpha )||^2d\alpha +||B||^2||G||^2\int _{t_k}^t||z(\alpha _{\tau })||^2d\alpha \\&\quad +\int _{t_k}^t||K||^2||z(t_k)||^2(1+||\varDelta (t_k)||^2)d\alpha )\\&\le 6||z(t_k)||^2+6h||D||^2\int _{t_k}^t||z(\alpha )||^2d\alpha +6h||A||^2||F||^2\\&\quad \times \int _{t_k}^t||z(\alpha )||^2d\alpha +6h||B||^2||G||^2\int _{t_k}^t||z(\alpha _{\tau })||^2d\alpha \\&\quad +6h^2||K||^2||z(t_k)||^2+6h^2\delta ^2||K||^2||z(t_k)||^2\\&=6(1+h^2||K||^2+h^2\delta ^2||K||^2)||z(t_k)||^2+6h||D||^2\\&\quad \times \int _{t_k}^t||z(\alpha )||^2d\alpha +6h||A||^2||F||^2\int _{t_k}^t||z(\alpha )||^2d\alpha \\&\quad +6h||B||^2||G||^2\int _{t_k}^t||z(\alpha _{\tau })||^2d\alpha . \end{aligned} \end{aligned}$$
(26)

By using the Gronwall–Bellman inequality, it follows from (26) that

$$\begin{aligned} \begin{aligned} ||z(t)||^2&\le 6[1+h^2||K||^2(1+\delta ^2)]||z(t_k)||^2\\&\quad \times e^{\int _{t_k}^t6h(||D||^2+||A||^2||F||^2)d\alpha }\\&\quad +6h||B||^2||G||^2\int _{t_k}^t||z(\alpha _{\tau })||^2d\alpha \\&\le 6[1+h^2||K||^2(1+\delta ^2)]||z(t_k)||^2\\&\quad \times e^{6h^2(||D||^2+||A||^2||F||^2)}\\&\quad +6h||B||^2||G||^2\int _{t_k}^t||z(\alpha _{\tau })||^2d\alpha . \end{aligned} \end{aligned}$$
(27)

Then, applying the Lemma 2 to (27), we can obtain Lemma 3 immediately. This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, Z., Xia, J. et al. Quantized Sampled-Data Control for Exponential Stabilization of Delayed Complex-Valued Neural Networks. Neural Process Lett 53, 983–1000 (2021). https://doi.org/10.1007/s11063-020-10422-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-020-10422-5

Keywords

Navigation